
PHYSICAL REVIEW VOLUME C)7, NUMBERS 11 AND 12 JUNE 1 AND 15, 1945
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A simplified discussion is given of the problem of introducing linearly accelerated axes by a
method applicable alike to classical and relativistic mechanics, 'I he mathematical method is
based on the Lie theory of the 4-dimensional conformal group which is presented in such a way
that the transformations leading to accelerated axes are exhibited explicitly. The classical
theory is shown to be a degenerate case of the relativistic theory, so that the transformations to
accelerated axes have a geometrical interpretation in terms of inversive transformations in both
theories.

1. INTRODUCTION

~~ROM time to time, modifications of the special
theory of relativity to include transforma-

tions between relatively accelerated Euclidean
coordinate systems have been discussed in the
literature. The first steps in this direction seem
to have been taken by Einstein' and Born. ' More
recently, the question has been investigated again
by Milne' in connection with his theory of the
expanding universe, while Page' has proposed a
detailed theory of the kinematical side of the
problem. The work of Milne and Page has been
subjected to critical discussion by Bourgin, ' and
more particularly by Robertson' who has given a
very penetrating treatment of the general mathe-
matical theory, with particular reference to its
implications in cosmological theories. Finally,
Fngstrom and Zorn' have pointed out inde-

pendently the connection between Page's theory
and the 4-dimensional conformal transformation
group. Unfortunately, the widely divergent phys-
ical and mathematical viewpoints of the various
authors make it difficult to arrive at a clear view
of the physical implications of their discussions.

The present work originated in an independent
attempt to develop a relativistic equivalent of the
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2 M. Born, Ann. d. Physik 30, 1 (1909).A brief discussion

is also given by H. Bateman, Proc. Lond. Math. Soc. L2j 8,
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simple process in Newtonian mechanics whereby
one introduces a system of coordinates moving
with an accelerated particle. In this paper we
shall give a direct solution of this problem by the
simplest applicable means and in such a manner
as to bring out the complete analogy between the
classical and relativistic theories.

While the present discussion is non-quantum
mechanical in character, it may be noted that the
establishment of wave equations invariant under
the conformal group has been discussed in the
literature. '

2. STATEMENT OF THE PROBLEM

The starting point of our discussion will be the

replacement of the ultimate problem of estab-
lishing transformations between accelerated co-
ordinate systems by another which at first sight
may perhaps appear to have only a tri vial
significance. However, its solution gives the key
to the more general question.

Apart from the trivial case of uniform motion
under no forces, the simplest situation in me-
chanical theory for which a clear-cut formulation
can be given without involving difficulties in the
discussion of force fields is that of the uniformly
accelerated motion of a particle. This can be
characterized in both classical and relativistic
theories as a motion in which the acceleration is
constant when measured in a system of coordi-
nates in which the particle is instantaneously at
rest. Such a set of coordinates is called a rest-

system; a set of coordinates in which the particle
is not only at rest but also has no acceleration
will be designated as a proper-system.

P. A. M. Dirac, Ann. Math. t 2j 3'7, 429 (1936); H. J.
Bhabha, Proc, Camb. Phil. Soc, 32, 622 (1936).
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Since a particle at rest is but a special case of
one in uniformly accelerated motion, the trans-
formation from a rest-system to a proper-system
has the property that it transforms one type of
uniformly accelerated motion into another. This
suggests the following formulation of the problem:
2o determine those transformations for zohich the

uniformly accelerated motion of a particleis trans
formed into another of the same type

In this form the problem can be attacked in the
same manner in both classical and relativistic
theories, and it has the further advantage of
suggesting of itself. the most direct method of
solution. In the discussion of the coordinate
transformations which arise, we shall proceed on
the consideration that each such set of coordi-
nates may be interpreted as associated with an
"observer" to whom the motion of the particle as
described by his coordinates is its true motion.

the following set of operators

Xy = 8~)

X3=——tB,

X2= —8t,

X4= ——PB

~ 5= x~~s gI ~t~ X6=x~x+Qty

X7—=x8,—tBt,

(3)

where, for simplification, 8,=—8/coax, Bi=8/dZ
For convenience we give also the formulas for

the general infinitesimal transformation, ex-
tended three times to cover the order of'Eq. (2):

x' =x —n1 —tn3 —2Pn4 —xtn5+xn6+xn7,

I, = $ —n2 —gf n5+/n6 —tn7,

V =V —n3 —fn4 —Xn5+2Vn7,

a' =a —u4 —(v —Za) nz acxz+ 3a—az,

b' =b+ 2/bn5 —2bn6+4bn7.

3. THE CLASSICAL ONE-DIMENSIONAL PROBLEM

In order to clarify the essentials of the method,
we start with the simplest possible classical case.
We consider a particle which in some appropriate
initial coordinate system moves along a straight
line with a constant acceleration g. Using x as its
coordinate, the differential equation of its motion
1s

d'x/dr' =g.

The differential equation characterizing all
uniformly accelerated motions is therefore

d'x/dz' = 0

With the notation

v=dx/dt, a=dv/dt, b=da/dz,

this characteristic differential equation becomes

F,(x, t, v, a, b) =b= 0. —(2)

Our problem is now reduced to that of seeking
all transformations of coordinates which leave
this equation invariant. In each such new system,
the particle will appear to move with constant
acceleration, but the magnitude of the accelera-
tion will vary with the system.

A study of the transformation properties of
Eq. (2) shows that the only point-transformations
which leave it invariant are those generated by

Since these are extended point-transformations,
the formulas for v, a, and b are consequences of
those for x and t.

The invariance of Eq. (2) follows at once from
the fact that the quantity (b' —b) vanishes with
b; i.e. , vanishes when Eq. (2) is satisfied.

The requirements of classical theory now lead
us to anticipate the possibility of finding a
4-parameter subgroup of transformations which
will include one of the type sought to an ac-
celerated coordinate system. The four parameters
would be used, (a) to permit shifting the origin in
the (x, t)-plane in order to give the particle the
position x =0 at a given instant t =0 (2 parame-
ters), (b) to transform to a rest-system with the
particle at the origin (1 parameter), and finally,

(c) to transform to the proper-system with the
particle still at the origin (1 parameter). It is to
be expected also that this can be achieved using
only transformations for which time intervals are
invariant.

A study of Eqs. (4) shows that this can just be
accomplished by using the four transformations
generated by X&, X2, X3, X4. It follows from the
results to be obtained in the next section that
these transformations form a 4-parameter group.
The finite transformations of this group can be

' Throughout the paper the operators have been written
in such a manner as to facilitate the physical interpretation
of the resulting transformations.
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calculated readily" and reduced to thc form

x' = (x—xp) —vo(t —to) —,'ao(t —-t,o)', t' = t t„—
with the notation

xp = ay+ (3cppnp+n4cxp )/6; tp cl9,

vp = exp+ lc pQ!4 /2; ap = lx4.

In this form it is immediately recognizable as a
change to moving, accelerated coordinates with
superposed changes of origin for x and t. By a
proper choice of xo and to, wc bring the particle
to the origin in the (x, t)-plane; by equating vp to
the velocity of the particle, we obtain a rest-
system; and by equating ao to the acceleration of
the particle in the rest-system, we reduce it to a
proper-system. For general values of co, we
obtain a 1-parameter family of accelerated axis
systems.

4. THE RELATIVISTIC ONE-DIMENSIONAL
PROBLEM

In the special theory of relativity, the equation
of uniformly accelcr ated niotion, replacing
Lq. (1), is

c'a/(c' —v') & =g

where g is the constant acceleration as rlrcasurcd

in a rest-system. By a further differentiatio we

find the differential equation characteristic of all

uniformly accelerated motions to be

F,(x, t, v, a, b) =b+3va'/(c' ——v') =O. (6)

The point-transformations which leave this
equation invariant form a 6-parameter group
built on the operators:"

Xr = B~) X2= C)t)

X,—= t 8, (x/c') 8—„—
Xp=——(c't'+x"-)/2c' 8,—(xt/c ) a„(7)
Xp=— xt 8,—(c't'+x"—)/2c'8„-
X6=xa.+to, .

Ihe necessary theory of continuous groups can be
found in the book of J. E. Campbell, Theory of Continuous
Groups (Oxford University Press, New York, 1903) or that
of G. Kowalewski, Einfuhrunf, in die Theoric der Kontinuier-
lichen Gruppen (Akademische Verlagsgesellschaft, Leipzig,
1931).The method of finding the finite transformations of
a group which is defined in terms of its infinitesimal ele-
ments is discussed in Campbell, p. 47.

"The full set of symmetry transformations of both
Eqs. (2) and (6) form a 10-parameter family, of which the
remaining ones are contact transformations, but not point-
transformations.

TAM.E I. Commutator table of the symmetry operators
of relativistic one-dimensional uniformly accelerated
motion.

X1

X2

X3 ' ll /c2

X4 —X6/c' X3 X;,/c'

X6 —Y2 X,.;

X1 X2 X4

For convenience of reference we tabulate the
general infinitesimal transformations to the third
orders of derivatives:

x —x exp apt cp4(c t +x )/2c~ —Qpxt+cppx,

cpp clpx/c —Q4xt/c

np(c't'+x')/2c—'+n pt,

v' = v —up(c-'—v') /c' —n4t(c' —v') /c'

npx (c—' v') /c'—,

a' =a+ v!p3va/c'+ +4(xa+ 3tva+v' c')/c'—
+n p [c'ta+ 3xva —c'v+ v']/c' —cppa,

b' =b+np(4vb+3a')/c'

+cp4(2xb+4tvb+6va+3ta')/c'

+ap(2c'tb+4xvb+6vpa+3xap)/cp —cp 2b

lt is readily verifie that this transforrnatiori
leaves l'.q. (6) invariant.

I able I is the commutator t.~blc for the set of
operators of Eq. (7).

Each entry in Table I gives the conimutator
of the operator at the side of its row with that at
the bottom of its column. Thc operators Xr, X2,
X3 generate the 3-parameter subgroup of transla-
tion and velocity transformations, while X4, X5,
X6 generate a second 3-parameter subgroup.
Neither of these subgroups is normal within the
whole group.

In order to obtain the operators of Section 3,
we need only take the limit c—+ ~ in the operators
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of Eq. (7), in the general infinitesimal trans-
formations of Eq. (8), and in Table I."

To develop the "acceleration transformations"
we now suppose that the starting coordinate
system has been chosen as a rest-system in which
the particle is brought to the origin in the
(x, t)-plane. Equations (8) show that the sub-

group of transformations generated by X4, X5, X6
has the characteristic that the particle is left at
the origin at rest.

The 1-parameter subgroup of transformations
generated by X4 alone gives a family in which the
particle is left at the origin at rest, but for which
its acceleration becomes (g —n4). By equating n4

to g, the proper-system of the particle is found.
The finite transformations of this family are
easily computed and found to give exactly the
result found by Page' in his Fqs. (27) and (28),
with n =p."

S. GEOMETRICAL INTERPRETATION

Each of the transformations used can be given
a geometrical interpretation as an operation in the
(x, t)-plane: (a) X~ and X~ generate translations
of the origin, (b) X~ has the usual interpretation
given in the special theory of relativity as a real
rotation in the complex (x, fact)-plane or as an
imaginary rotation in the real plane, (c) in the
real plane we define the transformation

R'(x —xo)
T(xo, to): x' —xo ——

(x xp) ' c'(t —tp)— —

"The operator X7 of Section 3 appears in the relativistic
theory as a degenerate case of a contact transformation
which becomes a point-transformation on taking the limitc~~. I he group used here is isomorphic to the symmetry
group of the circles in the complex (x, ict)-plane. Ihe
passage from the relativistic to the classical theory appears
in Lie's geometrical theory as the transition from the
symmetry group of circles in the complex plane to that of
the family of parabolas in the real plane forming the
classical trajectories of possible uniformly accelerated
particles. This geometrical theory is discussed in the books
of Campbell and of Kowalewski mentioned in reference 10.

"The finite transformations of the 2-parameter subgroup
based on X4 and X5 have been computed. The equations
show three singular lines, of which two have the equations

(x&ct) (o.4&a.5c)+2c'= 0
and are the generalizations of those noted by Page. The
third is the line

n;x —a4t =0
which transforms into itself according to the relation

(n;,x' —n4t') (x' —c't ) =(a5x —n4t) (x ~ —c't").

as an inversion in the hyperbola

lf we let S(xo, to) be a translation of the origin
through the distances xo and to along the axes,
then the infinitesimal transformations o.4X4 and
0.5X5 are given by the following sequences

n4X4. S( R—'n4/2c', 0)

T( —R'n, /2c' 0) T(0, 0),

n&X, : S(0, R'n&/2c') T(0, R'a~/2c') T(0, 0),

the order of the transformations being read from
right to left. In the complex plane, these become
combinations of inversions in circles combined
with translations, " ancl (cl) the transformations
generated by X6 are uniform stretchings and
contractions of the (x, t)-plane.

From this we see that, even in the classical
theory, the transformations to accelerated co-
ordinate systems have a geometrical interpreta-
tion in terms of inversions. This result carries
over unchanged into the 3-dimensional theory.

6. THREE-DIMENSIONAL MOTION

I he characteristic differential equation for
3-dimensional uniformly accelerated motion is so
complex that a direct study of its invariance
would be very laborious. It is not difficult to set
up the generalization of the operator system of
Section 4' by direct evaluation, but it can be put
on a more elegant basis by recognizing at once the
connection with I.ie's theory of the group of
conformal transformations in 4 dimensions. The
physical basis of the connection is that since a
particle traveling with the velocity of light repre-
sents a special case of uniform acceleration in
which further acceleration is impossible, the
family of paths of light rays must therefore bc
invariant under the transformations. Since the
differential equation of a light surface in the
starting system is

(dx)~+(dy)~y(ds)2 —g (d$) =0,

this relation must also be satisfied after the
transformation, which implies that

(dr') —c2(dt') = pndr) —c; (cft) ]
'4 A discussion of this 2-dimensional geometrical theory

can be found in Chap. 19 of Campbell, reference 10.
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'IAoLL' II. Comnsutator table of the conforrnal group.

X&

Xp

0 0

0 X3 —X&

XG Xl —X7

X. XG —Xp

XG X4/cg 0 Xl Xip —Xg

X4/cg 0 Xg —Xlp 0 Xp X7/cg 0

Xlp X4/cg Xp Xg —XG 0 —Xp/cg Xp/cg 0

Xli -Xlp/cg X7/c' —XG/c' XG X13 —Xlg X14/c' 0

Xlg —Xg/cg —Xl /c' X /c' Xg —X13 0 Xll X14/c' 0

X13 XG/c 3 —X /c 3 —Xl /c 3 X1p X1 &
—Xi 1 0 X14/c'

X14 Xp Xg Xlp —Xip Xll Xlg X13

Xlp —Xl —Xg —Xp —X4 Xll Xlg& X13 X14

Xl Xg X4 Xp Xl Xp Xg Xip X11 Xlg X13 X14 Xl;

where p is an unspecified function of x, y, s, f.
This relation may be used to characterize the
group of transformations. ' "

We proceed at once to give the set of 15
operators which form the basis of the group of
transform ation s:

X„—= —(xz/c') 8,—(yz/c') 8„
—(c t —x2 —y~+z~)/2c~ 8,—(zt/c')8)i

X)4=— xtp ytp„z—t8, (c—'t'+x—'+y'+—z')/2c'8),

X&5
—=x8,+y8„+sB,+tB&.

Xg = —8„
XS= p~z+ SByi X6= —ZQ3;+ gc)z,

X —= —»,+yp. , X = —Q.—(x/c')p„

X,=— ta. (y/ —)p)c, —X)0=——ta, —(z/c2) p„

(c2t2+x2 y2 z2)/2c2

—(xy/c') 8„—(xz/c') p —(xt/c') p

X» =——(xy/c') 8,—(c't' x'+y' z') /2—c' p„—
—(yz/c') a, —(yt/c') a „

"S.Lie, Theoric der Transforrnationsgrup pen ('I'eubner,
Leipzig, 1930). A very interesting, but difficult, discussion
is given in a classic paper by H. Bateman, Proc. Lond.
Math. Soc. L2j 8, 223 (1910).

The commutator relations of these operators
are given in Table I I.

Xi, X2, X3, X4 generate the translations. Xq,
X6, X7, generate the 3-dimensional rotations,
while X8, X9, Xyp generate the Lorentz trans-
formations. Xii, Xi2, Xi3 form the 3-dimensional
acceleration sub-set, of which Xi4 gives the time-
component. Xi5 again gives the homogeneous
dilatations of the whole space.

The procedure for studying the transformation
to accelerated axes proceeds by the same princi-
ples as in Section 4. By extending the trans-
formations as far as the acceleration terms, one
fiends that if the particle is brought to the origin
of coordinates in a rest-system, then it will be
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left in this condition under all transformations of
the acceleration subgroup; i.e. , under the 3-
parameter family of transformations generated
by Xgg, Xg2, Xg3,"

On orienting the x-axis along the direction of
the acceleration of the particle, the 1-parameter
family of transformations which incl ude its
proper-system can be found. The transformation
equations are:

x'= [x+n&, (r' c't')/—2c'] (t'/t),

3"=3 (t'lt) s'=s (t'lt)

t/I i+( n&&/ c)L x+(n»/4c )(r c t ))I
p2 Z2+y2+ Z2 ~

The passage to the classical theory is readily
made, as in Section 4, merely by taking the limit
c—+~ in all of the equations for the operators as
well as in the commutator table, The general
infinitesimal transformation may then be written
in. 3-dimensional vector form as

br —=r' —r = —bs —b~)&r —trav ——,'t'ba —rto. &4+ro. i5,

8—:t —t= —n4 —qt n]4+tn]5,

with the abbreviations

bs= (n&i+n, j+nok),

boo = (a, i+noj. +npk),

hv = (noi+noj+n&ok),

t'a = (nl 1i+nloj+ nlok) ~

The operators Xi4 and Xi5 can be dropped, and
the transformations to accelerated axes based on

"The particle at the origin in a rest system is left at that
position at rest under the 5-parameter group generated by
Xggo Xi2) X]3) X]4& Xia ~

the remaining 13-parameter group. Time inter-
vals are then invariant.

'i. ELECTRODYNAMIC CONSIDERATIONS

The detailed proof of the invariance of the
electromagnetic field equations and the deriva-
tion of the transformation relations of the field

vectors and potentials have been given by
Cunningham" and Bateman. " However, this
only assures us that electromagnetic phenomena
as observed by any of the family of observers
related by transformations of the conformal
group will appear to obey the field equations.
Since the transformations are in general non-

linear, plane waves do not transform into plane
waves, and the existence of singular regions in the
finite transformations makes it unclear to what
extent retarded and advanced potentials may be
intermixed.

We shall note here in conclusion that if one
assumes that in its proper-system a point charge
exhibits its usual Coulomb field, then Bateman's
formulas can be used to find its field in other sets
of axes. A first-order calculation of the field due
to a charge e at the origin of coordinates and
moving with infinitesimal velocity bv and ac-
celeration ba yields the result

E= er/r eo(r ba) r/2roc' eoa/2rco, —

H = —e(r && 6v) /r'c.

which is in agreement with the usual formula to
this order of approximation.

It is of interest to note also that if the po-
tentials are computed, they contain contributions
in &x~4 and ni5, even to first orders, but on passing
to the field vectors these terms disappear, so that
they introduce a type of gauge transformation.

E. Cunningham, I'roc. Lond. Math. Soc, t 2j 8, 77
(1910).


