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The importance of a well-known theorem, originally due to Larmor, is emphasized. It
enables a definition of “‘momentum’’ and ‘““moment of momentum”’ for electrons in a magnetic
field, hence the possibility of writing the conservation of these quantities when the geometry
of the structure is convenient. As typical examples of the method, two special cases are dis-
cussed: a plane electron beam and a cylindrical electron beam with longitudinal magnetic field.
In both cases it is found that the space-charge density of the beam is entirely controlled by
the magnetic field and that the maximum current is obtained for a suitable optimum magnetic

field.

I. A GENERAL THEOREM ABOUT
ELECTRONIC MOTIONS

HERE is a very important result about the

mechanics of electrons, so important it
may be granted the name of ‘‘theorem’ and
should be called after Larmor. The famous
English physicist always attempted to reduce
problems of electrons to the standard pattern of
classical mechanics, with its famous canonical
equations: principle of least action, Lagrange and
Hamilton formulas. The difficulty was the
“Lorentz force” of a magnetic field on a moving
electron, a formula which does not seem to offer
any similarity with any mechanical problem.
Larmor first discovered the similarity with
problems of rotating bodies and stressed the
significance of the angular velocity
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where po is the permeability, e is the charge of
the electron, m is the mass, and X is the magnetic
field. He also felt that this was not a special case,
but only one instance of a more general law.!
This took shape progressively, through con-
tributions of H. A. Lorentz, and Schwarzschild,
and is now found in every textbook on electro-
magnetism or quantum-theory. This theorem is
also essential in the derivation of Dirac’s
equation for the spinning electron.

Let us sum up the results, and refer to text-
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1J. Larmor, Aether and Matter (Cambridge University
Press, Cambridge, England, 1900), Ch. VI.

books for more details:? we shall use m.k.s. unit
and the standard notations of J. A. Stratton.?

Let ¢4 14,4 ; be the components of the scalar
and vector potentials in a system of rectangular
coordinates xyxx3. The E and H components of
the electric and magnetic field are (Stratton,
p- 24)

Ek= —aqs/&xk—aAk/at,
uol=rot A4,

k=1-2-3
p0Hs=8A2/6x1—6A1/6x2.

(2)

We want to study the motion of an electron ac-
cording to the well-known formula

mdy= eEk+8/J,o[:7} Xf]],

where the second term is the Lorentz force.

These laws of motion can be reduced to the
standard Lagrange scheme if one uses as Lagrange
Sfunction

(3)

L(Ci)lfifgi':;, X1X9X 3, t) Z% mVZ—ed)‘f‘e(Z"A),
(v-A) =d1414 B4 24334 5.

The proof is straight forward. First, we define
the momentum of the electron by the standard
Lagrange relation:

(4)

pk=6L/<9:i?k=M$k+€Aky (5)

and we emphasize the importance of this
definition with its additional term containing the
vector potential. Next, we write Lagrange’s

2 J. H. Van Vleck, Theory of Electric and Magnetic Sus-
ceptibilities (Clarendon Press, England, 1932), p. 19; L.
Brillouin, Atome de Bohr (Presses Universitaires, Paris,
1931),Xp. 98-100 and 107-112.

3 J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941).
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equation of motion:

dp oL E
—_— p’k = —
dt axkv axk
94, 04, 04,
+e(3‘31 + 2o +23 ) (6)
X Oxx dxy

The important point is that d/df means a
derivative taken along the trajectory of the
electron
d 9 d d J
—=—+&—+br—+Ts—.

(7
dt ot 6x1 6x2 Bxs

Hence, the translation of Eq. (6)

04 94 04, 04,
mfﬁk+e"a—+e(ii51 + 24 + 5 )
t

0x1 0xy 9x3

a¢u OAI aAl&
=—e——+e(:tr—-+xe ————— +ady—— ) (8)

ax; Xy axy, ax;.

Taking £=1, we note that the first terms in each
bracket cancel each other, and we are left with

04, d¢ 04, 094,
mi, = —e—~—e————+ea’:2[—— ]
dty 0x1 0x1 0x,
04; 04,
] —-—]
6x1 6x3
or, according to Eq. (2)
m:ﬁ1=6E1+u08x'2H3—-;l.o€j)3f12, (9)

which is exactly Eq. (3).
The Lagrange function appears in the prin-
ciple of least action

f&Ldt=0

as usual and can be used to build up the Hamilton
function

(10)

F(prpapsxixanst) = Zrprir— L, (11)
or, according to Egs. (4) and (5),

=2 (mai®+eirdr) — ImZ i1t +ep — eZpirdr, 12)
=1 mvi+ed.

The terms in A cancel out, and in case of con-
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servative systems (electric potential & inde-
pendent of time), the Hamilton function repre-
sents the total enérgy as usual. The fact that it
does not contain the vector potential any more
corresponds to the result that Lorentz forces do
not do any work. If Hamilton’s function 3 is to
be used in Hamilton’s equations, it must be
expressed as a function of the momenta p.

1
Je=—Zi(pr—eAr)?+ee. (13)
2m
Hence the equation of motion
e 1
Tp=——=—(pr—e4x), (14a)
apk m

Equation (14a) is just the reverse of Eq. (5),
and Eq. (14b) is identical with Eq. (6).

The same general scheme can be extended to
relativistic mechanics for very fast electrons
(L. B., Atome de Bohr, p. 107). It represents the
safest way to attack problems of electron tra-
jectories.

II. SOME EXAMPLES OF VECTOR
POTENTIALS

In order to show how to use these general rela-
tions, we shall build the expressions for the
vector potential corresponding to some examples
of special importance.

A. Plane Problem

Assuming all fields independent of the coor-
dinate x1, we can use the following expression

A1= —F(xa)xz, A2=0, A3=0, (15)
which results in
polH1=0, poHy= ——-x,, uoH3=F(x3)- (16)

X3

The H; component of the magnetic field is con-
stant in the x1x, planes, but may depend upon x;.
These definitions satisfy the fundamental rela-
tion:

div 4+ poeo(d¢/dt) =0 Lorentz, 17)

div H=0 (see Stratton, Eq. (12), p. 24).
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Fic. 1. Electrons are emitted from a filament along X\.
X and H; are perpendicular to the XX plane.

The Lorentz relation is obviously fulfilled when
the scalar potential ¢ does not contain the time.

B. Cylindrical Symmetry

We want a field H depending only upon the
distance 7 to the x; axis. Furthermore, the mag-
netic field lies along the axis (as is the case for
the field of a coil centered on the x; axis, for
instance).

Here we choose

A1=—%F(x3)x2, A2=%F(x3)x1, Asz=0, (18)
hence
dF dF
#OI{1= —%_—xly /-LOH?: _'%_—x%
X3 X3
(19)

uoH 3= F(x3).

If the H; field is not constant, there is a radial
component of the field,

dF
poHl, = —3—.

20
o (20)

The relations (17) are again automatically ful-
filled.

III. CONSERVATION PRINCIPLES IN
ELECTRON MECHANICS

The general theorem discussed in Section I
leads directly to some important conservation
principles:

Conservation of Energy
3 mv?+4ep=Const (=0),

(21)

when & does not depend upon time. The sum of
‘kinetic and potential energy remains constant.
In case of electrons emitted without velocity by
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a cathode at potential zero, the constant is zero.
This first result is well known.

Conservation of Momentum

In addition to this, we may have conservation
of some components of momentum or of the
moment of momentum. This will depend upon
the symmetry of the structure. These additional
conditions are very important to keep in mind
and were too often overlooked by many authors,
who proposed solutions which obviously did not
satisfy these relations.

A. Plane Problem

Electrons are emitted by a filament located
along the x; axis (x;=x3=0) and the magnetic
field on this cathode is H;, (Fig. 1). Electrons
move between two plane electrodes, located at

Xo= +b.

In Fig. 1, the cathode is supposed to be behind
the plane of the drawing, and we are looking at
a cross section of the electron beam between the
+b electrode at potential ¢(b). These electrodes
are supposed to extend both ways to infinity.
In such a structure, there is no electric force
acting on the electron in the x; direction, hence

pi1=const., (22)

a condition which means conservation of the
No. 1 component of the momentum, as, defined
in Eq. (5). Now, on the cathode

pro=mirgted1o=0—euoHspxa=0, (23)

since the initial velocity is zero, and the vector
potential is given by Eq. (15). After the electrons
travelled a distance x3, we must still find p;=0,
but it now means

pr=mi1—euHzxs=0,
hence

Z1=(e/m)poH 3(x3)X2s = — 2wpyxs, (24)

where wg is defined by Egs. (1) as Larmor’s
angular velocity corresponding to Hj(x3).

We obtained the relation Eq. (24) from our
general theorem, but it can also be proved
directly. The equation of motion in the x;
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direction according to Eq. (9) and Eq. (16) is
miy = epo(EaH s — &3H,)

dH;
= euo[:i:zH:H-xz—'-‘i?a], (25)
X .
but '
.iadH3/dx3=dH3/dt,

where the d/dt derivative is taken along the
electron’s trajectory. Hence

x1=(e/m)po(d/dt) (x2H5),

which results in Eq. (24).

" The same results are obtained for a cathode of
any arbitrary shape located in a region where
the magnetic field Hs, vanishes, since these con-
ditions make again p1, zero in Eq. (23).

(26)

B. Cylindrical Problem

Electrons are emitted by a point cathode at
x1=x=x3=0 where the magnetic field is Ha3,.
If the magnetic field H3, is constant (zero for
instance) in the region. of the cathode, the
cathode may be a filament of finite length ex-
tending along the x; axis. These electrons move
afterwards inside a cylindrical anode of radius b,
centered on the x; axis (Fig. 2).

Here the symmetry calls for the conservation
of the moment of momentum about the x; axis,
and the constant value of the moment of mo-
mentum is zero, according to the conditions of
emission by the cathode:

pax1—prxe=0, 27

hence
m($2x1—£i11x2) +8(A 2X1 "'A 1x2) = 0,

Xs

NP

Fi1G. 2. Arrangement of a cathode along the X;axis. X;and
H; are perpendicular to the XX plane.
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Fi1G. 3. Current versus magnetic field.

where the vector potential is given by Eq. (18):

Doy — Brxe = — 5 (e/m) ueH 3(x3) (x2+x22), (28)
or in cylindrical coordinates 7, 8, x3
r=wyr?, 6=wm. (29)

We can generalize this result if we assume the
cathode to be a circular ring of radius a (or a
circular cylinder of radius e extending about x;
axis in a region of constant magnetic field H3,).

In this case, the constant moment of mo-
mentum is not zero but

{)zx1—P1x2=m(.’i)Z()xlo—:iflono)

e
+e(A2px10— A19x20) = 0+2—-uoH30(x1 o2 +x20%)
m

e
=—uoH300?= —wna?, (30)

2m

since our electrons are emitted on a radius a
without velocity. The relation (29) is now
replaced by

6=wy—wHe(a?/r?). (31)

In a cylindrical magnetron, the cathode is in the
same constant magnetic field as the anode, and

we obtain '
b=wn[1—(a?/r)],

a relation which can be proved directly* as in the
preceding case. These last formulas (31) and (32)
yield infinite angular evlocity on' the axis, which
means that conditions near the axis should be
discussed carefully if the structure does not
prevent electrons from reaching that region.

(32)

IV. PLANE ELECTRON BEAM IN STEADY
MOTION

Let us consider the problem A of the preceding
section and look for the conditions corresponding

4 L. Brillouin, Phys. Rev. 60, 385 (1941), Eq. (1), (2),
(3), (15).
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to a steady motion of the beam along the x; axis.
We assume that no current flows to the plane
electrodes x,=+b and we use Eq. (24). The i3
component may still depend upon xs:

Ii)1=—2wyx2, 11.22"-—'0, 3'23=f(x2), (33)

hence, by Eq. (21)
2e
——¢ =&+ &+ i =dwrxl 2. (34)
m

In order to keep & zero, we must insure a com-
pensation between electric and Lorentz forces in
the x, direction.

d¢
0=— e“—+eu0[7)><H]2 = 4mwg2x2
X2
af af
+mf—— - 6#0:1.?1}13 = mf———
dxz dx2

The field H is given by Eq. (16), wg was

defined in Eq. (1), and #; results from Eq. (33).
The term compensation proves that

(35)

Es= f(x) =03, a constant.

Hence the whole beam is moving with a constant
velocity v3 along the x; axis, and the potential
distribution (34) is simply

"
(f)= -—(2w32x22+%‘1132). (36)
e
This yields a constant space charge density
0% /dxs=—p/er, p=4ewn*(m/fe), (37)

and the current I per unit length in the x,
direction is

I= 25p$3=8b(m/8)60w112j)3. (38)

What is physically measured is this current [
and the voltage ¢(b) of the plates. Let us rewrite
it this way:

U=—- (28/m)¢(b) = awH2+:i;32y a=452’

_ (39)
J=(2e/me))[=(1/B)wn’ts, B=1/16b.

We introduce the «, 8 coefficients in order to
enable us to use the following discussion in
other examples, (cylindrical structures) where
similar relations will be found.

L. BRILLOUIN

The problem to be discussed is about the
maximum possible current in the beam when the
voltage ¢ is given. Eliminating @3, we have

U: awH2+(ﬁZ/wH4)J2, ,82.]2—_'— UO)H4_a(A)H6, (40)

where wg measures the magnetic field intensity
and of are geometrical factors. If we vary the
magnetic field, we obtain

wll:Oy P=O

(41)
j;3=0,

Zero current J=0 for
WH = Wey

where the critical magnetic field H, corresponds to
U=oaw’. (42)

The maximum current is found for a certain
optimum magnetic field (see Fig. 3).

0]/640;1 = 0, Hopt = (%) ‘}Hcricicaly

Wopt = (%) Yoo,

(43)

awopt2=%Uy Jnax = (% U) i»

afV2

€ /—¢€ 3
I;m=——(—~) 201,
aB\ m

The point is that this maximum current can be
obtained only for a certain definite value of the
magnetic field. It is proportional to the power
3/2 of the voltage, as in Langmuir’s formula.

or

V. STEADY CYLINDRICAL BEAMS

We will find similar results for the cylindrical
structure discussed in section III-B, where we
found [Eq. (21), (29)]

2e - .

U= ——p=i4r0"+vs’ =rwp’+vs, (44)

m
since Eq. (29) gave § =wy and 7 must be zero in
a steady beam with no radial motion. The
longitudinal velocity »s might depend upon »
and be different on successive cylindrical layers.
A reasoning, very similar to the one used in the
plane problem Eq. (33) and (35), will prove that
vz must be a constant.

The radial electric field E, and the Lorentz
force must compensate the centrifugal force in
order to give no radial acceleration and to
maintain # zero. This means

eE,+ ueHr+mré*=0, (45)
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but )
0=wn=—3ui(e/m)H,

and

E,=—09¢/dr=(m/2e)(dU/0r)

=m/e[ron+v3(dvs/dr)].

Term compensation proves that dvs/dr must be
zero which makes v; a constant.
We may now use Poisson’s relation

(1/r)(8/0r)(rE.) = p/es=2(m /e)wx?

and we obtain a constant space-charge density
p equal to one-half the space-charge density in
the plane problem. Let us call ¢(b) the voltage
of the anode;

(46)

(47)

= —(2¢/m) p(b) =awn®+vs?, a=0%. (48)
The total current I is
I= 1rb2p‘113 = ZWGQbZ(m/C)wHZ'Us, ) (49)
J=2¢/me))]=(1/8)wnvs, B=1/4nb"

Hence, the problem is reduced to the same
scheme as in the preceding section [Eq. (39)]
only with different values for the geometrical
coefficients «, 8. The results are again given by
Eq. (43) and Fig. 3.

This applies for a beam filling completely the
pipe of radius b.

We may also discuss the case of a beam of
radius b surrounded by a larger pipe of radius
R>0b.

The equations inside the beam are the same
as before, and outside the beam a logarithmic
potential is obtained. This term must insure
potential and field continuity on the beam’s
surface »=>0; hence

U= —(2e/m) o= wu?b?[1+2 log (v/b) J+wvs:. (50)

Equation (49) for the current J is unchanged,
and the coefficient « in Eq. (48) becomes

a=b1+2 log (R/b)].

This is the only modification in the result.

(51)

VI. ELECTRON BEAM WITH INITIAL
ROTATION

The electron beam may enter the magnetic
field with an initial rotation, or it may be
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generated inside the magnetic field from a
cylindrical cathode of radius a, as assumed in
Eq. (31) of Section III, B. In such cases, the
angular velocity will be given by

6=wy[14+(A4 /)],
Eq. (31) corresponding to the case
A =—a*(wn,/wn),

but 4 may eventually take positive values.
Rewriting Eq. (44) to Eq. (46) of preceding
section, we obtain

(52)

A2

U= 1'2(92—}—2132 =wH2(r2+2A +—2) +2]32,
' ¥

(83)

moU -m A? m 0vs
Er=————=—wy2(7’———)+—‘vr—,
2e Or e r’ e Or

but E, must satisfy a condition similar to Eq.
(45)

m . om _ om A2
E,=2wy——76——4'02=—wy2r(1—-———), (54)
e e e rt

which again results in the condition that 3 must

" be a constant and yields

p=2eo(m/e)or*[1+4(4%/r")], (55)
instead of Eq. (47).
U= —(2¢/m)¢p=wu’[r+(A/r) +vs>. (56)

The formulas become infinite at =0, hence
the experimental device should prevent electrons
from reaching the axis., This means that we shall
deal with a hollow cylindrical beam extending
from r=a to r=», instead of a solid cylindrical
beam (0<7<b), as in the preceding sections.
This beam can be obtained experimentally in a
coaxial cable with electrodes of radii R;<a and
R, 2 b. Eventually we may do without the central
electrode if the potential be constant and the
electric field zero inside the beam (r <a).

In order to simplify the formulas, we shall
assume that the radii of the electrodes are

Ri=a, R,=b. (57)

Otheérwise, we would obtain the same field and
space-charge distributions inside the beam
(a <7< b)tobe completed by convenient logarith-
mic potentials in D; log #+ D, in the charge free
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regions Ry <7< a or b <7 < R, The solution could
be worked out for such problems if needed.

Using formula (56) we obtain the potentials on
radius ¢ and radius b

U(e) =wn’la+(4/a) F+vs,

(58)
U(b) =wu[b+(4/b) *+vs,
and the current
b M€y b A2
I= vaf p2nrdr= 41r—wH2v3f ( 1+-—) rdr
a € a 74
= (2rmeo/e)wnvs|r2— (A2/r)) b, (59)
hence
J=(2e/meo) I
=4rwys[ b — (42/b%) —a’+ (4A2/a?)]. (60)
The field on the inner cylinder is
(m/26)(3U/01)r—0= (m/e)wr*[a—(4*/a®)]. (61)

Let us first assume a hollow electron beam with
no central electrode. This is obtained by taking
a zero field on a radius a¢. Hence,

A=+a? (62)
and consequently,

U(b) = wx*[b+(a?/b) *+vs,

(63)
J=4nwyvs[b— (a*/b?)]. '

The relations are reduced to the standard type
(39), (40) if we take

a=[bx(a*/b) P, B=[b"—(a*"/b?)](1/4m), (64)

which solves the problem. It should be noted
here that the + sign introduces a new feature
in the solution, namely, the respective orienta-
tion of the initial rotation in the beam and of the
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Larmor rotation. The case of the magnetron
corresponds to the minus sign.

To discuss the problem of an electron beam
with initial rotation (4 0) filling the free space
in a coaxial cable, we assume that both electrodes
are at the same potential.

U(@)=U(b), A=+ab. (65)
Hence,
U=wy*(atbd)2+uvs,
and
J=47rwy;2(b*—a?), (66)
which reduces to the stahdard type with
a=(a=+b)?, B=1/8n(b?—a?). (67)

The corresponding space-charge p and angular
velocity 6§ are given by Eq. (52) and Eq. (55).
In the case of the minus sign

A=—ab, 6=wg[1—(ab/r)],

one must notice that the angular velocity is
positive on the outside of the beam and negative
on the inside with a non-rotating layer at
r=(ab)k

The general conclusion is that, in such prob-
lems, Larmor’s theorem introduces an additional
condition of conservation for either the mo-
mentum or the moment of momentum, which
has been too often overlooked. If taken into
account Larmor’s theorem shows that the
space-charge density is entirely conditioned and
controlled by the magnetic field being propor-
tional to H? [Egs. (37) and (45)]. One should,
therefore, be very cautious not to introduce into
a discussion separate assumptions about space-
charge and magnetic field. It is specially advised
never to speak of the behavior of a device under
an infinite or arbitrary large magnetic field since
this would also mean infinite space-charge
density which is a very troublesome factor.

(68)



