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By the theory of Sommerfeld, relativity effects and
retardation of potential being neglected, matrix elements
and associated components of continuous spectrum x-radia-
tion are computed for a variety of electron-nucleus colli-
sions and for a distributed series of positions in the spec-
trum. The calculations cover values of V/Z' from 0.06128
to 3.356, where Z is the atomic number of the nucleus, and
V is the bombardment potential in electrostatic units.
Accuracy of calculation is 1 percent. Screening is neglected
except at the long wave limit of the spectra where it is

taken into account by Sauter's method. Empirical algebraic
formulas are found which closely represent the rigorously
calculated results. Intensity and polarization predictions

for any direction of emission and any excitation conditions
within the range of applicability of the theory may be
readily drawn from the computed results. Flwert's proposed
correction factor for rectifying the approximate spectral
intensities of Somrnerfeld and Maue is found effective
within the limits of its restricting assumptions. Theoretical
efficiencies of continuous x-ray production are calculated
by combining theoretical intensities with known rates of
electron energy' loss in traversing matter. Thick target
efficiency (a ratio, not percent) is given by 1.4)&10 Z kv.
Thin target efficiency is found to be approximately twice
the thick target efficiency for any given Z and kv,

HE problem of the continuous x-ray spec-
trum is to find answers to such questions

as the following: When an electron of stated
kinetic energy collides with a thin layer of matter
of atomic number Z and of' some given surface
density, what is the probability that a photon
whose frequency lies between any stipulated
limits shall be emitted in an elementary solid
angle of specified magnitude oriented in any de-
fined manner with respect to the direction of
motion of the bombarding electron? A further
question concerns the state of polarization of
such a photon.

Answers to these questions are implicit in

extant theory, but in only a very few cases have
explicit numerical answers been extracted from
the theories and placed on the record. It is not
yet possible to say broadly that the theory either
does or does not agree with experimental facts,
though a few encouraging similarities have ap-
peared. We shall not have a satisfying number of
such comparisons without further work on both
sides of the' gap, i.e. , until many more good
measurements have been completed and until
theoretical predictions are made available in
numerical form.

The present paper attempts to supply the
second of these necessities. It contributes nothing
to the basic theoretical picture according to
which the emission of the continuous x-ray spec-
trum is now understood; rather, it presents a
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computational procedure for obtaining numerical
values of x-ray energy and polarization from the
theory, together with the results of such cal-
culations.

For a system consisting of a bare nucleus and
one electron, Schrodinger's equation predicts a
continuous range of positive energy states, and a
continuous spectrum must result from the joint
operation of the possible transitions between such
states. The spectral features may be deduced, as
Oppenheimer' and Sugiura' have shown, by
calculating matrix elements from characteristic
functions corresponding to states involved in the
transitions, but the method introduced by
Sommerfeld' and developed by a number of sub-
sequent theorists has greater analytical simplicity
and will be followed in the present paper.

The theory of Sommerfeld considers the wave
systems of an electron approaching an atomic
nucleus and departing with altered direction and
reduced speed, having suffered an energy loss
which appears as the energy of the emitted
photon. The single process can be described with
rigor, but the integration over all possible direc-

' J. R. Oppenheimer, Zeits. f. Physil. SS, 725 (1929).' Y. Sugiura, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 17,
89 (1931);and earlier contributions referred to therein.

'A. Sommerfeld, Ann. d. -Physik $5j 11, 257 (1931);
O. Scherzer, Ann. d. Physik L5j 13, 137 (1932);F. Sauter,
Ann. d. Physik L5j 18, 486 (1933), L5j 20, 404 (1934);
A. Sommerfeld and A. W. Maue, Ann, d. Physik P5g 23,
589 (1935);G. Elwert, Ann. d. Physik I 5] 34, 178 (1939);
R. Weinstock, Phys. Rev. 61, 585 (1942), 65, 1 (1944).
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tions of departure of the electron —a necessary
operation if theory is to be compared with ex-
periment —has been found troublesome by all
who have tried it.

Approximations, physical or mathematical,
have been necessary features of all the treat-
ments. The present results are conditioned by the
inexact physical assumptions of the original
Sommerfeld' theory, but we follow Weinstocl»' in

avoiding mathematical approximations such as
those which restricted the applicability of the
results of Sauter and of Elwert. '

The questionable physical assumptions and
approximations are the following: (a) Except in

connection with the long wave limit of the spec-
trum, atomic electrons are ignored, and the
nucleus is a,ssumed to be the center of a pure
Coulomb field. (b) Relativity effects, retardation
of potential, and the eAects of electron spin are
neglected. (c) The de Broglie waves of the ap-
proaching and receding electron are treated as
plane waves, filling all space.

Pictul e a 1 ow of electrons m ovlllg along 01

closely parallel to the x-axis of a cartesian coordi-
nate system (see Fig. 8), approaching the origin
from the negative side with speed v& conferred by
a potential difference V. Upon arriving at the
origin, the electrons strike or pass through a
p'lane target coinciding with the ys-plane which is

composed of atoms of atomic number Z in a
uniform distribution. We investigate the con-
tinuous x-radiation resulting from collisions at
the origin and departing in a direction lying in

the xs'-plane and making an angle 0 with the
positive x-direction. The electron leaves the
collision with speed v2. As applied to such a
picture, the theory deals in probabilities of
photon emission, but with large numbers of

atoms or of electrons, such probabilities increase
proportionately, and one may speak with sta-
tistical accuracy. of emitted intensities, powers,
and energies.

The bombarded and emitting atoms simulate a
source possessing calculable component Hertzian
dipole moments, each of which produces radia-
tion components I„ I„, and I„proportional to
the square of the corresponding moment. The
total intensity proceeding in a direction 0 con-
sists in general of contributions from all three
radiation components weighted with reference to
the angles between their dipole axes and the
direction of observation. The observable in-

tensity is given by'

Iy =I, sin' 0+I„+I,cos' 8. (1)

The calculation and discussion of I., „,, are the
objects of this paper; these components will be
defined in such a way that Ip (not rigorously a
radiation intensity) comes out in the units ergs
per steradian per unit frequency range per bom-
barding electron per atom-per-square-centimeter
of target area. Neglect of electron spin leaves the
direction of bombardment an axis of complete
symmetry, so I„=I, necessarily. There remain
two quantities, I, and I„to calculate, and each
is a function of the four parameters 8, V, Z, and
the frequency v, a group which will be found
reducible to three. In terms of these components,
the intensity and polarization of radiation emitted
in the direction 8 are given by

Iq I, sin' 8+——I„(1+cos'9)

(2)
fl—

1+(I„/I,)(2 csc' 8 —1)

The method of Sommerfeld yields:

4m e'Z'( Ve —hi )X'.
, „,,

Ix, y, s = )

I
1 —exp (—4n'e'Z/v, h) jLexp (4~'e'Z/vih) —1 jL( Ve) l —( Ve —hi )1]'mc'

where X,„,are dimensionless quantities equiva-
lent to 3II',

, „,,/ ~

A
~

' of Weinstock's first reference.
The computation of these quantities is almost the
whole of the problem confronting the computer.

4 Sauter is limited by Born's Erst approximation,
Ze'/kv1, &((1; while Elwert's method is restricted by the
assumption (Ze /kv2} —(Ze /kv1}(/1 or Ze'/kv1&+1. The
effects of these conditions will be noted on a subsequent
page.

CALCULATION OF N„' (=N, ')

From Weinstock's derivation one finds

16~'Z'e'm 2~'Z'e'm
1+

h' V&0' h'( Ve —h v).

(gO K
X — —+ i G~

i

'dw. (4)
1 —w (1 —w)'

' G, Flwert, reference 3; p. 194.



New symbols appearing in Eq. (4) are defined as of w too large for prompt convergence, use is
follows: made of the identity'

)0 = 4nln2/(ni Sg) y WO $0/($0 1)~

The quantity G3 is the hypergcometric function
I'(I+n], s2, 2„w) where si Rnd S2 Ric linRgi-

11'iry quantltics defined by si g=(—2irc Z$)/(kvi, ~) ~

The physical signi6cance of m is of no concern
since it goes out in the de6nite integration.

Weinstock expanded G3 in series and inte-
grated Eq. (4) term by term, obtaining his

compact Eq. {9). Although this works well in

some ca~es, it has not been found genera11y
trustworthy because of the danger that the series
of' integraIs may be chopped off too soon. It is
quite impossible to depend upon appearances in

estimating. the progress of its convergence, and
no positive criterion has been found. It is known
thRt Rs nlany Rs twenty tel ms Rlc Insuf6clcnt ln

certain cases to reduce the residue to negligibility,
so the evaluation is both suspect and laborious.
It was decided, therefore, to evaluate the inte-
grand in Eq. (4) for representative values of w

and to carry out the integration graphically.
Thc 1Rngc of lntcglatlon cxtcnds from zcIo to

mo, a positive quantity lying between zero and
unity. For those cases (values of V and v) which

glvc values of wo Ilot too ncRI' to Unity, say not
exceeding 0.75, the necessary values of G3 may bc
obtained from the standard hypergeometric

cxpRn sion

abx a{a+1)b(b+1)x'
8{a,b, c, x) —=1+ +

1c 1 2 c(c+1)

a(a+1)(a+2)b(b+1) (b+ 2)x'
+ -+ =Pgx~

1 2 3 c(c+1)(c+2) p=0

G3= CiF(1+ni, s2, n—i —n2, 1 —w)

+C2P(1 nip 2+nmy 2 ni+S2y 1 w) i

whcl c

(1 w) i—Ig+e2

ni( I+—si—ng)

6= I'{ni—nm)/I'(ni) I'( —n2),

RIld 6 designates thc complex con]ugatc of A.
Numerical evaluation of 6 is most readi]ly

carried out by means of the identity

I/I'{x) =x(x+1)

X(1+Bix+B2x'+Bax'+ .). (5)

Thc cocf6cicnts of x as calculated by Bourguet~
are reproduced in Table I.

The terms in the series of Eq. (5) are alternately
lmaglnRly and Ical, leading to R complex A. Fol
the largest values of e2, the tabulated coef6cicnts
are insufficient, and it is advantageous to use
LcgcndI c 8 duplication formula

~~r(2x) = 2"-'r(x) r(x+ -,'),

to bring the arguments of the gamma-functions
within the range of the table. The imaginary
chRrRctcI of '@1 Rnd s2 rcqU1Ics special Rttcntlon
in thc evaluation of C~, here wc may write

(1 —w) ' "'+"'= (1 —w) (cos 8+i sin 8),
l,

in which

8 =
i
ni S2

i log (1/1 —w—).
whelc p ls Rn 1Iltcgcr dcslgnatlng R scllcs term,
which starts with p, =o for the 6rst term. The
coef6cients are given by

If the integrand of Eq. (4) be plotted as a
function of m, the curve will usually be found
inconvenient for planimeter integration because
of the high and narrow peak. at the upper limit.
This fcatulc 18 Rvoldcd by plotting Rs R fUnctlon(a+a) (s+b)

Cp+ I
(~+I)( +c) ' E.T. Copson, An Introduction to the T'heory of Functions

of a CornpIex erg, Me {Oxford University Press, New' York,
1935), p. 251.

By usc of this series, G3 may usually be evaluated 'L. Bourguet, Acta Math. 2, 261 (1883). Harold T.
Davis, Tables of the Higher Mathernatice/ Functions (The
Principia Press, Inc. , Bloomington, Indiana, 1933), Vol. 1,

without going beyond Io or 15 terms. For values p 185.
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of u, where u = 1/(1 —zv), in which case the
errors of area measurement may well be less than
those of computation. The transformed integral
1s

t' '(u —1)(b+u —1)
[ap[2du

solve for N„'=N' —2N„'. This avoidance of a
direct attack upon N, ' follows, in principle, the
example of Elwert.

The working equation for N' is

N2=

As (0 increases, the maximum of the integrand
becomes higher and narrower, but plotting in

two or three diferent sections with suitable
changes of scale readily keeps it in hand.

CALCULATION OF N, '
—(n, n2—)gj,jp" '

r=o
(6)

The calculation of N, ' might be carried out in

a manner analogous to that described above, but
Weinstock's expression contains three definite
integrals, and although he has shown how to
replace them by infinite series, the problem of
convergence persuades us to adopt a differing
approach. Sommerfeld and Maue have shown
how to express the sum N'=N'+N„'+N, 2 in

closed form, and Weinstock has put their ex-
pression into a form based upon four rapidly
converging series, two of which we find to be
identical. We therefore employ Weinstock's equa-
tion for N' in the form shown below and later

TABLE I. Coefficients in the power-series exp'tnsion

=x(x+1)(1+Blx+8&x'+ . ).
1

r(x)

gl Z' g4 vg4 7 v I

v=0
gr = Q g4, «g 2, v —v.

v=0

Quantities in these. series are delined and calcu-
lated by the recursion relations:

g4, 0=g5, 0= ~,

(v —1 —n, )
'-'

g4, v= g4, v —12

v(v+n2 nl)

(v —1 —n2) '
g5, v=- g5, v —1 ~

v(v+n1 n2)

wherein 9i =—"real part of," and the quantities q„
and j,. are themselves defined by the finite series:

6
7
8
9

10

11
12
13
]4
15

16
17
18
19
20

21
22

—0.4227—0.2330
0.1910—0.0245—0.0176

0.0080—0.0008—0.0003
0.000]—0.0000

—0.0000
0.0000—0.0000—0.0000
0.0000

—0.0000
0.0000
0.0000—0.0000
0.0000

—0.0000—0.0000

Bn

8433
9373
9110
5249
4524

232?
0432
6083
4559
1754

0258
0133
0020
0000
0000

0000
0000
0000
0000
0000

0000
0000

5098
6421
1387
0005
4550

3022
9775
7816
6142
5859

8995
8501
5474
0159
6275

1273
0092
0012
0004
0000

0000
0000

4671
7867
6915
4000
1443

2673
6044
2548
1399
7517

0224
5466
3152
5268
6218

6143
3397
0028
2202
5240

0140
0067

The asterisk (v) denot:es the conjugate function.
In these series v and, r are real integers assuming
consecutive values within the stated ranges. The
convergence is such that as few as three terms
sometimes su%ce to fix the value of a series. The
p's are, of course, complex, but the conjugates in

q„and j, cancel out the imaginaries and leave
these quantities and their series real.

NUMERICAL EVALUATIO N

Inspection of the foregoing equations shows

that the variables V, Z, and v are present only in

combinations reducible to V/Z2 and v/vp. This
reduction of the number of parameters con-

trolling the spectral features from four to three

(the two quotients above and 8) greatly reduces

the amount of computation necessary to cover
the full range of experimental variables, since any
one complete calculation furnishes a separate
prediction concerning each of the 92 elements.
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1 ABLE II. Components and total energy of radiation.

I &(10» I„(=I ) &(10PP W)(10'Pv/vpV/Z2Ix )(10" Iv( =Iz) )&10' W )&10'

0.0809 0.0296 1.17

V/Z' v/vp

58.2
65.4
70.6
83.9

112.0

0.718
1.35
1.79
2.81
5.81

5.51
5.12
4.86
4.40
1.72

1..00
0.624
0.443
0,217
0.00

0.060413.356 0,403

1.452.171 0.02280.623 0.128

1,776 1. .24
1.56
2.97
3.67
4.23

0.146
0.154
O. 144
0.136
0.0586

0.00132
0.016
0.105
0.151
0.223

1,00
0.761
0.197
0.0962
0.00

0.03776 1.30
1.92
3.32
9.10

92.9
100.0
117.0
176.0

1.00
0.708
0.346
0.00

8.48
8.11
7.34
2.78

1.770.207 0.002231.351 1.00
1.40
1.92
4.76
6.34
9.60

9.00
8.73
7.35
6.75
2.95

98.9
105.0
141.0
163.0
186.0

1.00
0.761
0.197
0.0962
0.00

0.03546
3.47
4.37
5,05
6.59
9.42

0.00761
0.072
0.121
0.227
0.496

0.7896 1.00
0.624
0.443
0.217
0.00

0.398
0.377
0.361
0.332
0.132

11.5
10.8
10.4
9.74
3.81

128.0
141.0
152.0
177.0
236.0

0.02723 1.92
3.01
3.84
5,68

12.2

1.00
0.624
0.443
0.217
0.00

6.06
6,92
9 ~ 1.0

14.8

0.685
0.637
0.578
0.211

0.0191
0.0948
0.254
0.776

1.00
0.708
0.346
0.00

0.4934

2.37
3.81

14.5

154.0
171.0
282.0

13.62
12.73
4.60

0.02265 1.00
0.577
0.00

0.0378 9.010.3493

0.2961

0.9991.00

0.0518
0.250
1.26

10.9
13.0
24, 1

1,00
0,577
0.00

1.20
1.05
0.351 3.27

4.31
6.84

18,8

17.7
17.2
16.0
6.09

0,01702 204.0
216.0
248.0
366.0

1,00
0.708
0.346
0.00

0.1709

0.1359

20.11.00 2.12 0.141

25.6
27.1
39.3
46.8
51.7

1.00
0.761
0.197
0.0962
0.00

0.214
0.402
1.39
1.90
2.705

2.63
2.43
1.91
1.79
0.765

3.58
5.14
6.36
9.25

20.2

219.0
238.0
255.0
294.0
394.0

0.0157.6 19.0
18.2
17.7
16.6
6.58

1.00
0.624
0.443
0.217
0.00

0.697
1..05
2.92
3.95
5.74

1.0o
0.761
0.197
0.0962
0.00

57 ~ 2
61.0
84, 5
99.0

111.0

5.43
5.18
4.26
3.92
1.70

0.06128
7.48

11.2
30.5

0.708
0.346
0.00

0.009854 368.0
415.0
599.0

28.9
27 ~ 2
10.5

The quantity l4", introduced in the fifth and
last columns of Table II, is the total energy of
continuous x-radiation in all directions. Inte-
gration of Ip of Eq. (2) over the 4m steradians of
space surrounding the point of collision gives at
once W=(8n/3)[I+Iv+I, ]., a function of v

given in the units ergs per unit frequency interval
per bombarding electron per atom-per-square-
centimeter of target area.

The numerical values in Table II have been
checked against each other by many graphical
tests, and indeed, such checks were used at all
stages of the calculations as a guard against
errors of computation. Although each row of the
table (except at v/vo=o and some at v/vo

——1)
represents over 1200 elementary computing
operations, it is believed that computing errors

Many of these predictions, however, relate to
definitely relativistic voltage or frequency ranges
and are, therefore, not fully applicable.

Values of I and I„=I„calculated by the
methods described above are listed in Table II',

along with the related values of V/Z' and v/vo.
Birge's 1941 values of the atomic constants have
been used. Since the I's vary approximately as
the ninth power of e, precision here is not as
superfluous as might be assumed. Indeed, an.
error in e as great as the discrepancy between
today's value and that of a decade ago could
easily throw the calculated intensities oE
by much more than the errors of intensity
measurement.

' R. T. Birge, Rev. Mod. Phys. 13, 233 (1941).

T HEORETI CAL CONTINUOUS X —RAY ENERGY
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FIG. 1.Screening constants a (in cm) of the Sauter atomic potential distribution V, = (—eZ/r) exp (—f/a).
Values shown by curve give best agreement with Fermi atomic potentials.

and approximations have in no case impaired a
calculated result by more than one percent.

Low Frequency Limit

The computations described above have been
subject to the assumption that the bombarded
nucleus is effectively unscreened. This does not
preclude the application of the results to real
nuclei, ' fully clothed with screening electrons, as
long as the acceleration of the bombarding
electrons takes place inside of the surrounding
electron screen. This is probably what happens in
the production of most of the spectrum, but it
definitely does not always happen when radiation
of vanishingly small quantum energy is emitted.
Such radiation requires the application of such
slight forces to the bombardment electron that it
may be produced by an electron passing a bare
nucleus at a great distance. The collision cross
section for radiation of zero frequency is very
great, and one readily sees why the Sommerfeld
theory predicts infinite intensity at X = ~. At
this end of the spectrum, it is necessary to assume
some screening if predictions applicable to real
atoms are desired.

We have, therefore, calculated I,„at v=0 by
the method of Sauter, who shows how to compute
the radiation from an atom whose potential

' A. L. Hughes, Phys. Rev. 55, 350 (1939), shows that
atomic electrons play a negligible part in the elastic
scattering of fast electrons by atoms.

TABLE III. Radiation components at v =0 for
screened nuclei.

Z Ix &(1060 IN )&10» Z I~ )(1050 Iy )&10~

28.43
44.40
87.03

143.9
214.9
300.2

4
5
7
9

11
13

.0584

.0585

.0586

.0586

.0586

.0586

.190

.199

.217
~ 230
.240
.248

' 33.99
48;94
83.40

131.4
201.2
299.1

30 2,77 8,14
2.78 8.45

47 2.78 8.93
59 2.78 9.34
/3 2.79 9.78
89 2./9 10.2

28.42
50.54
78.96

133.4
202.1
315.8

31.58
49.34
83.40

142.6
197.3
308.4

6
8

10
13
16
20

8
10
13
17
20
25

50.04 13

.1.31

.132

.132

.132

.132

.132

.210

.211

.211

.211

.211

.211

.351

.418

.451

.476

.504
,527
.544

.673

.713

.758

.803

.828

.864

1.17

300 2 92 2.93 10 8

33.36
50.34
82.36

133.4
201.4
230.5

35
43
55
70
86
92

3.80 11,1
3.81 11.6
3.81 12.2
3.81 12.8
3.82 .,13.4
3.82 13.6

50.04

32.95
49.64
83.40

144.0

47 4.57 2.99

44 6.07 17.2
54 6.08 18.0
70 6.09 19.1
92 6.10 20.3

34.76
49.07
84.93

139.1
206.7
300'.2

300.2

34.79
50.80
82.69

133.4
203.2
296.0

16
19
25
32
39
47

70

24
29
37
47
58
70

.763

.764

.765

.765

.765

.766

1.70

1.72
1.72
1.72
1.72
1.'72

1,72

2.39
2.47
2.65
2.77
2.87
2.97

6.36

5.21
5.46
5.73
5.98
6.21
6.44

33.36
49.44
84.00

133.4

33.15
49.67
83.40

46 6.56 18.6
56 657 194
73 6.58 20.6
92 6.59 21.8

SS 105 287
71 10.5 30.3
92 10.5 32.3

distribution isgiven by Vs = ( —eZ/r) exp ( —r/a),
where r is a radial coordinate originating at the
atomic nucleus. In the unscreened case (a = ~),
Sauter's method gives intensity values which are
much too low in the high frequency region of the
spectrum, but Elwert has shown that Sauter's
method agrees with the Sommerfeld method in
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lee

Q.OI
Log „V/Z

+&G. 2. Radiation components from Table II at the long wave limit (v=o). (Note both axes are h~g 1.-

rithmic. ) I„&I, means negative polarization.

e' 2k2 8m Vea2I— log +1
c'm( V/Z') Sm Vea-' h'

e'

/I
X ]

-+ jlog
&2 Sm Vea')

8m Vea2 —1

its approach to inhnite intensities at the low fre-
quency limit, It seems reasonable therefore, to
seek a proper value of c and apply the method
at the long wave limit.

The values of a adopted were those which
brought the Sauter potential distribution into
best agreement with the Fermi'0 atomic potential
Vp=Zep/r over the region of r for which the
Fermi expression is dehned. Figure 1 shows the
variation of a with Z.

Equation (20) of Sauter's" first paper may be
specialized for v=0 and decomposed into

V/Z' alone but depend also upon V. This
dependence is very slight for I„avariation of V

by a factor of 10 (V/Z' remaining constant)
affecting I, by much less than one percent. In the
case of I„, the corresponding variation goes as
high as 25 percent. The difference is classically
understandable since the force between a nucleus
and a remote passing electron is principally in the
component lying along the impact parameter. Jn

plotting spectral features as functions of V/Z'
and i/vo, we have in some cases to follow used

mean values of the low frequency limit I, and I„
within the narrow scatter described above. Such
mean values are entered in Table I I, and
Table III contains a fuller display of all the
separate values calculated from Eqs. (7). These
easily calculated values (Fig. 2) are in every case
readily acceptable extensions of our hard-won

curves for finite frequencies.

High Frequency Limit

These values of I, and I„are not functions of

'0 E.Fermi, Zeits. f. Physik 48, 73 (j,928). The quantities
c and y are defined and tabulated in this paper,

"There are two mistakes in the equation as printed: R
should be R2, and p0 in the denominator outside the braces
should be 3.

No short cut is available for computing the
short wave limit radiation components. The
elaborate methods described above are applicable,
but several of the series must be carried out
to tedious lengths. The second reference of
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Frc. 3. Irradiation components from 'I'able II at the short wave limit (v= v0). (Note both axes
are logarithmic. )

Weinstock indicates thc special forms which the
working equations take at this limit, but no over-
all simplification results. We have, therefore,
carried out the computations for only four cases
at the limit. These have been supplemented by
limit data obtained by extrapolation of results of
related eases for which v/vp(1. Since the radia-
tion components are furictions of two variables
(V/Z' and v/vo), it was possible to arrive at the
same result by two quite independent extrapola-
tions. If two such extrapolations yielded results
in agreement to within one percent, the result
was accepted as correct. Figure 3 shows the
variation of I and I„at the high frequency limit.
These curves are important in their relation to
the mooted question of high frequency limit
polarization.

Approximate Representation

Detailed inspection of Table II shows that the
values of I and I„are, to a rough approximation,
inversely proportional to V/Z'. For I, the ap-
proximation is close enough so that all the values
within the range of our investigation may be
stated with a' mean error of 10 percent and a
maximum error of 20 percent by the equation

I,=3.0&(10 "2'/V.

Near the short wave limit (v/vo ——1), the variation

of I, with V/Z' is not as simple, and the maxi-
mum errors are found. Far from the short wave
limit, approximate representations become quite
satisfactory; all values of I investigated at
v/v0=0. 2 are given by I,=2.6)&1 O'Z /V with
errors all under 2 percent. It should be realized
that the word "error" as used here means only
the discrepancy between the approximate ex-
pression and the more rigorously calculated
values of Table II; it has no relation either to the
errors of the Sommerfeld theory or the errors of
computation.

The values of I„and I, are less easily summa-
rized. They increase rapidly with increasing
wave-length in a given spectrum whereas the
general (but not invariable) tendency of I, is to
decrease slowly. At v/vo =0.4 all values of
I„(=I,) are given with errors under 6 percent by
the expression 1.1X10 ~'Z'/V, but elsewhere in
the spectra, expressions of this type do not suSce.

In view of the enormous amount of work in-

volved in computing spectral characteristics from
the Sommerfeld equations or any of their modifi-

cations, it seems worth while to consider a second
approximate representation of their results.
Using primes to distinguish these approximations,
we find:

I,' &(10'"V/Z' =0.252+@(v/ vo —0.135)

b(v/vo 0.135)' —(8)—
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I„,&& 10"V/Z' = —j+ (9)

a = 1.478 —0.5072 —0.833,

b = 1.708 —1.092 —0.627,

A =exp (—0.223 V/Z') —exp ( —57 V/Z'),

8= exp ( —0.0828 V/Z') —exp ( —84.9 V/Z').

—0.214yg+ 1.21yg —y3h=
1.43yi —2.43y2+y3

j= (1+2&)yp —2(1+k)y3,

&=(1+&)(y3+j),
&
——0.220(1 —0.390 exp (—26.9 V/Z-')),

y2 = 0.067+0.023/(( V/Z') + (0.75)),

y3=3 = —0.00259+0.00776/(( V/Z') +0.116).
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FIG. 9. Polarization of radiations emitted in a direction at 90' to the direction of bombardment.
Numbers on the curves are values of U/Z . Scherzer investigated the case V/Z =0 and concluded that
+90 0.6 for the entire spectrum. The curves above seem to be approaching this case as a reasonable limit.

ponents by 8 =I„/(I, sin' fr+I. cos' 8) and take
as the measure of polarization the quantity
Pe = (1 —8)/(1+8), an expression which is equiv-
alent to Pg=(1 —D)/(1+D(2 csc' 0 —1)), where
D is Sommerfeld's "depolarization ratio" I„/I..

From the data of Table II, the polarization of
radiation emitted in the dir ection 0 =90 has been
calculated for a number of values of v/vo and
V/Z'. These calculations are presentecl in the
curves of Fig. 9. The similarity of these curves
shows that in the present theory, polarization is
more a matter of position in the spectrum than of
atomic number or bombardment energy. Only in

the vicinity of the short wave limit does Ego re-
spond markedly to variations of V/Z"-. This
response is in the sense that high U/Z is associ-
ated with high (though in no case complete)
polarization.

Near the low frequency end of the spectrum,
radiation is produced at slight cost to the energy
store of the bombardment electron. Close en-
counters are not required for .such emission, and
the predominant force component acting upon
the electron lies in the ys-plane rather than the
x-axis. The classical consequence, negative polar-
ization, is supported by the curves of Fig. 9.

The curves of Fig. 9 present a somewhat
tangled appearance, but they are in fact related
in an entirely systematic manner, as a replot of
the same data in Fig. 10 shows. The latter figure
also emphasizes the relative insensitivity of
polarization to V/Z' except in the region of low

values of this quotient.
To show the theoretical variation of polariza-

tion with direction of emission, Fig. 11 is

presented. Each curve here is a graph of I'g vs. 0

for the particular value of v/vo appended to the
curve and for the value V/Z' =1.776 common to
all five curves. Polarization of the forward
directed radiation is always zero; as 8 increases,
the polarization may increase or decrease, de-

pending upon v/vo. Evidently for a given U/Z',
there is a value of v/vo for which the emitted
radiation is substantially unpolarized for all
directions of emission. The maximum (or mini-

mum) of polarization at 0 =90' is very Hat in all

cases, and observers in this angular region need
have little concern about the precision of their 0

measurements.

Alternative Methods of Calculation

Sauter's treatment of the problem made use of
the first Born approximations. This method is
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in all frequencies from zero to the quantum limit.
It then remains to divide this result by the total
energy lost per electron per atom-per-cm', a
quantity depending upon P and Z.

In seeking the most probable values of this

quantity, it seems best to adopt a combination of
theoretical and experimental results. Williams"
has shown that the observations of White" and

Millington upon the stopping of fast P-particles

by mica agree with the classical theory of Bohr"
with respect to the functional variation of stop-

ping power with P, though not as to the absolute
values of stopping power. Williams recommends a
practical formula consonant with these facts
which may be put in the form:"

F.. J. Williams, Proc. Roy. Soc. A130, 310 (1931).
'4 P. White and G. Millington, Proc. Roy. Soc. A120, 701

(1928).
'~ N. Bohr, Phil. Mag. 25, 10 (1913)."An error in the statement of the energy-loss formula in

Williams' Eq. (18) has been corrected above. We have also
incorporated a suggestion of D. L. Webster that the right-
hand side of VVilliams' formula be multiplied by 2Z/d
where A is the atomic weight;
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I'l&~. 14. Rates of loss of kinetic energy of electrons of
speed P in the four substances indicated by atomic num-
bers near the curves. Ordinates are in ergs per atom-per-
cm')&10'7 of stopping material. These curves are adapted
from E. J. Williams' discussion of the theory of Bohr.

F.nergy loss in ergs per electron per atom-per-cm'-
=407PZP 'X10 ". (11)

In this equation, P is a dimensionless function of
Z and V involving the geometric mean of the
natural frequencies of all electrons in the atom
of the stopping material. P was calculated for
Z = 13, 47, 70, and 92 by use of frequencies from
the x-ray v/R term values found in Siegbahn's
Spektroskopie der Rontgenstrakleri (1931).Results
of these calculations appear in Table IV.

To obtain electron energy losses in the region
of energies intermediate between 20 and 80 kev,
we have simply filled in by graphical interpolation
in the manner illustrated by Fig. 14. It is

gratifying that the calculations in the separated
ranges admit of a smooth connecting curve seg-
ment for each of the four elements used in these
efficiency calculations. We do not take this to
mean that these curves are entirely correct; they
may be wrong by many percent, but they would
seem to be as good approximations as the litera-
ture of the subject affords at this date. Our
efficiency conclusions will be subject to immedi-

ate amendment upon the appearance of more
reliable energy-loss information. Figure 14, show-

ing the energy-loss rates which we have adopted,
may be used as a basis for any such adjustment.

TABI.I: IV. Electron-loss rates from Eq. (11).
Energy loss in ergs per electron per atom-per-cm'

=5 62ZP '4X10 ". (10)

This formula takes no account of the losses by
those few collisions in which an electron loses
more than 1500 kev; its applicability above
/=0. 52 has not been demonstrated nor has it
been tested with elements of high Z. Nevertheless,
we adopt it for all speeds above P =0.5 and for all
elements here considered.

For low values of P (up to P =0.30) we draw

upon Williams again. By cloud chamber observa-
tions of x-ray photoelectrons in oxygen, hydro-

gen, and argon, he established that in this energy
region the Bohr theory predicts rates of energy
loss about 60 percent too high, but correct in

respect to their functional dependence upon Z
and P. Assuming that the same ratio holds for all
elements we multiply Bohr's expression by 0.6
and obtain:
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13
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70
70
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106.8
69.3
49.2
36.9
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t e graphical integration with respect to P, in

which case we have
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The integration has been carried out for twenty
representative cases, and the over-all thick tar et

'es o continuous x-ray production have
been obtained by dividin R b'vi ing y the initial

electron ener . Thgy. ese efficiencies are shown in

Table V, , and Figs. 15 and 16.
From

catho e ra
om irect measurement of tho e x ray and

cat o e ray energies Beatty" found th' k t
e ciencies to be proportional to the product of

target atomic number and bo b dn om ar ment voltage.
e many efficiency measurements made subse-

quently to Beatt y s time were summarized by

"R, I. Beattatty, I roc. I&oy. Soc. 89, 314 (1913).
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Fto. 16. Efficiency of production of continuous x-rays by thick targets of atomic numbers shown by the
ordinate scale when bombarded by electrons at the kv values stated at the ends of the curves. Curves are
based on electron energy-loss rates of Fig. 14 and theoretical continuous spectrum energies derived from
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C.'ompton and Allison" in the equation Efficiency
=1.1)(10 'Z kv, a summary which these authot s
regarded as "probably correct within about 20
percent. "

Figure 17 shows that the effi'ciencies of Table V"
agree approximately with Beatty's rule and that
they lie about 20 percent above the values of the
consensus of Compton and Allison.

For any product Z kv the calculated thin
target efficiency is about twice as great as the
thick target efficiency. The thin target points in

Fig. 17 are tolerably represented by the straight
line

Thin target efficiency =2.8)(10 'Z kv.

Calculated efficiencies for both thin and thick
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Fr&'. 17. Calculated efficiency of production of continuous
x-rays in thin targets (upper curve) and thick targets
(middle curve) of atomic number Z bombarded by electrons
accelerated by potential kv. Approximate linearity of thick
target curve supports Beatty's rule. Failure of points to lie
precisely on the curves shows that efficiencies as here
calculated are not strictly functions of the product Z kv.
'I he lower curve is a consensus of the experimental results
of sevenl investigators of thick-target e%cierrcy.

' A. H. Compton and S. K. Allison, X-Rays in Theory and
Experiment (D. Van Nostrand Company, Inc. , New York,
1935), p. 90.

"The efficiencies of Table V lie somewhat below the
values given earlier by one of the present authors (P.
Kirkpatrick, Phys. Rev. 66, 156 and 161 (1944)). The
original calculations were based upon the energy-loss rates
of Eq. (10) for low voltages as well as high. The values of
W at v=0 in the previous work were obtained by graphical
extrapolation instead of direct calculation. Changing the
method of calculation in these two respects produced
efficiencies more precisely proportional to Z qnd kv qnd, on
fige wl&ole, )owet-,
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targets tend to fall below linearity at high values
of Z kv, but the reliability of the calculations is
in question here since the potentials involved are
outside the proper range of non-relativistic
theory.

Dr. Robert Weinstock assisted the authors
through numerous discussions in the early stages
of the work, when his interpretation of his own

papers contributed most helpfully to the de-
velopment of the computational procedure.

PHYSICAL R EVIEW VOI. UME 67, NUMBERS 11 AND 12 JUNE 1 AND 1S, 194S

The Relativistic Correction in the Meson Theory of Nuclear Force

NING HU

Institute for Advanced Study, I'rincefon, tv Jersey

(Received March 23, 1945)

In the present paper a systematic investigation is made on the relativistic corrections of the
iisual non-relativistic meson theories of nuclear force by expansion with respect to the dimen-
sionless operator V'/M. 'I he mixed theory initiated by Mpller and Rosenfeld is considere(l
since it is the only satisfactory theory in the non-relativistic region. It is found that the ilia(I-

missible singularity which has been removed in the mixed theory in the non-relativistic regioli

reappears in the higher approxi&nations. 'I'his means that the extension of the mixed theory
to the relativistic region as clone by Mpller and Rosenfeld in explaining the quadrupole moment
is not justified.

I. INTRODUCTION

HE well known fact that the deuteron nucleus possesses an electric quadrupole moment is an
indication of the existence of the tensor force in the nuclear interaction. The expression for

this force derived from a single type of meson field, however, contains the inadmissible singularity
of the type I/r', which has to be cut off at an arbitrary radius. It has been shown by Mpller and
Rosenfeld' that if the nuclear interaction is assumed as due to a mixed field of pseudoscalar and
vector mesons of the same mass and suitably chosen coupling constants, then the tensor force
disappears with its inadmissible singularity in the non-rela'tivistic region. This provides a solution
of the wave equation without resorting to the cut-off procedure. According to this theory, the quad-
rupole moment can only be a relativistic effect owing to the vanishing of the tensor force in the
non-relativistic region. Mpller and Rosenfeld have actually derived an expression for the quadrupole
moment by considering the relativistic interaction of the first order. Schwinger' later suggested that
if the mass of the vector meson is assumed to be larger than that of the pseudoscalar meson, then
the tensor force reappears with an admissible singularity of the type I/r. This assumption is also
in agreement with the hypothesis that the vector meson is highly unstable and responsible for the
P-disintegration of the nucleus.

Recently Jauch and the present author' calculated numerically the quadrupole moment according
to Schwinger's assumption, ancl found that the result is much smaller than the experimental value
even for a very large mass ratio for these two types of mesons. This conclusion is quite independent
of the coupling constants obtained from the scattering problems. Parallel to this calculation, Hulthbn
also evaluated the quadrupole moment using the formula obtained by Mfiller and Rosenfeld. The

' C. Mgller and L. Rosenfeld, Kgl. Danske Vid. Sels. Math. -Fys. Medd 1'7 (1940).
2 J. Schwinger, Phys. Rev. 61, 287A (1942).' J. M. Jauch and N. Hu, Phys. Rev. 65. 289 (1944).
4 I . Hulthen, Arkiv for Mat, Astr. Och. Fys. 29A, No. 33 (1943),


