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Neutron-Proton Scattering and the Meson Theory of Nuclear Forces
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The a'ngular dependence of the scattering of 14-Mev neutrons on protons is calculated with
an interaction derived from Schwinger's mixed meson theory. The scattering shows a slight
predominance for the backwards direction in the center of mass system. This result is in
contradiction with the experimental results. The conclusion is drawn that the charge sym-
metrical theories cannot give the correct angular dependence of the scattering cross section.

1. INTRODUCTION pendence in the neutron-proton scattering has
recently been published by Hulthhn. ' He uses for
his calculations the interaction scheme proposed
by Mtttller and Rosenfeld. 4 These authors use
two different kinds of mesons, of spin zero and
one, respectively, symmetrical with respect to
the charge. The advantages of doing this are
stated in the paper quoted above' and will not
be repeated here. Mufller and Rosenfeld chose the
coupling 'constants of the. two mesons with the
nucleons equal, and as a consequence of this the
tensor force vanishes. This is at variance with
the known fact of the electric quadrupole mo-

ment of the deuteron. Attempts to explain this
quadrupole moment with the non-static part of
the forces have so far not met with success. s The
result of Hulthbn's calculations with this theory
does not reproduce the experimentally observed
angular dependence, the scattering being more
backwards in this theory.

HE recent experiments by Amaldi and co-
workers' on neutron-proton scattering indi-

cate that for a neutron energy of 14 Mev the
angular dependence of the scattered neutrons
shows a marked preference for the scattering in
the forward direction. It has already been pointed
out by Wick' that an investigation of the angular
distribution, of the neutron-proton scattering
will furnish a crucial test on the type of exchange
forces. For the 14-Mev neutrons the angular
dependence is mainly determined by the inter-
action in P states. In the so-called symmetrical
meson theory, which makes use of both charged
and neutral mesons in a symmetrical way, the
potential is usually positive for P states, thus
leading to a repulsive force. The symmetrical
theory is the only existing satisfactory meson
theory of nuclear forces which takes account of
the existence of charged mesons in cosmic rays
and the charge independence of nuclear forces.

A theoretical investigation of the angular de-

'Amaldi et al. , Naturwiss. 30, 582 (1942); these results
were recently confirmed by F. C. Champion and C. F.
Powell, Proc. Roy. Soc. 183, 64 (1944}.

~ G. Kick, Zeits. f. Physik 84, 799 (1933).
j.

3 L. Hulthdn, Arkiv. f. Mat. Astronom. Fys, 29, No. 33
(1943};also B. Ferreti, Nuovo Cimento XXI, No. 1, 25
(1943),

4 C. Mgller and Rosenfeld, Kgl. Danske Vid. Sels.
Math. -Fys. Medd. XVII, No. 8 (1940).' C. Mufller, Danske Vid. Sels. Math. -Fys. Medd.
XVIII, No. 7 (194I).
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The present investigation deals with the calcu-
lation of the angular dependence of the scattering
with a modification of the Mgller-Rosenfeld
theory pmposed by Schwinger. ' In this theory
we still have the two kinds of mesons, but the
vector meson (spin one) is assumed to have a
rest mass somewhat larger than that of the scalar
meson (spin zero). This modification leads to a
tensor force which has the correct sign in the
static approximation (nucleons at rest). The
question which we shall investigate in this paper
is whether the tensor force modifies the scattering
of 14-Mev electrons in such a way as to give the
correct angular dependence.

A similar problem was treated recently by
Rarita and Schwinger. ~ They use, however,
square well potentials with range and depth so
adjusted as to give correct values of deuteron
binding energy and quadrupole moment. Their
meth'od for the calculation of the scattering is

very convenient for the states of lowest value of
the orbital angular momentum quantum number,
but it becomes increasingly cumbersome for the
higher states. We shall develop, therefore, the
scattering theory with a tensor force in a more

general way. It is to be expected that the result
will not depend very much on the actual shape
of the potential function. This expectation is

borne out by the result of our calculation which

differs very little from Rarita and Schwinger's
result. In view of the importance of the con-
clusions which can be drawn from this result, it
seemed to us worthwhile to carry out the
numerical calculation for the meson potential of
Schwinger's mixed theory.

For the numerical evaluation of the scattering
cross section and the angular dependence, we

use the values of the coupling constants and the
masses of the two mesons which have been
recently determined fmm the deuteron pmblem
and the scattering of slow neutrons on protons. '
These constants have been calculated fmm the
theory in the so-called weak coupling approxi-
mation, where the force between nucleons is
obtained as a first approximation of a develop-
ment in rising powers of the coupling constant.

6 J. Schvringer, Phys. Rev. 61, 387 (1942).
~%.Rarita and J.Schwinger, Phys. Rev. 59, 556 (1941),

also C. Kittel and G. Breit, Phys. Rev. 56, '744 (1939).
8 J, M. Jauch and Ning Hu, Phys. Rev. 65, 289 (1944).

Recently it has been doubted whether this is a
suSciently good approximation. ' This doubt is
justified if we use the extended source for the
heavy particle in the interaction operator. In
that ease the condition for validity of the weak
coupling theory is

(f.)'«(a.),
where f is the coupling constant of the dimension
of a length; x is the reciprocal Compton wave-
length of the meson; and a is the size of the
source. Now fmm our determination of the
coupling constant we find (f~)'-0.05, while

a~ 0.1, because the range of' the nuclear forces
should be determined by the mass and not by
the size of the source. The perturbation treat-
ment of the weak coupling theory is, therefore,
hardly justified.

The situation is, however, quite different if we
use the point source model together with the X

limiting process. ' The condition for the validity
of the perturbation treatment is then"

fx((1, r»f
and we are well within the region of the weak
coupling case.

2. THE NUCLEAR FORCES IN THE MIXED
SYMMETRICAL THEORY

We consider two nuclear particles situated at
positions y~ and y2 respectively. A pseudoscalar
meson field f, of mass x a,nd a vector field P, of
mass p will interact with these particles. The
index 0. distinguishes the three components in

isotopic spin space and v is the vector index.
The fields f and iJ „are Hermitian operators.

The Hamiltonian for the field plus the inter-
action term is then,

II=IIg+II;„g,
with,

H =—Q "{s '+(VP )'+~'f~'}d'x2. J
1 . p j.

+—g ' m„'+—(V m,)'
2 J p,

'
+(V&(Q )'+p'Q ' d'x,

'G. Wentzel, Helv. Phys. Acta 13, 269 (1940); J. R.
Oppenheimer and J.Schminger, Phys. Rev. 60, 150 (1940).

~ P. A. M. Dirac, Inst. H. Poincard Ann. 9, 13 (1939);
W. Pauli, Rev. Mod. Phys. 15, 175 (1943).

"W. Pauli, Phys. Rev. 64, 332 (1943);
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I1.2=(4~)'f E y-&")(~&"'~)4.(1&.)
a, r

+4~f E y-"(~'"' [~&& 4-(1&.)])

where e and 7 are the operators of spin and
isotopic spin.

The first-order term of the interaction between
two nuclear particles situated at positions y~ and

y2 is then"

V;„2=22f2T{A-J+SKI,
with,

T=Q y &')y &') S=3Z —A,

p —~(&) .~(2)

J= g2 +2p2
r r

j.
{(3+3&&y+22y2)S—rr (3+3)2y+p2y2)S Pr\-

r3

The Schrodinger equation for the scattering
problem is

——~24+ &)„A = 2P,

where M is the mass of one nuclear particle"
and ~ is the energy in the center of mass system.
The latter is half the energy in the laboratory

system. The singularity of the function K(y)
near the origin is of the form 1/y. The solutions
of the two-body problem are, therefore, well
behaved and form a complete orthonormal
system.

3. THE MATRIX ELEMENTS OF THE TENSOR
FORCE OPERATOR

The term in the interaction operator which
contains the factor 5 is usually called the tensor
force. Since the angular momentum operator L
does not commute with S, it follows that the
angular momentum is no longer an integral of
motion. The total angular momentum

J—L,+ 2 (&20)+&2&2))

however, is still an integral, since it commutes
with S. It is, therefore, still possible to classify
the states according to their total angular mo-
mentum quantum number J, defined by the
eigenvalues of the operator J'.

J'= J(J+1).
In order to write down the eigenfunctions

which belong to these eigenvalues J, we denote
with Vp(8, 22) the normalized spherical har-
monics and with u~, uo the normalized spin
functions for triplet and singlet states, respec-
tively. The triplet and singlet functions which
belong to a given value of J, normalized to
unity, are then:

J m

~z, z 2 =, Q C~~ (J—1, 1) Y~ &u)" r

[J(2J—1)]'
1 J m

M C~~ (J+1, 1)Fg~)u)"',
[(J+1)(2J+3)] + =M

1 J
W M C„(J,1) Yg"u)"'

2[J(J+1)]'-+--M

U~=Y~N
J

(2)

The coefficients C„„(f,l') arethe Clebsch-Gordon
coefficients for the composition of two angular
momenta l, l', to a resultant angular momentum
J, which may assume the values l+l', l+l' —1,

. , ~
l l'

~
. They may be d—etermined from group

'2 For the derivation of this result cf. reference 4.
"We neglect the small difference between neutron and

proton mass.

theoretical considerations alone. We do not give
the explicit form of these coefficients. "

Since the operators A and Z commute with the
total angular momentum operator J, these oper-
ators will have no matrix elements with respect

Cf; B. L. van der Waerden, Die gruppentheoretische
Methode in der Quantenmechanik (Springer, Berlin, 1932),
p. 69 ff.
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2
[J, 7+1]'

2J+1

0 0 0 '

0 1 0 0

0 0 1 0

,0 0 0 —3.

1

2J+1 0 0

0

0 —ii

The eigenvalues of Z follow immediately from
the relation Z'=1 and try=0. The first relation
implies that the eigenvalues of Z are all &i.
From the second we find that the sum of these
eigenvalues is zero and therefore both values
occur as eigenvalues twice. The operator 5 for
the tensor force is then in this notation

J—1—2
2J+1

6
P(~+1)]'

2J+1

6
LJ(7+1)]& 0 0

2J+1
2(1+2)

0 0
2J+1

0 2 0

0 0 0&

to states of different angular momentum. The
four-dimensional submatrices of these operators
in the space of the functions (W, U) belonging
to a fixed value of J are easily evaluated by
direct computation. A simplification is intro-
duced by the fact that both the operators A and Z
commute with the permutation operator I', as
well as with the total spin operator e("+e"&.
From these relations it follows immediately that
the two functions S'J, J and U are eigenfunctions
of A and Z. The other two functions, however,
~J, J—g and 8'J, J+$ are transformed into each
other by the operator Z. This is the characteristic
property of the tensor force, which couples
states of different orbital angular momentum,
thus giving rise to the quadrupole moment in
the deuteron ground state, The result of a
straightforward calculation of these matrix ele-
ments may best be written in the matrix nota-
tion. If we order the states as indicated above
LEq. (2)], we find for these matrices

1 2 J 1+1 &0 0
21+1 21+1

and its eigenvalues are 2, 2, —4, 0. This follows
from the fact that ZA=AZ and A and Z may
therefore be transformed simultaneously into the
diagonal form.

The matrices given above degenerate if J=O
since for this case W'J, J &

= W J, J=0, as may be
seen from an inspection of the Gordon coeffi-
cients. We are then left with the two states 'So
and 'Po only.

4. THE RADIAL EQUATIONS

We are now in a position to derive the radial
differential equations. For that purpose it is
necessary to remember that the functions (W, U)
form an orthonormal set of functions in the
space of the spin functions and on the surface of
the unit sphere. If there were no coupling of the
states through the tensor force, we would obtain
for each value of J)0 four independent radial
equations. With the tensor force, however, we
find instead two equations and a coupled system
of two equations. The number of independent
solutions is of course four again, for each value
of J&0, because the system allows two linearly
independent solutions which satisfy the boundary
conditions of the problem, which we distinguish
by an index + or —.

In order to write down the radial equations
we need to know the value of the operator
T=g r &'~r "' for the diiferent states. For the
neutron-proton scattering problem we have a
system that conNsts of a neutron and a proton.
Such a system may be either in a triplet or a
singlet state in isotopic spin space, for which T
has the eigenvalues +i and —3, respectively.
The system as a whole, including space, spin,
and isotopic spin degrees of freedom, must be in
an antisymmetrical state according to the ex-
clusion principle. Since the singlet states are
symmetrical and the triplets antisymmetrical it
follows that

T=
—1+2(—1)' for singlet states in spin

~

~

~

~

~

~

~

—1 —2(—1)' for triplet space.

The complete solution may be written in the
1 M 1

form —coJ, 8, —xJM with
r r

M M M
~z, ~=a~(r)Wz, ~ g+b~(r)Wgg+g;,

M M
cog, p

——c(r) Wg, g,

=d(r) Ug
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Inserting these expressions into the Schrodinger equation (1) and using the matrix form of S we
find, by equating the coeScients of each W and V to zero, the following radial equations for the
functions a, b, c and d.

J(J—1) Mf' t' 2(J—1) 6a"— a+(1+2(—1)~ ') Ja+KI — a+ [J(J+1)]*b I
+k'a=0

r2 3 ( 2J+1 2J+1 )
J+1 J+2 M' ( 6 2 J+2b" — b+(1+2(—1)~+') Jb+KI [J(J+1)]la— b

I
+k'b =0, (4)

r2 3 E2J+1 2J+1 )
J(J+1) Mf'c"— c+(1j2(—1)~) [J+2K]c+k'c= 0,

r2 3

J(J+1)d" — d —(1 —2(—1)~)MfoJd+k'd =0.
r2

In these equations we have introduced the
wave number k'= (Mo)&. Some special cases are
of interest for our problem. We write them down
explicitly:

(a) Triplet States

oSg+oD, : a"+Mf'Ja
+2u2Mf'Kb+k'a= 0,

6b" b+ Mf—'(—J 2K)b-
r2

+2v2Mf'Ka+k'b= 0,

S. THE SCATTERING PROBLEM

The asymptotic behavior of the solutions of
these equations determines the scattering cross
section. In order to determine the connection
between this cross section and the phase shifts
at infinity we write down first the asymptotic
form of the stationary state wave function
appropriate for the scattering problem.

gi jcr

e'"'u&"+g f (8)u "'
(&)

for triplet states and

3p
2 M'

b" b — [J——4K]b+k'b —=0
r2 3

s"uo+f(8)u o-
r

3P [J+2K]c+k'c= 0,
3 (3)

'S

lp ~

1D:

d"+Mf'Jd+k'd =0,
2~

d",——d —3Mf'Jd+k'd = 0
r2

6d" d+Mf'Jd+—k—'d =0
r2

(6)

2 Mf' $ 2
opo+oFo: a"——a — Ja+KI —-a

r2 3 q 5

6+6 &

+ b
I

+koa=o,
5 )

12 Mf' /6+6b" b Jb+—KI-
-r2 3 I 5

8y
b) +k—'b—=0.s)

(b) Singlet States

CJ, & =

bJ,+=

t' J—1
(2/or)lnz ~ sin

(
kr- or+@+

I

2 )
1' J+1

(2/or)lPJ, ~ sin
I

k ' )'
t' J'

(2/or)& sin
I

kr or+I' I, ——
2 )

(
(2/ )csin

]
kr or+by I. ——

)

for singlet states.
The din'erential scattering cross section is ob-

tained by averaging the square of the amplitude
of the scattered wave over the most general
linear superposition of these four states.

o'(~) =
I 2 ~z f 'uz '+&ofuol a

=oI 2 If- I'+If l'I (9)
m, m'

The next step is to find the connection of the
phase shifts at infinity with the quantities f,f
Let the functions at infinity be denoted with
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l'his notation is convenient because in the ab-
sence of any interaction we have )=3/=I'=8=0.
We distinguish the two linearly independent but
otherwise arbitrary solutions for the system with
the index + or —.

It is clear that, because of the linear inde-
pendence of triplet and singlet spin functions,
the amplitude f depends only on the phase
shifts 8j of the singlet states, while f„depends
on the phases Pj, 3/ j, I j of the triplet states. The
connection between f and 8j is given by the
ordinary scattering theory of Faxen and Holts-
mark and does not need to be derived here:"

1f= g (2J+1)'j(e"" 1)Pj(c—os 11) (10)
2ik J

where Pj(x) are the Legendre polynomials of
order J.

In order to derive the connection between f„~
and the phase shifts g, 3/, I', we write the solution
for triplet states as a linear combination of the
solutions (3).

M M41 E Cj, e~j, e
kr J, s

=- e'3'uiM+scattered wave. (11)

The plane wave part will be a superposition of
solutions of the force-free equation for which
we have

OM
izi j, = (kr) Jj 1/3(kr) Wj, j 1,
PM
izl j + (kr)'J j+3/3(kr) Wjj+1, ,

OM
10j, Q (kr)&Jj+1/3(kr) Wj, j,

—lB A J+13
2(2J+3)

'BJ, p
——AJ,

+1B A J—1&

2(2J—1)

J
+1B A J+1p

2(2J+3)
BJp — AJ'

'BJ,
J

AJ 1,2J—1

J+1
BJ,+- A J+1,

2J+3
'BJ, p

——0.

From the condition that the scattered wave
contains only outgoing spherical waves, we
obtaip

M OM2 ( Cj. s&j s 21j sioj s)
J, S elk r-p fMM u1"' . (12)

M' r

In order to get the expression for MCJ, 8 into a
convenient form, we write by suppressing the
indices J and M

coefficients 8J+], 8J 1, +, BJ,p which may
be expressed in terms of the A J. The result of a
'straightforward calculation along these lines is
the following:

J+1
BJ = — — AJ—11

2(2J—1)

1 pM
eikzu M Q Mg

kr J, g

The coefficients in this series may be evaluated
in terms of the well known series'~

C+Ot+e
—'&++C a e—+—= Co.e—'&,

p e—iz++ C p e
—iz——Cpe

—iz

C+epe'&++C n e'&—= Cne'&,
(13)

1
e'"*ui =p A jYj'(0, il3)

. Jj+1/3(kr)u1
gkr or shorter

p ei3++ C p eiz — Cpeiz

A j 23ri j(2J=+1)z,

by identifying the coefficients of the linearly inde-
pendent functions Yj'(1/(ur)&) Jj~i(kr)u1 . For
each value of J and 3f we obtain then a set of
three linear equations for the three unknown

"Cf. N. F. Mott and H. S.W. Massey, Theory of Atomic
Collisions (Oxford University Press, 1933).

C~a&++C io =C(v=C(aWj, j 1+bWjj—gi)~,
where u and b behave asymptotically like

( J—. 1
a (2/3r)&a sin

(
kr — 3r+$ [,

( J+1
&-(2/ir)'P»n

~
kr —— 3i+r/ ~.

2 )
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nCe —'& =8
I

pCe '&=8+,C+u+ sin f++ C n sin P = Cn sin $,

C+a+ cos P++ C n cos g = Cn cos g,
Cpe '&=Bp.

Taking suitable linear combinations of the Eqs. equations of the form

(13), we have

(15)

C+P+ sin ))++C P sin r/ = CP sin r/,

C+p+ cos))++C p cos)) = Cp cosr/.

From this we get

n+ sin )++An sin $
tg$=

n+ cos )++La cos $

p+ sin ))++Xp sin ))
tgg =

P+ cos g++) P cos g

C
X =— (14)

C+

These formulae enable us to calculate & and ))

for each value of J, M in terms of (+, P, ))+, )),
n+, n, p+, p and X=C /C+. The phases and
amplitudes are determined from the integration
of the systems of Eqs. (4). The only quantity
which is not yet determined is ). In order to
find X we must make use of the boundary con-
dition (7), which requires that the scattered wave
contains only outgoing waves. If we put the
coefficients of the incoming waves in (2) equal to
zero, we obtain for each value of J and M three

a„e-'&+—o p~e-'~+

u e-'&--op e-"~- (16)

I

For each value of J and M we can therefore
determine X from (16) and then & and )) with the
help of (14). Inserting the values of (15) for
C and Co in the expression (12) we find for the
coefficients of the outgoing spherical waves

MR —(2/x)$(e2((g~ 1)e-((J—1/2)w M2I

MR~ ~
—(2/)r)1(e2(lg~ 1)e—i(J+1/2)n MI1

MRg o
——(2/7()/(e2irz 1)e—((J/2)~ ))/II~ o

Finally we obtain for the scattering matrix f)r/)r.
from (7) and (2)

The first two of these equations are only com-
patible if

8 cx a+e—'&++An e—'&—

~ i()t—$)

21 p p e—iy++I p e—iq

Solving this equation for X we obtain

1 J M—M'
f~/r = . 2 Rz, — C/)(-))(. m(& —1, 1) &z—)

2ik g
' [J((2J—1)]&

1 J M—M' 1 M—M'+
[(~+1)(2~+3)3'

RJ, +CM M', M'(1+=1, 1)Fz+& + Rz oC~ ))(., ~.(J, 1) I"z . (17)
L(J+1)~j'

Inserting this expression in the formula (9) gives
the desired connection between the scattering
cross section and the phase shifts.

0. NUMERICAL EVALUATION

For the numerical computation of the phase
shifts we must integrate the Eqs. (5) and (6) for
triplet and singlet states. The following procedure
was adopted: the equations were first made
dimensionless by introducing the new variable
x=xr The functi. ons j(x)=XJ, k(x)=XX, with
X= (M/x)(xf)'=0 532 were then' . calculated and
tabulated. The energy B was assumed to be
14 Mev which gives for k/ 0.x6165. The differ-
ential equation was then replaced by a difference
equation with the differences in x chosen su%-

ciently small so as to keep the error in the final
result of the order of five percent at most. It was
found that a difference in x of Ax =x„—x„~= 0.2
was sufficient for this accuracy. This was tested
by carrying out sample integrations with the
difference Ax = 0.1.The deviation from the result
for Ay=0. 2 was taken as an approximate value
of the error. This test was used both for an
ordinary equation and a system, The integration
was then carried out from x = 0 to x =4. At x =4
the potential functions are very small, less than
—,'p percent of the value at x=1. We have there-
fore neglected the potential functions for values
of x&4. The solutions for the region 4&x& are
then the known functions of the force-free case.
These functions are then pieced together at the
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3p +3F

$x+ = +1.829
0.0068
1.764
0.0073

p+/a+ ——18.96,

P /n =22.84,

$2+ = —0.0930
pm+. =+0.0655 p+/n+= 6.95,

= —0.588
=+0.0641 P /n =118,

'Pg. gy ———0.501 'Sn' bn=+1 516,
'Pn.' qn= —0.0293 'Pg. 5g= —0.156,

D~. 82=+0.00453

The next step is to determine the correct
linear combination of the two solutions of the
systems. For this we apply formula (16). For-
mula (14) will give us then the values of $~~
and j~J. Since X is in general a complex number
we have also for g and s in general complex
numbers. The result is as follows:

'Sg+'Dg. $g& =1 679 0.0009—i.
$P=1 679 0 .0018—~, .

gy& =0.00267+0.0257i
pan =0.00583+0.0124i,

$2+ = 0 0618—+0. 00035'.
)go= 0 0602—+0.0005', .

g2& =0.0521+0.0012i
g2n =0.0554 —0.0009i.

point x=4 with the solutions obtained from the
numerical integration of the diR'erential equation
in such a way that the function itself, as well as
its derivative, is continuous. For the two systems
which must be integrated, we obtained two
linearly independent solutions a+, b+ and a, b

by assuming the two diferent boundary condi-
tions: a+(0.2)=1, b+(0.2)=0 and a (0.2)=0,
b (0.2) =1, in addition to a~(0) =b~(0) =0.

The result of this calculation of the phase
shifts is summarized in the following table:

3S,+3D, :

These quantities we must insert in formulae (17)
and (9) to obtain the scattering cross section.
We calculated only the ratio R of the cross
section at 8=s and 8=s./2. The result is:

'j. CONCLUSION

From the result of our calculation it can be
seen that the symmetrical mixed theory gives an
angular distribution in the center of mass system
which is in contradiction with the experimental
result which is 8=0.52~0.03 for 14-Mev neu-
trons. Our result divers very little from the
result of Schwinger and Rarita (R= 1.16, Z = 15.3
Mev) which indicates that the preferential back-
wards scattering is virtually independent of the
shape of the potential curve. This gives a great
deal of generality to the conclusion which we
want to draw from these calculations. This con-
clusion is that the charge symmetrical meson

theories lead to the wrong angular dependence for
high energy neutron-proton scattering.

We suggest therefore that, in the light of this
result, the so-called meson pair theory of nuclear
forces should be re-examined. They are known
to give the same exchange operators in the
nuclear force as the neutral theory. "But they
lead to creation and absorption of charged
mesons, which thus may be connected with the
penetrating particles of the cosmic rays.
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interest of Professor W. Pauli of the Institute for
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with the numerical work.

'«R. E. Marshak, Phys. Rev. SV', 1101 (j.940); Spin-
dependent pair-interactions with mesons of integral spins
were recently proposed by J. M. Jauch and J. L. Lopes,
An. Acad. Bras. Ci. (in print); 0. Klein, Arkiv f. Mat.
Astronom. Fys. 30, No. 3 (1944).


