PHYSICAL REVIEW VOLUME 67,

NUMBERS 11

AND 12 JUNE 1 AND 15, 1945

Theoretical Continuous X-Ray Energy and Polarization

PauL KIRKPATRICK AND LuciLLE WIEDMANN
Stanford University, Stanford University, California

(Received April 2, 1945)

By the theory of Sommerfeld, relativity effects and
retardation of potential being neglected, matrix elements
and associated components of continuous spectrum x-radia-
tion are computed for a variety of electron-nucleus colli-
sions and for a distributed series of positions in the spec-
trum. The calculations cover values of V/Z2 from 0.06128
to 3.356, where Z is the atomic number of the nucleus, and
V is the bombardment potential in electrostatic units.
Accuracy of calculation is 1 percent. Screening is neglected
except at the long wave limit of the spectra where it is
taken into account by Sauter’s method. Efpirical algebraic
formulas are found which closely represent the rigorously
calculated results. Intensity and polarization predictions

for any direction of emission and any excitation conditions
within the range of applicability of the theory may be
readily drawn from the computed results. Elwert’s proposed
correction factor for rectifying the approximate spectral
intensities of Sommerfeld and Maue is found effective
within the limits of its restricting assumptions. Theoretical
efficiencies of continuous x-ray production are calculated
by combining theoretical intensities with known rates of
electron energy loss in traversing matter. Thick target
efficiency (a ratio, not percent) is given by 1.4X1078Z kv.
Thin target efficiency is found to be approximately twice
the thick target efficiency for any given Z and kv.

HE problem of the continuous x-ray spec-

trum is to find answers to such questions
as the following: When an electron of stated
kinetic energy collides with a thin layer of matter
of atomic number Z and of  some given surface
density, what is the probability that a photon
whose frequency lies between any stipulated
limits shall be emitted in an clementary solid
angle of specified magnitude oriented in any de-
fined manner with respect to the direction of
motion of the bombarding electron? A further
question concernis the state of polarization of
such a photon.

Answers to these questions are implicit in
extant theory, but in only a very few cases have
explicit numerical answers been extracted from
the theories and placed on the record. It is not
yet possible to say broadly that the theory either
does or does not agree with experimental facts,
though a few encouraging similarities have ap-
peared. We shall not have a satisfying number of
such comparisons without further work on both
sides of the' gap, i.e., until many more good
measurements have been completed and until
theoretical predictions are made available in
numerical form.

The present paper attempts to supply the
second of these necessities. It contributes nothing
to the basic theoretical picture according to
which the emission of the continuous x-ray spec-
trum is now understood; rather, it presents a

computational procedure for obtaining numerical
values of x-ray energy and polarization from the
theory, together with the results of such cal-
culations.

For a system consisting of a bare nucleus and
one electron, Schrédinger’s equation predicts a
continuous range of positive energy states, and a
continuous spectrum must result from the joint
operation of the possible transitions between such
states. The spectral features may be deduced, as
Oppenheimer! and Sugiura®? have shown, by
calculating matrix elements from characteristic
functions corresponding to states involved in the
transitions, but the method introduced by
Sommerfeld® and developed by a number of sub-
sequent theorists has greater analytical simplicity
and will be followed in the present paper.

The theory of Sommerfeld considers the wave
systems of an electron approaching an atomic
nucleus and departing with altered direction and
reduced speed, having suffered an energy loss
which appears as the energy of the emitted
photon. The single process can be described with
rigor, but the integration over all possible direc-

1 J. R. Oppenheimer, Zeits. f. Physik 55, 725 (1929).

2 Y. Sugiura, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 17,
89 (1931); and earlier contributions referred to therein.

3 A. Sommerfeld, Ann. d. Physik [5] 11, 257 (1931);
O. Scherzer, Ann. d. Physik [57 13, 137 (1932); F. Sauter,
Ann. d. Physik [5] 18, 486 (1933), [5] 20, 404 (1934);
A. Sommerfeld and A. W. Maue, Ann. d. Physik [5] 23,
589 (1935); G. Elwert, Ann. d. Physik [5] 34,.178 (1939);
R. Weinstock, Phys. Rev. 61, 585 (1942), 65, 1 (1944).
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tions of departure of the electron—a necessary
operation if theory is to be compared with ex-
periment—has been found troublesome by all
who have tried it.

Approximations, physical or mathematical,
have been necessary features of all the treat-
ments. The present results are conditioned by the
inexact physical assumptions of the original
Sommerfeld? theory, but we follow Weinstock?® in
avoiding mathematical approximations such as
those which restricted the applicability of the
results of Sauter and of Elwert.*

The questionable physical assumptions and
approximations are the following: (a) Except in
connection with the long wave limit of the spec-
trum, atomic electrons are ignored, and the
nucleus is assumed to be the center of a pure
Coulomb field. (b) Relativity effects, retardation
of potential, and the effects of electron spin are
neglected. (c) The de Broglie waves of the ap-
proaching and receding electron are treated as
plane waves, filling all space.

Picture a row of electrons moving along or
closely parallel to the x-axis of a cartesian coordi-
nate system (sce Fig. 8), approaching the origin
from the negative side with speed v; conferred by
a potential difference V. Upon arriving at the
origin, the electrons strike or pass through a
plane target coinciding with the yz-plane which is
composed of atoms of atomic number Z in a
uniform distribution. We investigate the con-
tinuous x-radiation resulting from collisions at
the origin and departing in a direction lying in
the xz-plane and making an angle 6 with the
positive x-direction. The electron leaves the
collision with speed v,. As applied to such a
picture, the theory deals in probabilities of
photon emission, but with large numbers of
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atoms or of electrons, such probabilities increase
proportionately, and one may speak with sta-
tistical accuracy of emitted intensities, powers,
and energies.

The bombarded and emitting atoms simulate a
source possessing calculable component Hertzian
dipole moments, each of which produces radia-
tion components I,, I,, and I,, proportional to
the square of the corresponding moment. The
total intensity proceeding in a direction 8 con-
sists in general of contributions from all three
radiation components weighted with reference to
the angles between their dipole axes and the
direction of observation. The observable in-
tensity is given by?®

Iy=1,sin? §+I,+ I, cos? 6. (1)

The calculation and discussion of I, . are the
objects of this paper; these components will be
defined in such a way that Iy (not rigorously a
radiation intensity) comes out in the units ergs
per steradian per unit frequency range per bom-
barding electron per atom-per-square-centimeter
of target area. Neglect of electron spin leaves the
direction of bombardment an axis of complete
symmetry, so I, =1, necessarily. There remain
two quantities, I, and I,, to calculate, and each
is a function of the four parameters 6, V, Z, and
the frequency », a group which will be found
reducible to three. In terms of these components,
the intensity and polarization of radiation emitted
in the direction 6 are given by
Iy=1, sin? 0+ I,(1+cos? 0)}
1—(I,/1.) b (2)

(1, 1) (2 csc? 6—1)

The method of Sommerfeld yields:

411'86Z2( Ve'—hV)Nzx, Y,z

I y.=

where N2, ,, , are dimensionless quantities equiva-
lent to M?,,,./| A |? of Weinstock’s first reference.
The computation of these quantities is almost the
whole of the problem confronting the computer.

¢ Sauter is limited by Born's first approximation,
Ze*/hv, »<<1; while Elwert’s method is restricted by the
assumption (Ze*/hve) — (Ze?/ho )<<l or Ze*fhwni<<1. The
effects of these conditions will be noted on a subsequent
page.

[1—exp (—4xr2%2Z/v:h) ][ exp (472> Z /vih) —1][(Ve)? —~’ (Ve— hv)%]‘*mﬁ’

3)
CALCULATION OF N, (=N,?)
From Weinstock’s derivation one finds
167r3Z2e3m|” 2wil%*'m
= 1+ ]
RVES L h2(Ve—hy)
wo é()w wZ
x f {—-~+~——-] |Gy . (4)
o 1—w (1—w)?

5 G. Elwert, reference 3; p. 194.
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New symbols appearing in Eq. (4) are defined as
follows:

wo= &0/ (£0—1).

The quantity Gj is the hypergeometric function
F(14ny, —ns, 2, w) where #y and #n, are imagi-
nary quantities defined by n1, 9=(—2me*Z7) / (hvy, »).
The physical significance of w is of no concern
since it goes out in the definite integration.

Weinstock expanded G in series and inte-
grated Eq. (4) term by term, obtaining his
compact Eq. (9). Although this works well in
some cases, it has not been found generally
trustworthy because of the danger that the series
of integrals may be chopped off too soon. It is
quite impossible to depend upon appearances in
estimating the progress of its convergence, and
no positive criterion has been found. It is known
that as many as twenty terms are insufficient in
certain cases to reduce the residue to negligibility,
so the evaluation is both suspect and laborious.
It was decided, therefore, to evaluate the inte-
grand in Eq. (4) for representative values of w
and to carry out the integration graphically.

The range of integration extends from zero to
Wy, a positive quantity lying between zero and
unity. For those cases (values of 7 and ») which
give values of wy not too near to unity, say not
exceeding 0.75, the necessary values of G3 may be
obtained from the standard hypergeometric
expansion

to= "471«1712/(%1“712)2,

abx  ala+1)b(b+1)x?
F(a! bv ¢, x) El+“—_+_%
' 1c 1:2-¢c(c+1)
ala+1)(a+2)b(b+1)(b+2)x? =
+ e EZ guxﬂ
1-2:3-c(c+1)(c+2) o

where u is an integer designating a series term,
which starts with =0 for the first term: The
coefficients are given by

go=1, and in general
(n+a)(p+d)
- .
WD (mto

By use of this series, G3 may usually be evaluated
with an uncertainty not greater than one percent
without going beyond 10 or 15 terms. For values

gut1=
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of w too large for prompt convergence, use is
made of the identity®
G3=C1F(1+711, —MNgy, N1— Ny, 1""‘w)

+C2F(1 —Mny, 2+7’l2, 2 "'n1+7lp,, 1—'10),

where
—n1+ny
A

Crm e,
—111112(1 +1’L2)

C‘2 (1 — w) 1—n1+nz’

(1 r—na)
A=T(n1—ns) /T(n)T(—n,),

and A designates the complex conjugate of A.
Numerical evaluation of A is most readily
carried out by means of the identity

1/T(x) =x(x+1)

XA +Bix+Bx*+Bgxd+---). (5)

The coefficients of x as calculated by Bourguet?
are reproduced in Table I. ‘

The terms in the series of Eq. (5) are alternately
imaginary and real, leading to a complex A. For
the largest values of #,, the tabulated coefficients
are insufficient, and it is advantageous to use
Legendre’s duplication formula

o (2x) =220 (%) T (x+3),

to bring the arguments of the gamma-functions
within the range of the table. The imaginary
character of n; and #, requires special attention
in the evaluation of C,; here we may write

(1 —w)l-nmtnz=(1 —'zg) (cos 6+ sin 6),
in which
6= |ni—mns|log (1/1—w).

If the integrand of Eq. (4) be plotted as a
function of w, the curve will usually be found
inconvenient for planimeter integration because
of the high and narrow peak at the upper limit.
This feature is avoided by plotting as a function

S E.T. Copson, An Introduction to the Theory of Functions
of a Complex Variable (Oxford University Press, New York,
1935), p. 251. )

7L. Bourguet, Acta Math. 2, 261 (1883). Harold T.
Davis, Tables of the Higher Mathematical Functions (The
Principia Press, Inc., Bloomington, Indiana, 1933), Vol. 1,
p. 185,
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of u, where u=1/(1—w), in which case the
errors of area measurement may well be less than
those of computation. The transformed integral
is

1=t (g —1 ~1
f (u—1)(botu )[Gal%lu.

u?

As & increases, the maximum of the integrand
becomes higher and narrower, but plotting in
two or three different sections with suitable
changes of scale readily keeps it in hand.

CALCULATION OF N,?

The calculation of N,? might be carried out in
a manner analogous to that described above, but
Weinstock’s expression contains three definite
integrals, and although he has shown how to
replace them by infinite series, the problem of
convergence persuades us to adopt a differing
approach. Sommerfeld and Maue have shown
how to express the sum N*=N,4N,24N.2? in
closed form, and Weinstock has put their ex-
pression into a form based upon four rapidly
converging series, two of which we find to be
identical. We therefore employ Weinstock’s equa-
tion for N? in the form shown below and later

TasLe I. Coefficients in the power-series expansion

DBt Bat ),

I(x)

n Bn
1 —0.4227 8433 5098 4671
2 —0.2330 9373 6421 7867
3 0.1910 9110 1387 6915
4 —0.0245 5249 0005 4000
N —0.0176 4524 4550 1443
6 0.0080 2327 3022 2673
7 —0.0008 0432 9775 6044
8 —0.0003 6083 7816 2548
9 0.0001 4559 6142 1399
10 —0.0000 1754 5859 7517
11 —0.0000 0258 8995 0224
12 0.0000 0133 8501 5466
13 —0.0000 0020 5474 3152
14 —0.0000 0000 0159 5268
15 0.0000 0000 6275 6218
16 —0.0000 0000 1273 6143
17 0.0000 0000 0092 3397
18 0.0000 0000 0012 0028
19 —0.0000 0000 0004 2202
20 0.0000 0000 0000 5240
21 —0.0000 0000 0000 0140
22 —0.0000 0000 0000 0067
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solve for N2=N?—2N,2 This avoidance of a
direct attack upon N,? follows, in principle, the
example of Elwert.

The working equation for N? is

— 167
—
)

2

2 rgibe!

r=1

A

ny

2

__SRI___<___ Eo)nl—nz[ i 7’jr£0—r_l
r==1

LAUT]

~m=n) £ i |||
r=0 N

wherein N = “real part of,” and the quantities ¢,

and j, are themselves defined by the finite series:

7 * . r "
q7'= Z g4! Vg4,7‘—l'; ]7‘= Z g4, vg5,r—-v'
y=0 v=0

Quantities in these series are defined and calcu-
lated by the recursion relations:

g240=g50=1,
(v—1—mn,)?

G4, v=—"——"""""84»-1,
v(v+n2—n1)
(v —1—m,)?

g5,y =" g5, v—1.
v(v+n,—nq)

The asterisk (*) denotes the conjugate function.
In these series » and 7 are real integers assuming
consecutive values within the stated ranges. The
convergence is such that as few as three terms
sometimes suffice to fix the value of a series. The
g’s are, of course, complex, but the conjugates in
g- and j, cancel out the imaginaries and leave
these quantities and their series real.

NUMERICAL EVALUATION

Inspection of the foregoing equations shows

“that the variables V, Z, and v are present only in

combinations reducible to V/Z? and »/v,. This
reduction of the number of parameters con-
trolling the spectral features from four to three
(the two quotients above and ) greatly reduces
the amount of computation necessary to cover
the full range of experimental variables, since any
one complete calculation furnishes a separate
prediction concerning each of the 92 elements.
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TasLe II. Components and total energy of radiation.

V/z: v/vo I X10% I,(=1:) X10% W X10% v/z: . v/vo I X10%  I,(=1:) X10% W X10%
3.356 0.403 0.0809 0.0296 1.17 0.06041 1.00 5.51 0.718 58.2
0.624 5.12 1.35 65.4
2171 0.623 0.128 0.0228 1.435 0.443 4.86 1.79 70.6
0.217 4.40 2.81 83.9
1.776 1.00 0.146 0.00132 1.24 0.00 1.72 5.81 112.0
0.761 0.154 0.016 1.56
0.197 0.144 0.105 2.97 0.03776 1.00 8.48 1.30 92.9
0.0962 0.136 0.151 3.67 0.708 8.11 1.92 100.0
0.00 0.0586 0.223 4.23 0.346 7.34 3.32 117.0
0.00 2,78 9.10 176.0
1.351 1.00 0.207 0.00223 1.77
0.03546 1.00 9.00 1.40 98.9
0.7896 1.00 0.398 0.00761 3.47 0.761 8.73 1.92 105.0
0.624 0.377 0.072 4.37 0.197 7.35 4.76 141.0
0.443 0.361 0.121 5.05 0.0962 6.75 6.34 163.0
0.217 0.332 0.227 6.59 0.00 2.95 9.60 186.0
0.00 0.132 0.496 9.42
0.02723 1.00 11.5 1.92 128.0
0.4934 1.00 0.685. 0.0191 6.06 0.624 10.8 3.01 141.0
0.708 0.637 0.0948 6.92 0.443 10.4 3.84 152.0
0.346 0.578 0.254 9.10 0.217 9.74 5.68 177.0
0.00 0.211 0.776 14.8 0.00 3.81 12.2 236.0
0.3493 1.00 0.999 0.0378 9.01 0.02265 1.00 13.62 2.37 154.0
0.577 12.73 3.81 171.0
0.2961 1.00 1.20 0.0518 10.9 0.00 4.60 14.5 282.0
0.577 1.05 0.250 13.0
0.00 0.351 1.26 241 0.01702 1.00 17.7 3.27 204.0
0.708 17.2 4.31 216.0
0.1709 1.00 2.12 0.141 20.1 0.346 16.0 6.84 248.0
0.00 6.09 18.8 366.0
0.1359 1.00 2.63 0.214 25.6
0.761 243 0.402 271 0.01576 1.00 19.0 3.58 219.0
0.197 1.91 1.39 39.3 0.624 18.2 5.14 238.0
0.0962 1.79 1.90 46.8 0.443 17.7 6.36 255.0
0.00 0.765 2.705 51.7 0.217 16.6 9.25 294.0
) 0.00 6.58 20.2 394.0
0.06128 1.00 5.43 0.697 57.2
0.761 5.18 1.05 61.0 0.009854 0.708 289 7.48 368.0
0.197 4.26 2.92 84.5 0.346 27.2 11.2 415.0
0.0962 3.92 3.95 99.0 0.00 10.5 30.5 599.0
0.00 1.70 5.74 111.0

Many of these predictions, however, relate to
definitely relativistic voltage or frequency ranges
and are, therefore, not fully applicable.

- Values of I, and I,=I,, calculated by the

methods described above are listed in Table II,
along with the related values of V/Z? and »/v,.
Birge’s® 1941 values of the atomic constants have
been used. Since the I's vary approximately as
the ninth power of e, precision here is not as

superfluous as might be assumed. Indeed, an.

error in e as great as the discrepancy between
today’s value and that of a decade ago could
easily throw the calculated intensities off
by much more than the errors of intensity
measurement.

8 R. T. Birge, Rev. Mod. Phys. 13, 233 (1941).

The quantity W, introduced in the fifth and
last columns of Table 11, is the total energy of
continuous x-radiation in all directions. Inte-
gration of I of Eq. (2) over the 4 steradians of
space surrounding the point of collision gives at
once W=(8x/3)[I.+I,+I.], a function of »
given in the units ergs per unit frequency interval
per bombarding electron per atom-per-square-
centimeter of target area.

The numerical values in Table II have been
checked against each other by many graphical
tests, and indeed, such checks were used at all
stages of the calculations as a guard against
errors of computation. Although each row of the
table (except at »/vo=0 and some at v/ro=1)
represents over 1200 elementary computing
operations, it is believed that computing errors
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F16. 1. Screening constants a (in cm) of the Sauter atomic potential distribution V= (—eZ/r) exp (—r/a).
Values shown by curve give best agreement with Fermi atomic potentials.

and approximations have in no case impaired a
calculated result by more than one percent.

Low Frequency Limit

The computations described above have been
subject to the assumption that the bombarded
nucleus is effectively unscreened. This does not
preclude the application of the results to real
nuclei,’ fully clothed with screening electrons, as
long as the acceleration of the bombarding
electrons takes place inside of the surrounding
electron screen. This is probably what happens in
the production of most of the spectrum, but it
definitely does not always happen when radiation
of vanishingly small quantum energy is emitted.
Such radiation requires the application of such
slight forces to the bombardment electron that it
may be produced by an electron passing a bare
nucleus at a great distance. The collision cross
section for radiation of zero frequency is very
great, and one readily sees why the Sommerfeld
theory predicts infinite intensity at A= . At
this end of the spectrum, it is necessary to assume
some screening if predictions applicable to real
atoms are desired.

We have, therefore, calculated I, at v=0 by
the method of Sauter, who shows how to compute
the radiation from an atom whose potential

?A. L. Hughes, Phys. Rev. 55, 350 (1939), shows that

atomic_electrons play a negligible part in the elastic
scattering of fast electrons by atoms.

distribution isgiven by Vg=(—eZ/r) exp (—r/a),
where 7 is a radial coordinate originating at the
atomic nucleus. In the unscreened case (a= «),
Sauter’s method gives intensity values which are
much too low in the high frequency region of the
spectrum, but Elwert has shown that Sauter’s
method agrees with the Sommerfeld method in

TaBLE III. Radiation components at »=0 for
screened nuclei.

\4 Z I:X10% I, X10% \4 Z I X10% I, X10%
28.43 4 0584 190 13399 30 277 8.14
44.40 5 0585 199 4894 36 2.78 8.45
87.03 7 0586 217 83.40 47 2.78 8.93

143.9 9 0586 230 131.4 59 2.78 9.34
214.9 11 0586 240 201.2 73 2.79 9.78
300.2 13 0586 248 299.1 89 2.79 102
28.42 6 131 418 300.2 92 293 108
50.54 8 132 451
78.96 10 132 476 33.36 35 3.80 11.1
133.4 13 132 504 50.34¢ 43 3.81 116
202.1 16 132 527 82.36 55 3.81 12.2
315.8 20 132 544 133.4 70 3.81 128
201.4 86 3.82 134
31.58 8 210 673 230.5 92 3.82 13.6
49.34 10 211 713
83.40 13 211 758 50.04 47 4.57 2.99
142.6 17 211 803
197.3 20 211 828 3295 44 6.07 17.2
308.4 25 211 864 49.64 54 6.08 18.0
’ 83.40 70 6.09 19.1
50.04 13 351 1.17 144.0 92 6.10 203
34.76 16 763 2.39 33.36 46 6.56 18.6
49.07 19 764 2.47 49.44 56 6.57 194
84.93 25 765 2.65 84.00 73 6.58  20.6
139.1 32 765 2.77 133.4 92 6.59 21.8
206.7 39 765 2.87
300.2 47 766 2.97 33.15 58 10.5 28.7
49.67 71 10.5 30.3
300.2 70 1.70 6.36 83.40 92 105 323
34.79 24 1.72 5.21
50.80 29 1.72 5.46
82.69 37 1.72 5.73
133.4 47 1.72 5.98
203.2 58 1.72 6.21
296.0 70 1.72 6.44
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F16. 2. Radiation components from Table II at the long wave limit (»=0). (Note both axes are loga-
rithmic.) I, > I, means negative polarization.

its approach to infinite intensities at the low fre-
quency limit. It seems reasonable therefore, to
seek a proper value of ¢ and apply the method
at the long wave limit.

The values of a adopted were those which
brought the Sauter potential distribution into
best agreement with the Fermi'® atomic potential
Vi=Zep/r over the region of » for which the
Fermi expression is defined. Figure 1 shows the
variation of @ with Z.

Equation (20) of Sauter’s! first paper may be
specialized for »=0 and decomposed into

I‘ —2h?
L= +,1]
m(V/ 29 8m Vea?

ed

8mVea?
log
h?

35

[=————
m(V/22)

1 h? 8mVea> -
X[(—+ ) log —1j
2 8mVea? n? J

These values of I, and I, are not functions of

(7)

10 E. Fermi, Zeits. f. Physik 48, 73 (1928). The quantities
e and ¢ are defined and tabulated in this paper.

1 There are two mistakes in the equation as printed: R°
should be R?, and po in the denominator outside the braces
should be 3.

V/Z? alone but depend also upon V. This
dependence is very slight for I,, a variation of V
by a factor of 10 (V/Z? remaining constant)
affecting I, by much less than one percent. In the
case of I, the corresponding variation goes as
high as 25 percent. The difference is classically
understandable since the force between a nucleus
and a remote passing electron is principally in the
component lying along the impact parameter. In
plotting spectral features as functions of V/Z?
and »/v,, we have in some cases to follow used
mean values of the low frequency limit I, and I,
within the narrow scatter described above. Such
mean values are entered in Table 1I, and
Table III contains a fuller display of all the
separate values calculated from Egs. (7). These
easily calculated values (Fig. 2) are in every case
readily acceptable extensions of our hard-won
curves for finite frequencies.

High Frequency Limit

No short cut is available for computing the
short wave limit radiation components. The
elaborate methods described above are applicable,
but several of the series must be carried out
to tedious lengths. The second reference of
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Fi6. 3. Radiation components from Table II at the short wave limit (»=»o). (Note both axes
are logarithmic.)

Weinstock indicates the special forms which the
working equations take at this limit, but no over-
all simplification results. We have, therefore,
carried out the computations for only four cases
at the limit. These have been supplemented by
limit data obtained by extrapolation of results of
related cases for which »/vs<1. Since the radia-
tion components are functions of two variables
(V/Z* and v/v,), it was possible to arrive at the
same result by two quite independent extrapola-
tions. If two such extrapolations yielded results
in agreement to within one percent, the result
was accepted as correct. Figure 3 shows the
variation of I, and I, at the high frequency limit.
These curves are important in their relation to
the mooted question of high frequency limit
polarization.

Approximate Representation

Detailed inspection of Table 11 shows that the
values of I, and I, are, to a rough approximation,
inversely proportional to V/Z% For I, the ap-
proximation is close enough so that all the values
within the range of our investigation may be
stated with a*mean error of 10 percent and a
maximum error of 20 percent by the equation

I,=3.0X10-%22/ V.

Near the short wave limit (v/vy =1), the variation

of I, with V/Z? is not as simple, and the maxi-
mum errors are found. Far from the short wave
limit, approximate representations become quite
satisfactory; all values of I, investigated at
v/vo=0.2 are given by I,=2.6X10"522/V with
errors all under 2 percent. It should be realized
that the word “error’”’ as used here means only
the discrepancy between the approximate ex-
pression and the more rigorously calculated
values of Table II;it has no relation either to the
errors of the Sommerfeld theory or the errors of
computation.

The values of I, and I, are less easily summa-
rized. They increase rapidly with increasing
wave-length in a given spectrum whereas the
general (but not invariable) tendency of I, is to
decrease slowly. At v/»y=0.4 all values of
I,(=1,) are given with errors under 6 percent by
the expression 1.1X107522/V, but elsewhere in
the spectra, expressions of this type do not suffice.

In view of the enormous amount of work in-
volved in computing spectral characteristics from
the Sommerfeld equations or any of their modifi-
cations, it seems worth while to consider a second
approximate representation of their results.
Using primes to distinguish these approximations,
we find:

I/ X109/ 22=0.2524a(v/vo—0.135)
—b(v/v—0.135)2, (8)
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0.1359, 0.493, 0.790, and 1.776 electrostatic units of potential difference.
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F1G. 5. Variation of I, with position in the spectrum. FEach curve pertains to a specific value ol V/Z2.

0.493, 0.790, and 1.776 electrostatic units of potential difference.

Reading downward from the top curve these values are 0.00985, 0.01576, 0.0272, 0.0355, 0.0613, 0.1359,

where

a=147B-0.5074 —0.833,
b=1.70B—1.094 —0.627,
A=exp (—0.223V/Z%) —exp (=57V/Z?),
B=exp (—0.0828V /2% —exp (—84.9V/2?).

I, . X109V /Z2= — j4

(V/Vo)-{-h' ©)

where

e —0.214y,+1.21y,—y,
1.43y,—2.43y:+y;
J={14+2h)y,—2(14h)ys,
k=(1+h)(ys+7),
y1=0.220(1 —0.390 exp (—26.9V,Z2)),
¥2=0.0674-0.023/((V/Z?+(0.75)),
y3=—0.00259+0.00776/((V/Z2) +0.116).
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FiG. 6. Total intensity (ergs per steradian per unit frequency interval per bombarding electron per
atom-per-cm?) emitted at 90° to the direction of bombardment as dependent upon position in the spec-
trum. Each curve pertains to the value of V/Z?shown just above it.

By these elementary expressions it is possible to
compute the characteristics of continuous x-ray
spectra with an expenditure of time and labor of
the order of one percent of that required by the
basic theory. Within the range covered by
Table 11, I/, I/, and I/ differ from I, I,, and I,,
respectively, by less than five percent at the
worst and by about two percent on the average.
The forms of Egs. (8) and (9) have, naturally, no
theoretical significance ; the equations are merely
empirical fits of the data of Table 11.

Discussion of Table II

Figure 4, a plot of data from Table II, shows
the variation of the y (or z) component of radia-
tion with its controlling variables. In any given
spectrum the component I, (or I,) diminishes in
magnitude as the short wave limit (v/vo=1) is
approached. The diminution is most notable
when targets of low atomic number are subject to
bombardment by fast electrons. At the other end
of the spectra, the Sommerfeld equations would

have turned all the curves up toward infinite
values. Introduction of screening in all calcula-
tions for which »/»¢=0 keeps the components
finite but gives multiple values, since in this
approximation the roles of ¥ and Z do not always
bring them together in the quotient V/Z% This
accounts for the frayed appearance of the left-
hand ends of curves of Fig. 4. It is presumed that
if it were practicable to take correct account of
screening throughout the spectrum, the curves of
Fig. 4 would, throughout their lengths, consist of
multiple bundles converging closely with in-
creasing ».

Figure S is a similar representation of I,. The
insensitivity of I, to frequency (emphasized by
logarithmic plotting) is the most conspicuous
feature here. All points at »=0 have been calcu-
lated by Eq. (7), but screening has little effect on
the long wave limit values of I, and the splitting
of the curves is too small to be shown.

The total radiation emitted in the direction
6=90° is given in accordance with Eq. (1) by
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Fi1G. 7. Variation of total emitted energy W (in ergs per unit frequency interval per bombarding electron
per atom-per-cm?) with position in the spectrum. The number immediately above each curve is the value

of V/Z? to which the curve relates.

Iy =I,+1, Since the direction is a favorable
one for observations, we show in Fig. 6 the
predicted total intensities. The simplicity of
these curves is remarkable. The variations of I,
and I, with frequency, being opposite in sense,
have nearly neutralized each other and given for
this direction of observation a set of almost flat
and linear spectra. It should be realized that
these ordinates are proportional to intensities
within frequency intervals of equal width. Most
methods of spectrum observation seek to measure
a quantity proportional to the intensities in
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F1G. 8. Polarization components of radiation originating
at 0 by bombardment from the left and observed at B.

wave-length bands of equal width, and such
spectra are not flat and horizontal in character,
though they may be readily transformed into a
form comparable with the curves of Fig. 6.

Shifting the direction of observation to values
of 8 either greater or less than 90° tilts the curves
of Fig. 6 so that their slight negative slopes be-
come more accentuated and deepens their slight
upward concavities.

The total radiation energy W, from Table 11,
is shown in Fig. 7.

POLARIZATION

In Fig. 8 the origin of radiation is O, the origin
of the coordinate system, and the direction of
observation is along OB, a direction specified by
the angle 6. The two vectors erected at B illus-
trate the two components of radiation with
mutually perpendicular directions of polarization.
The component polarized with electric vector
parallel to the y-axis of the coordinate system
possesses intensity I,; the component polarized
in the perpendicular direction in general contains
incoherent resolved contributions from both I,
and I, and possesses the intensity I, sin®
+1, cos? 8. We designate the ratio of these com-
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FiG. 9. Polarization of radiations emitted in a direction at 90° to the direction of bombardment.
Numbers on the curves are values of V/Z2 Scherzer investigated the case V/Z*=0 and concluded .th_at
Pyo°=0.6 for the entire spectrum. The curves above seem to be approaching this case as a reasonable limit.

ponents by R=1I,/(I,sin? §+1, cos? §) and take
as the measure of polarization the quantity
Py=(1—R)/(1+R), an expression which is equiv-
alent to Po=(1—D)/(1+D(2 csc? —1)), where
D is Sommerfeld’s “‘depolarization ratio” I,/ L.

From the data of Table 11, the polarization of
radiation emitted in the direction § =90° has been
calculated for a number of values of »/v, and
V/Z* These calculations are presented in the
curves of Fig. 9. The similarity of these curves
shows that in the present theory, polarization is
more a matter of position in the spectrum than of
atomic number or bombardment energy. Only in
the vicinity of the short wave limit does Pyo° re-
spond markedly to variations of V/Z% This
response is in the sense that high V/Z? is associ-
ated with high (though in no case complete)
polarization. '

Near the low frequency end of the spectrum,
radiation is produced at slight cost to the energy
store of the bombardment electron. Close en-
counters are not required for such emission, and
the predominant force component acting upon
the electron lies in the yz-plane rather than the
x-axis. The classical consequence, negative polar-
ization, is supported by the curves of Fig. 9.

The curves of Fig. 9 present a somewhat
tangled appearance, but they are in fact related
in an entirely systematic manner, as a replot of
the same data in Fig. 10 shows. The latter figure
also emphasizes the relative insensitivity of
polarization to V/Z? except in the region of low
values of this quotient.

To show the theoretical variation of polariza-
tion with direction of emission, Fig. 11 is
presented. Each curve here is a graph of Pyvs. 0
for the particular value of »/v, appended to the
curve and for the value V/Z%2=1.776 common to
all five curves. Polarization of the forward
directed radiation is always zero; as 6 increases,
the polarization may increase or decrease, de-
pending upon v/v,. Evidently for a given V/Z?
there is a value of »/v, for which the emitted
radiation is substantially unpolarized for all
directions of emission. The maximum (or mini-
mum) of polarization at § =90° is very flat in all
cases, and observers in this angular region need
have little concern about the precision of their 8
measurements.

Alternative Methods of Calculation

Sauter’s treatment of the problem made use of
the first Born approximations. This method is
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F1aG. 10. Polarization of radiations emitted in a direction at 90° to the direction of bombardment. Numbers
on the curves are v/v,.

notappropriate unless Ze?/hvy, :<<1, so the method
is suited only to cases in which the bombardment
electron moves with high speed both before and
after collision. But such cases should properly be
treated relativistically and with consideration of
retardation of potential.

Sommerfeld and Maue made an important con-
tribution to the solution of the difficult problem
of integrating the absolute squares of the matrix
elements over all directions of electron departure
when they showed that the integration necessary
to the determination of the total radiation in all
directions could be carried out exactly. The
integral contains a hypergeometric function which
they evaluated by an approximation which has
the effect of giving spectral intensity wvalues
which are somewhat too low, as Elwert later
showed. Elwert's own method undoubtedly
gives a better approximation, but it is not
applicable at the short wave limit since it is re-
stricted by the condition (Ze?/hvy) — (Ze? /hvy) K1,
[(|ns] = |n1|)<1 in Elwert’s notation] while at

the long wave limit, it predicts infinite intensities
exactly as does the Sauter treatment.

Upon finding that the total spectral energy
given by his own development exceeded that of
Sommerfeld and Maue by a factor

(sinh|n1[7r>2

| Ny I ™

at the long wave limit and by almost the same
factor at the other extreme, Elwert conjectured
that the same factor might rectify the low in-
tensity values of Sommerfeld and Maue in all
cases. This supposition was strengthened by his
investigation of its effect upon a single com-
ponent of the matrix elements.

We have tested this supposition by comparing
certain of our own calculations (in all of which
the hypergeometric function in question has been
evaluated without error in excess of one percent)

with corresponding intensities derived from the
Sommerfeld-Maue approximation rectified by
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F16G. 11. Polarization vs. 6 for V/Z2=1.776 and for the values of /v, shown on the curves. Since in the
theory here considered Py is a function of sin 8, the curves for the next quadrant will be symmetrical

continuations of those shown here.

Elwert’s correction factor. Elwert’s!? statement
of the Sommerfeld result is equivalent to

41rn1
Ny?=——{|m2+ns|log (1— ) —4|mmal
£’na
87rn1
Ny2=——{ |m?—n:?|log (1— ko) —4|num|}.

Eony

The subscript s stands for Sommerfeld. Calcu-
lation of I, I,, by these equations and the
Elwert correction factor is exceedingly simple.
Figure 12 shows that the resulting values are in
good agreement with corresponding values from
our Table II for the small values of |[ny| —|n4]
involved in these cases. In Fig. 13 a similar
comparison is made for larger values of |ni]
— |na|, and the agreement is much less good.
Elwert’s proposal for rectifying spectral intensi-

2G, Elwert, reference 3, Eqs. (34) and (33).

ties obtained under the Sommerfeld approxima-
tions is quite effective when his restricting
assumption is satisfied.

Efficiency of Continuous X-Ray Production

From the radiation components of Table II,
the efficiencies of continuous x-ray production in
thin and thick targets may be computed. By
thin target efficiency we mean the ratio of
emitted x-ray energy (including all continuous
spectrum frequencies and all directions of emis-
sion) to the total energy loss suffered by bom-
bardment electrons in passing through a sample
of matter so thin that only a small fraction of the
electron energy is dissipated. This efficiency is
not simply a function of V/Z2 but of Z and V
(or B) separately. The method of calculation in a
given case is to select from Table I1 values of W
pertaining to a common V/Z? but to different
values of »/», and to perform a numerical or
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F16. 12. Radiation components for the case V/Z2=1.776. Solid curves from Table II. Broken
curves by Elwert’s method. Good agreement is found when |ns| — |#1|<K1>3>|n1|. For these curves

0.00829 < |na| — |n1] <0.167, and |n,| =0.160.

graphical integration yielding the total continu-
ous x-ray energy per electron per atom-per-cm?
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Fi16. 13. Radiation components for the case V/Z?=0.0604.
Solid curves from Table II. Broken curves by Elwert’s
method, an approximation permissible only when |7,|<<1 or
|722] — | 71| <<1.For these curves 0.112 < | 2| — |1 <0.543,
and |7 =0.867.

in all frequencies from zero to the quantum limit.
It then remains to divide this result by the total
energy lost per electron per atom-per-cm? a
quantity depending upon 8 and Z.

In seeking the most probable values of this
quantity, it scems best to adopt a combination of
theoretical and experimental results. Williams®
has shown that the observations of White!* and
Millington upon the stopping of fast B-particles
by mica agree with the classical theory of Bohr!s
with respect to the functional variation of stop-
ping power with 8, though not as to the absolute
values of stopping power. Williams recommends a
practical formula consonant with these facts
which may be put in the form :'¢

B E, J. Williams, Proc. Roy. Soc. A130, 310 (1931).

4 P, White and G. Millington, Proc. pr. Soc. A120, 701
(152 ?\1) Bohr, Phil. Mag. 25, 10 (1913).

16 An error in the statement of the energy-loss formula in
Williams' Eq. (18) has been corrected above. We have also
incorporated a suggestion of D. L. Webster that the right-

hand side of Williams' formula be multiplied by 2Z/4
where 4 is the atomic weight;
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F16. 14. Rates of loss of kinetic energy of electrons of
speed g in the four substances indicated by atomic num-
bers near the curves. Ordinates are in ergs per atom-per-
cm?X 10?7 of stopping material. These curves are adapted
from E. J. Williams’ discussion of the theory of Bohr.

Energy loss in ergs per electron per atom-per-cm?
=5.62Z5"14X1073°.  (10)

This formula takes no account of the losses by
those few collisions in which an electron loses
more than 1500 kev; its applicability above
B=0.52 has not been demonstrated nor has it
been tested with elements of high Z. Nevertheless,
we adopt it for all speeds above 8 =0.5 and for all
clements here considered.

For low values of 8 (up to 8=0.30) we draw
upon Williams again. By cloud chamber observa-
tions of x-ray photoelectrons in oxygen, hydro-
gen, and argon, he established that in this energy
region the Bohr theory predicts rates of energy
loss about 60 percent too high, but correct in
respect to their functional dependence upon Z
and 8. Assuming that the same ratio holds for all
elements we multiply Bohr’s expression by 0.6
and obtain:

KIRKPATRICK AND L. WIEDMANN

Energy loss in ergs per electron per atom-per-cm?
=4.07PZB2X107%, (11)

In this equation, P is a dimensionless function of
Z and V involving the geometric mean of the
natural frequencies of all electrons in the atom
of the stopping material. P was calculated for
Z=13,47,70, and 92 by use of frequencies from
the x-ray »/R term values found in Siegbahn's
Spektroskopie der Rontgenstrahlen (1931). Results
of these calculations appear in Table IV.

To obtain electron energy losses in the region
of energies intermediate between 20 and 80 kev,
we have simply filled in by graphical interpolation
in the manner illustrated by Fig. 14. It is
gratifying that the calculations in the separated
ranges admit of a smooth connecting curve seg-
ment for each of the four elements used in these
efficiency calculations. We do not take this to
mean that these curves are entirely correct; they
may be wrong by many percent, but they would
seem to be as good approximations as the litera-
ture of the subject affords at this date. Our
efficiency conclusions will be subject to immedi-
ate amendment upon the appearance of more
reliable energy-loss information. Figure 14, show-
ing the energy-loss rates which we have adopted,
may be used as a basis for any such adjustment.

TasrLe IV. Electron-loss rates from Eq. (11).

Loss
Kilo- rate
Z B volts P X102
13 0.10 2.57 7.47 39.5
13 0.15 5.84 8.38 19.7
13 0.20. 10.53 9.97 13.2
13 0.25 16.75 10.77 9.12
13 0.30 24.66 11.43 6.72
47 0.10 2.57 5.66 108.2
47 0.15 5.84 7.12 61.0
47 0.20 10.53 8.15 39.0
47 0.25 16.75 8.96 274
47 0.30 24.66 9.61 20.4
70 0.10 2.57 5.46 155.5
70 0.15 5.84 6.92 87.6
70 0.20 10.53 7.95 56.7
70 0.25 16.75 8.76 39.9
70 0.30 24.66 9.41 29.8
92 0.10 2.57 4.91 183.8
92 0.15 5.84 6.42 106.8
92 0.20 10.53 7.40 69.3
92 0.25 16.75 8.21 49.2
92 0.30 24.66 8.86 36.9
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Fi6. 15. Efficiency of production of continuous x-rays by thick targets of atomic numbers shown
beside the curves when bombarded by electrons at the stated kv values. Curves are based on
electron energy-loss rates of Fig. 14 and theoretical continuous spectrum energies derived from
Table 11. Approximate proportionality of efficiency to bombardment energy is shown.

T'he thin target efficiencies are given in Table V
along with thick-target efficiencies now to be
explained.

If E represents the varying kinetic energy of a
typical electron slowing down from E, to zero in
a thick target, then R, the output of x-ray energy,
is given by

Eo
f (dR/AE)dE,
0

TasLi V. Calculated efficiencies of continuous x-ray
production in thin and thick targets of atomic number Z.
For thin targets kev denotes the energy of bombardment
at the point of production. For thick targets it denotes the
cnergy at incidence upon the target.

kev Z=13 Z =47 Z=10 Z =92

15 53 230

25 79 34.0 50.0 69.0{thin target effi-
40 130  53.0 80.0 110.0{ cienciesX 10
90 27.0 1100 1600  210.0

16.? 34 140 8

24. 44 180 280  37.0|,.. o
46.5 7.6 320 480  64.0 b‘"“i“n target lt)ﬂﬁ‘
79.0 13.0 51.0 79.0 100.0| cences

90.0 150 580 880 110.0

where the derivative in parentheses is just the
thin target efficiency. It is convenient to perform
the graphical integration with respect to 8, in
which case we have

R= f (AR /AE)(dE /d8)dB.
0

The second of the derivatives in the integrand is
obtained by differentiating the relativistic ex-
pression for electron kinetic energy in terms of 8.
The integration has been carried out for twenty
representative cases, and the over-all thick target
efficiencies of continuous x-ray production have
been obtained by dividing R by the initial
electron energy. These efficiencies are shown in
Table V, and Figs. 15 and 16.

From direct measurement of the x-ray and
cathode ray energies Beatty!” found thick target
efficiencies to be proportional to the product of
target atomic number and bombardment voltage.
The many efficiency measurements made subse-
quently to Beatty's time were summarized by

17 R, T. Beatty, Proc. Roy. Soc. 89, 314 (1913).



338 P. KIRKPATRICK AND L. WIEDMANN
12 T T T T T T T T T
90
of- (= 1% effic.) 7 -
”
s} O -
x
> 46.%
6 O -
c
9
3]
s
o 24,7'1
2+ .
o I | 1 1 Z ! ] ! ] ]
70 30 50 70 )

F1G. 16. Efficiency of production of continuous x-rays by thick targets of atomic numbers shown by the
ordinate scale when bombarded by electrons at the kv values stated at the ends of the curves. Curves are
based on electron energy-loss rates of Fig. 14 and theoretical continuous spectrum energies derived from
Table II. Approximate proportionality of efficiency to atomic number is shown.
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F16. 17. Calculated efficiency of production of continuous
x-rays in thin targets (upper curve) and thick targets
(middle curve) of atomic number Z bombarded by electrons
accelerated by potential kv. Approximate linearity of thick
target curve supports Beatty’s rule. Failure of points to lie
precisely on the curves shows that efficiencies as here
calculated are not strictly functions of the product Z kv.
The lower curve is a consensus of the experimental results
of several investigators of thick-target efficiency.

Compton and Allison'® in the equation Efhciency
=1.1X107%Z kv, a summary which these authors
regarded as ‘‘probably correct within about 20
percent.”

Figure 17 shows that the efficiencies of Table V1?
agree approximately with Beatty’s rule and that
they lie about 20 percent above the values of the
consensus of Compton and Allison.

For any product Z kv the calculated thin
target efficiency is about twice as great as the
thick target efficiency. The thin target points in
Fig. 17 are tolerably represented by the straight
line

Thin target efficiency =2.8 X107¢Z kv.

Calculated efficiencies for both thin and thick

18 A, H. Compton and S. K. Allison, X-Rays in Theory and
Experiment (D. Van Nostrand Company, Inc., New York,
1935), p. 90.

19 The efficiencies of Table V lie somewhat below the
values given earlier by one of the present authors (P.
Kirkpatrick, Phys. Rev. 66, 156 and 161 (1944)). The
original calculations were based upon the energy-loss rates
of Eq. (10) for low voltages as well as high. The values of
W at »=0 in the previous work were obtained by graphical
extrapolation instead of direct calculation. Changing the
method of calculation in these two respects produced
efficiencies more precisely proportional to Z and kv and, on
the whole, lower,
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targets tend to fall below linearity at high values Dr. Robert Weinstock assisted the authors
of Z kv, but the reliability of the calculations is  through numerous discussions in the carly stages
in question here since the potentials involved are  of the work, when his interpretation of his own
outside the proper range of non-relativistic papers contributed most helpfully to the de-
theory. velopment of the computational procedure.
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In the present paper a systematic investigation is made on the relativistic corrections of the
usual non-relativistic meson theories of nuclear force by expansion with respect to the dimen-
sionless operator V/M. The mixed theory initiated by Mgller and Rosenfeld is considered
since it is the only satisfactory theory in the non-relativistic region. It is found that the inad-
missible singularity which has been removed in the mixed theory in the non-relativistic region
reappears in the higher approximations. This means that the extension of the mixed theory
to the relativistic region as done by Mgller and Rosenfeld in explaining the quadrupole moment
is not justified.

I. INTRODUCTION

HE well known fact that the deuteron nucleus possesses an electric quadrupole moment is an
indication of the existence of the tensor force in the nuclear interaction. The expression for
this force derived from a single type of meson field, however, contains the inadmissible singularity
of the type 1/7%, which has to be cut off at an arbitrary radius. It has been shown by Mgller and
Rosenfeld! that if the nuclear interaction is assumed as due to a mixed field of pseudoscalar and
vector mesons of the same mass and suitably chosen coupling constants, then the tensor force
disappears with its inadmissible singularity in the non-relativistic region. This provides a solution
of the wave equation without resorting to the cut-off procedure. According to this theory, the quad-
rupole moment can only be a relativistic effect owing to the vanishing of the tensor force in the
non-relativistic region. Mgller and Rosenfeld have actually derived an expression for the quadrupole
moment by considering the relativistic interaction of the first order. Schwinger? later suggested that
if the mass of the vector meson is assumed to be larger than that of the pseudoscalar meson, then
the tensor force reappears with an admissible singularity of the type 1/7. This assumption is also
in agreement with the hypothesis that the vector meson is highly unstable and responsible for the
B-disintegration of the nucleus.

Recently Jauch and the present author? calculated numerically the quadrupole moment according
to Schwinger’s assumption, and found that the result is much smaller than the experimental value
even for a very large mass ratio for these two types of mesons. This conclusion is quite independent
of the coupling constants obtained from the scattering problems. Parallel to this calculation, Hulthén*
also evaluated the quadrupole moment using the formula obtained by Mgller and Rosenfeld. The

L C. Mgller and L. Rosenfeld, Kgl. Danske Vid. Sels. Math.-Fys. Medd 17 (1940).
2 J. Schwinger, Phys. Rev. 61, 287A (1942).

3 J. M. Jauch and N. Hu, Phys. Rev. 65, 289 (1944).

4 I.. Hulthén, Arkiv for Mat. Astr. Och. Fys. 29A, No. 33 (1943).



