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Utilizing the type of circuit described by Kron tests were carried out on the a.c, network
analyzer. The tests reported include only one-dimensional circuits. Measurements were made of
eigenvalues and eigenfunctions for the particular cases of the linear oscillator, the rectangular
potential well, the double rectangular barrier, the single barrier, and the rigid rotator. These
tests show the circuit representation to be valid and to be adaptable to solution on the network
analyzer.

ALTERNATING CURRENT NETWORK ANALYZER

HE . alternating current network analyzer'
consists of a set of adjustable inductance,

resistance, and capacitance units, each connected
to a pair of flexible cords and plugs. Connections
between units to form any desired network are
made by inserting the plugs in adjacent jacks in
a jack panel. As many units as desired can be
connected to a common point. Alternating cur-
rent electric power is supplied by a motor-
generator set to individual generator units so that
several diferent voltages, independently adjust-
able in both phase and magnitude, can be in-

serted in different parts of the network. A
centrally located set of instruments (voltmeter,
ammeter, wattmeter, and varmeter) can be con-
nected to any unit or circuit by a set of key
switches.
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Frr. 2. Generator current as a function of energy levels
of Fig. 3.

minus to plus infinity, but to the limit of the
circuit elements available.

Discrete energy levels are characterized in the
circuit usually by a standing voltage wave which
attenuates to zero outside of some special region.

METHOD OF TEST

The circuit used is that of Fig. 3 of the com-

panion paper, ' repeated here as Fig. 1 for con-
venience. The circuit was extended, not from

-Qx I

FIG. i. Equivalent circuit used.

t Analytical Division, Central Station Engineering
Divisions.

ft Consulting Engineer.' H. P. Kuehni and R. G. Lorraine, Trans. A.I.E.E. 57,
67 {j.938).

2 G. Kron, Phys. Rev. 67, 39 {1945).

For this type of wave, the circuit should be
terminated in an equivalent impedance. Since no
attempt was made to do this, such levels should
show an error which increases with the voltage
remaining at the end of the line. On the other
hand, the continuous energy levels in general
exhibit a standing wave which is a space sinusoid
of constant amplitude extending to infinity in at
least one direction. Hence, at the end of a finite
length of line, such a wave must have a loop if the
line is open-circuited, a node if it is short-
circuited, or other space phase for other types of
termination. Since only one length of line and one

type of termination (open circuit) were used in

these tests, only particular levels and only one
wave at each level were actually measured.

For the line elements, inductors and capacitors
were used, the former being arbitrarily denoted
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FIG. 3. Eigenfunctions of the linear harmonic oscillator.

as negative admittance units. Curves of generator
reactive current versus energy level Z (admit-
tance ye) were measured for several generator
locations along the line; from these the eigen-
values (values of ye for zero reactive current)
could be determined and the corresponding
eigenfunctions (voltage distributions) measured.

Since qualitative, rather than quantitative,
results were the prime objective at this time, no
special measures were taken to set admittance
values closer than the nearest step on the
analyzer units.

LINEAR HARMONIC OSCILLATOR

Taking hx as unit distance, ' we represent the
linear oscillator4 by y~ ——A.'/2m=1. 10 and by
yy= V=0.00704x'. The resulting generator re-

3 See Appendix for discussion of scale factors.
'V. Rojansky, Introdlctory Quantum 3fechcn~cs {Pren-

tice-Hall, Inc. , New York, 1942).

active current as a function of energy level y~ =Z
is shown in Fig. 2. Ideally, the current curve
shown in Fig. 2 should always slope upward
toward the right (increasing values of 1/Z),
passing successively through zero, positive in-
finity, and negative inhnity; the zero points then
IepI'esent conditions in which the circuit should
maintain its oscillations even without the ex-
ternal driving force. Practically, the presence of
resistance in the network forces the current to
pass through additional zero points in going from
large plus values to large minus values; but these
additional zeros are readily recognized because
the curve has the negative slope in passing
through them, and they can therefore be ignored.
The solid line is for one generator position; the
dotted lines are check curves for other generator
positions. Those eigenvalues at which the solid
curve tries to reach zero but does not succeed
correspond to eigenfunctions such that this
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TABLE I.

Measured
eigenvalues 0.0921; 0.269; 0.442; 0.610; 0.775; 0.921

Calculated
eigenvalues 0.0880; 0.264; 0.440; 0.616; 0.792; 0.968

TABLE II.

Measured eigenvalues
Calculated eigenvalues

0.0593; 0.216; 0.465; 0.800
0.0552; 0.220; 0.486; 0.832

TABLE III.

Measured I,

Theoretical /

4.14; 5.12; 6.10; 7.13; 8.12; 9.13
4 5 ;6 ;7 ;8 ;9

generator position is near a node of the eigen-
function; it is not practical to supply the circuit
losses from such a point.

Figure 3 shows the measured eigenfunctions up
to an energy level almost as great as the value of
V at the end of the line ( V= 1.10).The measured
eigenvalues compare with the calculated values
as in Table I. The maximum discrepancy is only
about 5 percent. At the lowest value, the dis-
crepancy is largely caused by the approximate
representation of the small values of V; while at
the highest value, the line termination is proba-
bly responsible. While the eigenfunctions have
not been normalized for comparison, it can be
seen that these too are in good qualitative agree-
ment with the known forms for such functions. *

unit distance, , we represent the well by V= 0 from
—, 6 to +6 and by Vp = 1.10 outside this region.
One of the eigenfunctions and eigenvalues in the
discrete energy spectrum E& Vp, is shown in
Fig. 4. Comparison of the measured with the
calculated eigenvalues is given in Table II. The
lowest figure in this case was not quite at zero
current but represented the maximum inductance
of the board units; the highest again is subject to
some correction because of improper termination.
Nevertheless, the agreement is very satisfactory.
Again, though not normalized, the eigenfunctions
show good agreement with the calculated shapes. *

Figure 5 shows a measured eigenfunction in the
continuous spectrum, E& Vp. This is, of course,
only the particular function corresponding to a
loop of the wave at each end of the existing line.
For the same energy level, infinitely many other
functions are theoretically possible; and a finite

.E= l.l55

FIG. 5. An eigenfunction of the rectangular potential well
in the continuous spectrum.

POTENTIAL WELL

The second case is that of a rectangular po-
tential @sell. Taking again k2/2' = 1.10 and Ax as

number of these, depending upon the number of
circuit units per wave-length and the number of
units available, could be obtained on the analyzer
by simply shifting the nodes in space. Similar
statements are true for any energy level E& Vp,

of course. The figure is given here to show the
performance of the circuit and the analyzer in the
continuous spectrum region.
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Fro. 4. An eigenfunction of the rectangular potential well
in the discrete spectrum.

*Reference 4, p. 24.

DOUBLE BARRIER

The double rectangular barrier was represented
by Vp= 1.10 between +5 and +10 and between
—5 and —10, with V=0 elsewhere; hx is again
unit distance, and 5' j2m = 1.10. Figure 6 gives six
measured eigenfunctions corresponding to nodes
at the ends of the line. The three curves on the

*Reference 4, p. 156.
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Fio. 6, Eigenfunctions for double rectangular potential barrier.

left represent virtual binding. * The three on the
right apparently represent a penetration phe-
nomenon, related to the next section. The func-
tion which is large on the outside of both barriers
and small between was not obtained in this series
of tests, because only one generator was used to
supply resistance losses, and these are not readily
transmitted through the low voltage region. The
curves shown are again but individuals out of
infinite families at every energy level.

RECTANGULAR BARRIER

The final test in this group was the single
rectangular barrier represented by V= 0 for x &0,
V0=1.10 between 0 and 3, and V~ ——0.40 for x&3;
as before, hx is unity and h'/2m = 1.10. Figure 7

shows some of the eigenfunctions measured. The
three on the left represent penetration from the
left, so to speak, at energy levels below V~, be-
tween Vi and Vo, and above Vo., the three curves

on the right, penetration from the right at levels
above V~.

RIGID ROTATOR

Legendre's equation, which arises in the prob-
lem of the rigid rotator, * can be written in the
form

This is of the form of the Schrodinger equation,
where 5'/2m is repl'aced by (1—x'), V by
m'/(1 —x') and Z by /(1+1); the range of x here
is from —1 to 11.Tests on this equation were
carried out only for m =0; one of the resulting
measured 8 functions with the corresponding
value of l is shown in Fig. 8. Comparison with the
theoretical values of l, in Table III, shows very
good agreement in the range measured. The
measured functions have not been normalized;

*Reference 4, p. 225. *Reference 4, p. 437.
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Fre. 7. Eigenfunctions f'or rectangular barrier between potential levels: Left of barrier V=0;
barrier height V0=1.0; right of barrier V~=0.40.

but calculated end points, indicated by the
dotted end extensions, line up very mell with the
measured curves.

SUMMARY

The tests reported here demonstrate the appli-
cability of the electric circuit equivalent for
determining eigenvalues and eigenfunctions of
one-dimensional equations of the Schrodinger
type. At the same time, they indicate that it is
practical to use for this purpose existing a.c.
network analyzers. Experience in these tests leads
also to the conclusion that the equivalent circuit
together w&th a small acquaintance with trans-
mission line theory goes far in aiding the visu-
alization of the characteristics to be expected of
the solutions.

The significance of the equivalent-circuit
method of studying characteristic values is that
it is just as simple to study cases which are not
readily solved analytically as it is to study the
idealized cases given here.
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APPENDIX —SCALE FACTORS

The equation represented in most of these
tests is Schrodinger's equation

k' d'P
+(U(x) —Z]f =0.

2m dx'

The equation represented by the circuit of Fig. 1

corresponds to

de
y I (ax)'+ [yr yg]e—=O. — —

dx dx

When the two equations represent the same



ANALYZER STUD Y OF SCHRODINGER EQUATION

system, they give the proportions

5'/2m V(x) B
7

x~(»)

where E is the scale factor between the energy
level E and the admittance in the equivalent
circuit. In Figs. 3—7, the unit of horizontal dis-
tance has been taken as Ax; the physical distance
represented by this unit is determined by the
cquR tlon

l

/

/

FIG. 8. An eigenfunction of the rigid rotator.

so thRt
a' 5'/2m

(»)2=—=
36 Vo

In the CRsc of thc potcntlR1 well, for example,

fP/2nz(»)'=
Vo

The half-width of the well is

u =6hx

fP/2m

which is the case of Exercise 3.*Other proportions
for the mell are obtained either by changing'the
number of Ax units in u or by changing the
1Rtlo of pro to g@.

+ Reference 4, p. 155.


