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A. =O, we find Eq. (44) yie1ds

8x) =3k',
so that

8~T44 =8~T1' ——3&' (46)

CONCLUSIO N

On the basis of the field equation and the
proposed supplement, it was found possible to
construct a universal model having a pseudo-

whence the proper density of energy and negative
pressure are connected in the same way as the
proper density of energy in the case 11'/T4'.

The algebraic consequences of the theory
could be carried out further.

stationary property capable of explaining the
red-shift as caused by velocity shifts. It is not
maintained, however, that the supplemental
equations are universal in scope although the
possibility for this may exist. Nevertheless, in
regards to the large scale behavior of matter, the
equations may be the correct ones to use inas-
much as most of the facts of observational.
cosmology are consistent with the deductions,
such as those which How from the structure of
the Robertson element itself, together with the
rather attractive feature of a constant proper-
density of energy and the aforementioned sta-
tionary character of the universe. Reality,
however, is not always very attractive.
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Paralleling a work of Fock we are able to eliminate the auxiliary conditions in our generalized
quantum electrodynamics. As in the work of Fock this leads to a determination of both the
electrostatic self-energy and electrostatic particle-particle interaction. Both turn out to be
finite and in agreement with results obtained classically.

1. INTRODUCTION

N an earlier paper we have developed the quantum-mechanical formalism of a generalized
electrodynamics. Here we shall derive further consequences, particularly those of the auxiliary

conditions derived earlier.
Consider the wave equation

where Hf is the Hamiltonian of the radiation field, II, the sum of the relativistic Hamiltonian of
charged particles and their field-particle interactions, and T is the common time

n n

II,=P(II,+ V,) = P Ice, p—,+c'm, o.,4+ e,[p(r„T)—e. .A(r„T)jI.
s=1 8=1

* Now at Michigan State College, East Lansing, Michigan.' The two previous papers, B. Bodolsky, Phys. Rev. 62, 68 (1942) and B. Podolsky and C. Kikuchi, 65, 228 (1944)
will be referred to as GE I and II, respectively.
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Rosenfeld2 has shown that, if the dynamical variables are transformed according to

F'=exp (iHfT/k)F exp ( iH—fT/k),

Eq. (1.1) can be written as

Q (H, + U, ') ikit—/itT 4'=0,
s= 1

(1.2)

where
@'=+'(r&, rp, r„;J; T) =exp (iHqT/k)%'.

Now Dirac' has shown that the conditions under which this equation can be replaced by the set

where

and

are

(R, ikit/t—lt, )+'(r~, rp, r„; t, t„ tp, t„;J) =0,

4'(r~, r„. r„;J; T) —= [+'(r~, r„; t, t„ t„;J)]~=i,= "=i„=r

R, =cn, p, +c'm, n, '+p, [p(r„ t, ) —n, A(r„ t,)],

(1.3)

(A)

and

for every pairi, j.
[R;, R;]=0,

2. ELIMINATION OF AUXILIARY CONDITIONS

The quantity J includes, if the field variables are expressed in the Fourier components, the
argument functions4

g(k), A ~*(k), A p*(k), A p*(k), and p(k), A &*(k), A p*(k), A. p*(k). (2 1)

Fock has shown that, in Maxwellian electrodynamics, the scalar and the longitudinal component
of the vector potential can be eliminated from the wave functional. It does not seem possible to
carry through the same elimination from the set (2.1), because the longitudinal component of the
extraordinary field does not vanish even in the absence of charged particles. Our problem, there-
fore, becomes that of finding "how much" of the longitudinal component can be eliminated.

Ke have found that if the operators

k ' A(k) gk A(k) —Bp(k)
Q(k) = —,Q(k) =——

k ck
(2.2)

are introduced, the calculation can be carried through in a manner very similar to Fock's. As in

GE I and GE II, k= ~k~ and k=(1+a'k')i/a. The operator Bp(k) is related to B(k), defined in

GE II, Eq. (5.2), through the following equation:

Bp(k) =iB(k).
It is to be noted that although Q(k) is the total longitudinal component of the ordinary vector
potential, the quantity k A(k)/k is not the total longitudinal part of A(k). Using the commutation
rules for A;(k), A;(k), and Bp(k), it is easy to show that

ck ck
[Q(k), Q*(k') ]=—8(k —k'), [Q(k), Q*(k') ]= ——f (k —k')

2k 2k
(2 3)

'L. Rosenfeld, Zeits. f. Physik 76, 729 (1932),' P. A. M. Dirac, Quantum Mechanics (Oxford University Press, 1935), p. 286.
This section closely parallels the work of V, Fock, Physik. Zeits. Sowjetunion 6, 449—460 (1934).Actually we ought

to distinguish the operators AI*(k), 32*(k), etc. from their argument functions AI(k), A(k), etc. , as was done by Fock,
but we prefer not to do this because the notation would become very cumbersome. The context will make it clear whether
we mean the operator or the corresponding argument function.
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Fock has further shown, for Maxwellian electrodynamics, how the field potential operators can
be represented by functional derivatives. For the appropriate representation of the extraordinary
field potentials, we note that, if ft is a functional of some functions, say b(k), the following general
relation will be satisfied:

80
—b(k) ft —b(k)— = b(k —k') Q.

bb(k') bb(k')

Comparing this with the commutation rules developed earlier, we see that it is possible to make
the following associations

ck
@*(k)~—

2k by(k)

ch
@*(k)~—=

2k by(k)

ck 8 ch
A i(k)~—— —,3i(k)—+ ——

2k bA i*(k) 2k bA. *(k)

Q(k)~
2k 6Q*(k)

ch
Q(k)~ —==

2k bQ*(k)

(2.4)

ck
Bo(k)~ —=

2k bBO*(k)

The auxiliary conditions, GE II, Eq. (5.8), can then be written in the form

ck 8C ck—4(k)+=0 == +4(k)g'=0,
2k bQ*(k) 2k 8Q*(k)

ck cIE—Q*(k)+=0, = —+Q*(k)% =0.
2k by(k) 2k hy(k)

The solution of these equations is

(2.5)

+=exp (Xo Xo) fto

where Qo is a functional not containing g(k), Q*(k), g(k), and Q*(k); and

(2.6)

2
xp ———

~' Q*(k)g(k)kdk, xp ———
~

Q*(k)j(k)kdk,
ck~ ck ~

(2.7)

where dk stands for dkgk„dk„ the volume element in k space.
If there are charged particles in the field, the modified auxiliary conditions must be used. If we put

f(r„ t,) =(2ir) Q e. expel, y, =ckt, —k r, ;
s=l

f(r„ t,) =(2ir) t g a, expiA, y, =ckt, kr„— —
s=l

(2.8)

For another representation, see C. Kikuchi, Thesis, University of Washington (1944).
The wave functional + used here is identical with + of Eq. (&.3).The prime has been omitted to simplify the notation.

Similarly it is understood that all field operators are those of Eq. (1.2).' Note that the f's defined here di8er by a factor from those given earlier in GE II, Eq. (6.3).
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Eqs. (6.4) GE II, become

1
Q(k) -4(k)+ f +=o,

2k'

1
Q(k) —4(k) —,f +=o

2k'

1 1
Q*(k) -y*(k) + f* e =0, Q*(k) -j*(k)— f* e = O.

2k' 2k'

The wave functional satisfying these equations can be written

+=exp (x—x)fl,

where 0 is again a functional independent of the functions occurring explicitly in Eq. (2.9);
2 f f* 1 t', f

I Q*(k)P(k)kdk+ —
I y(k) —dk —— Q*(k)—dk+x',

ca~ ck ~ k ck ~ k

I Q*(k)@(k)kdk ——
~

~ g(k)—dk+ — Q*(k)-'dk+x',
ck ck~ k ck~ k

(2 9)

(2.10)

(2.11)

and p' and p' being arbitrary, functions of the space-time coordinates of the particles.
As we wish to obtain a wave equation for 0 corresponding to Eq. (1.3) for 4' we must replace

each operator Ii by

exp ( x+x)F ex—p (x —x).

The quantities g(k), Q~(k), g(k), Q*(k), and Bo*(k) are invariant with respect to this transformation,
but:

1
exp (—x+x)Q(k) exp (x —x) =Q(k)+P(k) — f,

2k'

1
exp (—x+x)p*(k) exp (x —x) =&*(k)+Q*(k)+ f*,

2k'

1
exp (—x+x)Q(k) exp ('x —x) =Q(k)+g(k)+ f, —

2k'

1
«p (—x+x)4'(k) «p (x —x) =4*(k)+0*(k)— f*

2k'
and

1 1
exp (—x+x)BO(k) exp (x —x) =BD(k) ——„@(k) f-—„-

ak 2ak'
(2.13.)

To illustrate how these are calculated, consider the transform of Bo(k). From Eq. (2.4), if A is a
functional of Bo*(k),

/ck
exp (—x+x)BO(k) exp (x —x)A = —exp (—x+x)

~

—
~
(exp (x —x)&)

&2k 8BO*(k))

—ck 8A ck 5g ck
+— = Bo(k)+— A.

2k 580*(k) 2k 6Bo*(k) 2k 5BO*(k)
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Since from Eq. (2.11),

2j(k) f
880*(k) ack ackk'

Eq. (2.13) follows.
Next we shall show tha. t the vector potentials A(k) and A(k) transform as follows:

kf
exp (—x+x)A(k) exp (y —x) =A(k)+ —@(k)—

2k'

k k
exp (—x+x)A(k) exp (x—x) =A(k)+ —p(k) +—.

2k'

Since x and g contain only the longitudinal component of the vector potentials, we have

exp (—x+x)A(k) exp (x —y) =exp (—x+x)(Az(k)+Ac(k)) exp (x —x)

=Ar(k)+exp (—x+x)AI(k) exp (x —x),

(2.14)

(2.15)

where the subscripts L, and T indicate the longitudinal and transverse parts of A(k). From Eqs.
(2.2) and (2.11) we further obtain

k A(k)
exp ( x+x)—Ac(k) exp (x —x) =—exp (—x+x) k exp (x —x)k'

kk A(k) k k
+=0(k)+-f-

k' k 2k'

Substitution of this into Eq. (2.15) yields the desired result.

3. ELECTROSTATIC SELF-ENERGY

Let us transform back into coordinate space by means of the formula

F(r, t) =(2') '~ {F(k)exp (—iq)+F*(k) exp (iy)+F(k) exp ( iy)+F—~(k) exp (iq)}dk, (3.1)

where

y=ckt —k. r, y=ckt —k r.
We then obtain

pk
exp (—g+x) A(r„ t,) exp (x —x) =A(r„ t,) + (2s.)—

&~
—p(k) exp ( ip)d—k. ,

+(2s) &, ' —P(k) exp ( iq, )dk —~2(2s) ~ —' f exp (—ip, )—dk+~~(2s) &
~~

—f exp (—iq, )dk, (3.2)
~ k3

and

exp (—x+x)p(r„ t,) exp (x —x) =p(r„ t,)+(27r) &~~Q*(k) exp (iy, )dk (+2~) &jI Q*(k) exp (ij,)dk

t f* . , I' f*
+-,'(2s) —

&
~l

—exp (iq, )dk ', (2s) & ~—' —-exp (iy, )dk (3.3).
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Furthermore

and

l9

exp (—&t+x)p, '& exp (&t
—

&t) =p, ' —ik (x—
&t),

~Ãe

8
exp (—&c+x) (ikB/Bt, ) exp (x —

&t) =ikB/Bt, +ik—(x —&t).
~~e

(3.4)

We are now ready to derive the transformation properties of

and
P.'& =— ik—B/Bx, (c—,/c)A. (r„ t,)

T~'& =ikB/Bt, e,g—(r„ t.) (3 3)
occurring in Eq. (1.3).

For convenience, we shall introduce the quantities

and
D(k) = A(k) —kk A(k)/k'

D(k) =A(k) —kk. A(k)/k~+k23o(k)/ak' (3.6)

which satisfy the commutation rules

ck Ir kkq
Pr, (k), D,*(k')]=—

~

B„— ~B(k-k'),
2k& k2)

and
ck ) k,k;y

[D (k)»*(k')]=—-I B'&
— IB(k-k').

2k& k')
We also need the relations:

(3.7)

Bx ie, p k ie, fk,=—(2s) ' ' —P(k) exp ( iver, )dk+— (2&r) t—~'
—Q*(k) exp (ip, )dk+Bx'/Bx„

Bx, ck ck

Bx Z6s f ~x ie, pk,=—(2&r) &
I
—@(k) exp (—ij,)dk+ —(2~) & ' —Q*(k) exp (iq, )dk Bx'/Bx„—

Bx, ck " k ck

zes $&s= ——(2&r) t
I P(k) exp (—ip, )dk ——(2~) t I Q*(k) exp (ip, )dk+B&t'/Bt. ,

ck " ck

Z6s f Zfs——= ——(2&r) '
I P(k) exp ( —imp, )dk ——(2&r) t I Q*(k) exp (imp, )dk —Bx'/Bt,

Bt, ck & ck
(3.8)

Therefore, the transforms of Eq. (3.5) turn out to be

P "&—=exp (—X+X)P,"exp (x —x)

fs B e, t ky kf=p, &' D,(r„ t,) ik —(&t—' —x')—+—(2&r) t
~

exp ( i&p,) ———exp ( i p, ) dk —(3.9)



and similarly,

B. PODOLSKY AN D C. KI KUCH I

fO f4
T"&= tk—+N—(x' —x') ——(2s) &

I
—exp (t'p, ) ——exp (ij,) dk.

8$, 8$, 2 k' k'
(3.10)

In both Eqs. (3.9) and (3.10) the terms involving Q(k), Q(k), 4*(k), P*(k) drop out because their

argument functions have been eliminated from the wave functional; i.e. ,

Q(k)n=Q(k)n=y"(k)O= j*(k)0=0.

Since y' and g' are arbitrary functions of the space-time coordinates, they can be chosen in such

a way that their derivatives will just cancel the imaginary terms in Eqs. (3.9) and (3.10). The
suitable choices are

(3.11)

The real parts of these functions are:

P c„c„F(p„p„) —and Z ~ ~.~(~--v.)
4ck(2n. ) ' 4ck(2m)~ ~v, (3.12)

t cos {ck(t„t,) —k (r—„—r,)}
J (p.—p„)=)I — dk

k3

I cos {ck(t„—t.) —k (r„—r.)}
P(p„—p„)= I

— —— dk.
k'

(3.13)

Hence the operators P,'&') and T'(') become

&s { k k
P,'&'= p, '& ——D.(r„ t,)+ Q'e, ~' —cos (y„—(p,) ——cos (q„—q,) dk

2c(27r)' & k' k'

{. k, k,
+ —

I

———dk, (3.14)
2c(2s.) ' & k' k'

r cos (p —rp. ) cos (p —
&p.) e.' {' 1 1

&"'=~k—— Q' e„ iI~
— —dk — ———dk. (3.15)

Bt, 2(2s-)' " & k' k' 2(2x)' & k' k'

The primes over the sigmas indicate that the terms N =s are to be omitted in the summation. The
last integral in Eq. (3.14) vanishes because the integrand is odd; the analogous term in Eq. (3.15)
gives

1 6.2

4x 2a

which can be interpreted as the electrostatic self-energy, and agrees with the earlier result calculated

classically. '

8 GE I, Eq. (5.4). There e, is in e1cctrostatic units.
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4. ELECTROSTATIC INTERACTION .

It will be observed that Eqs. (3.14) and (3.15) can be somewhat simplified by writing

Accordingly,

and

e. & sin (q, —q.) sin (j,—j„)
dk.

(2ir)'~ k' k'

E.s e, BU,
g '(~) —p (8) D (r c)

c 2c 8x,

&II} 6s 8 Us 1 6sT'() =lI———'

Bt, 2c Bt, 4x 2a

(4.1)

(4.2)

(4.3)

It is possible to eliminate the last term in Eq. (4.2) by means of canonical transformation, i.c.,

P,."&c& =—exp ( ce, U/ c2 )hP—,'&'& exp (ie U/2c )h= p, &'& D,(r—„—t,),
c

(4 4)

&s ~Us esT"&'&—:exp ( is, U, /2ch) T—'&'& exp (i&, U, /2ch) =ih
Bt, c Bt, 8~a

(4.5)

Substituting the above results into Eq. (1.3), we obtain the following for the relativistic wave
equation of the sth particle:

8 6s 8 Us ts
[ca p&'& —e,a, D(r„ t, )+rr&, c'&&&']ll. = ih

Bt, c Bt, Sea.
(4.6)

Ke note that the above equation differs from the usual wave equation in several respects. In the
first place, it contains the self-energy term. Secondly, the term D(r„ t,), which represents the inter-
action of the sth particle with the field, is not solenoidal but satisfies the more general equation

(1—&c' ) div D=O. (4 '/)

Finally, we shall show that BU, /&&c, gives the particle-particle electrostatic interaction function
derived classically in GF. I, Eq. (2.6).

Let

1 BU,
V, =—

c Bt,
(4.8)

where

I
Vstc =

&' cos (p~ &&'~)—dk and V„,=
(2&r)' ~ k'

eu &' cos (Ac y~)—dk.
(2s)' & k'

(4.9)

The first integral can be evaluated very readily. Putting T=t„t„R=
~

r„—r, ~, we g—et

e„/4 R,scT(R
cT)R.0,

e
~

cos }ckT kR cosS}—
dk=

(2&r)' ~ k'
(4.10)
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For the integration in (4.9) we mal~e use of the formula'

0, for a(b
Ji(ak)

Ji(bk) ktdk = ) b~ '
0 k: —

(

—
( Ji[z(a' —b')1] frit «&i

4a~ (a' b'—) '

where k= (ki+X')'*. Multiply both sides by a' and integrate. Then, since

(2l
a'Ji(ak)da =

I

—
I

k '-=-J-i(ak)
0 &~)

we obtain, upon substituting the trigonometric equivalents of the half-integral Bessel functions,
and finally replacing X by 1/a, the result

ka

Jo aik&+1

cT
sin (kR) cos —(a'k'+1)*' dk

exp ( R/a) f—or c~ T~ &R
SxR

(4.11)
1 1 t

c i~ J [(R/a)(t~ —1)i]—exp ( —R/a)/R+- dP for c~ T~ &R;.Sx ad( (V —1)'

with the help of Eqs. (4.10) and (4.11), we finally obtain

&u

[1—exp (—R/a)] for c~ Tl &R
4+R

U, =I
&u 1

I
c ' Ji[R($'—1)'*/a]

exp ( —R/a)/R+- —d( for cl Tl &R.
4x a~j (k'-1) '

(4.12)

But from the commutation rule, GE lI)Eqs. (1.7) to (4.10) we see that condition (B), discussed
in the introduction, will not be satisfied unless c

~
T~ &R. Therefore we shall have to discard that

part of Eq. (4.12) for which c
~
T~ &R. This does not constitute any limitation, since we are always

interested in interactions for particles at the same common time. This would make T=O&R.
Our relativistic wave equation thus becomes

8 1 Guise &s

[cn. p&'& —e,e, D(r„t,)+m, c'n, ']f1= i' P' ———[1—exp ( —
~
r, —r„~/a)] — 0. (4.13)

4~ . Sea

' G. N. Watson, Theory of Besse/ Function (Cambridge University Press, 1922)—p. 415, Eq. (1), with p, ——u= 2.


