
the isothermal core of' the red-giant stars in which they
must have been formed,

The results of more detailed calculations of the above
"three-layer" stellar model, and also the discussion of
possible astrophysical consequences will be published in
due course.

' G. Gamow, Phys. Rev. 53, 595 (1938); Ghas. Critchfield and G.
Gamow, Astrophys. J. S9, 244 (1939),' G. Gamow, Phys. Rev. 65, 20 (1944).' S. Chandrasekhar and L. R. Henrich, Astrophys. J.94, 525 (1942);
S. Chandrasekhar and M. Schoenberg, Astrophys. J. 96, 161 (1942).

4 W. Baade, Astrophys. J. 100, 137 (1944).

A Note on the Kepler Problem in a Space of
Constant Negative Curvature

L. INFRLD AND A. SCHILD

Bepartrrlent of Mathematics, University of Toronto, Toronto„Canada
January 10, 1945

CHRODINGER' recently solved the "Kepler problem"
in a spherical or Einstein universe and obtained the

interesting result that the energy spectrum is discrete
everywhere. It is instructive to compare this spectrum
with that in an "open" universe of constant negative curva-
ture, which is in fact Milne's universe. 2 As will be shown,
the spectrum consists of a /gite number of (mostly nega-
tive) energy levels in addition to a continuous spectrum,
To our knowledge, this is the first quantum mechanical
problem to exhibit a finite number of discrete energy
values.

The line element of the hyperbolic 3-space may be
written in the form:

ds2 =Rlda2+R2 sinh2 n(d 82+sin2 8+~). {1)
Letting R~ ~, a~0 such that nR=r remains finite, this
line element reduces to that of Euclidean space, in which
r, 8, @ are the usual polar coordinates. Schrodinger's equa-
tion is taken in the form

with the proper Laplacian belonging to (1).
The potential energy V(a} of,an electron in a central

Coulomb field must satisfy Laplace's equation

&V=g"V(;~=0.
We find

V= —(Ze2/R) (coth a —1}, (3)

if we demand that V~O as a~~ and V~ —Ze /r as
R~ ~, aR~r.

Putting P=o(a}Yt(8, @) in Eq. (2), where the Y~ are
normalized spherical harmonics, we obtain the radial
equation

(d/dn)(sinh2 ado/dn)+() +1—2v) sinh' n o-

+2v sinh a cosh a o —l(l+1}o-=0; (4)

where X =2pR2Z/PP —1 and v =Ze2pR/A2.
Introducing the "density function" p = o sinh a, we can

factorize Eq. (4}:
f (l+1) coth a —v/(l+1)+d/da I

X I (l+1) coth a —v/(l+1} —d jda I p
= I) —2v+ (l+ 1)2+v2/(l+ 1)2 I p, (5)

Il coth a —v/l —d/dn I Il coth n —v/l+d jdn I p
= () —2v+l2+ v2/l2 I p. (5')

The only possible discrete solutions are immediately ob-
tained by the factorization method. We have, in -the
notation of Infeld's paper, i

) „=2v—(I+1)'—v'/(n+1)', n=0, 1, 2 . , {6)
p„"=C Sinh "+1n eXp (—va/{n+1)); (&)

p
' = Il +v /l —(n+1)2—v /(m+1}~f

X(l coth n —v/l+d/da) p„', l =0, 1 ~ e, (7')

since sinha~-, 'e~ for large n, Eq. (7) shows that if the
normalization in. tegral for p„" is to exist, we must have

(n+1)2&v', n=0, 1 ~ ~ no, (8)

where e0 is the greatest integer satisfying the inequality,
Thus we have a finite number of discrete energy levels:

L"„=Ze2/R —kg�(n+2) /2pR2 —Z2e4p/2k~(I+ 1)2;
n=O 1 . no, (9'j

It is interesting to note that the number of discrete
levels no+1~v'= (R/a)', where a is the radius of the first
Bohr orbit of the hydrogen-like atom. Taking R to be of
the order of 1028 cm (the usual magnitude of the radius of
the universe considered in relativistic cosmology), we find
that no is a large number of order 10 .The highest discrete
energy level E~ lies between —3k~/2pR2 and k~/2yR~ and
may thus be positive or negative; all others are negative.

The factorization method breaks down for the continuous
spectrum. Putting x=coth n, Eq. (4) transforms into

d2o- ) +1-2v+2vx l(l+1)
dx2 (x2—1)2 x2 —1

The range of x {for .0~&a& ~) is from ~ to 1. The
only solution of this Riemann E-equation, bounded for
large x, iss

~ = (~+1)-'-'O+~-»(~ —1)-:0+~-»
XJ (1+i+pl —)P—(4v —t)'j,
1+l+-'L—X~+ (4v —X)&j.

2(l+1); 2/(x+1}). (11)

This solution is continuous everywhere in our interval
(including ~), except possibly at x'=1. For negative ) we
regain the discrete spectrun| discussed above.

If X is positive, —X&=iX& is imaginary. Introducing n
for x in (11) and replacing o by the "density function" p,
we have

p=sinh'+' n exp (-{1+~)&+l)n)
XE(1+l+gPA& —(4v —X)' j,
1+l+-'P~) &+ (4—v —X)&)

2(l+1); 2}; s=2e ~ sinh a. (12)

Vfe demand that p be continuous and bounded for
0~&a& ~. %'e have seen that p is continuous, and it is

clear that the factor multiplying the hypergeometric func-

tion, in (12) remains bounded for large a. It remains to be
shown that the hypergeometric function is also bounded

as a~ ao
q 1.e.g as &~1.

Putting s = 1, we find the ratio of successive terms of the
hypergeometric series is of the form

a /a„+1=1+(1—8&)/I+0(e 2).
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It follows5 that the infinite hypergeometric series oscil-
lates finitely. Abel's theorem then shows that the hyper-
geometric function in (12) remains bounded as a~1 or
~ 00,

This establishes the existence of a continuous eigenvalue
spectrum of all positive )~ or

B&PP/2p, R (13)

Classical Theory of the Point Electron
MARIO SCHONBERG

Department of Physics, University of Sao Paulo, Sao Paulo, Brazil
December 18, 1945

'HE field produced by a point charge can be split in

two parts:
pv

(1) The attached field, Fat.,

(2) The radiated field, I"„d.

We assume the total field to be the sum of the attached,
the radiated and the external fields and that the sum of
the attached and radiated fields gives the usual retarded

tip
field I'ret of the particle.

The radiated field behaves as an external field and
reacts on the emitting charge. The attached field does not
act on the generating charge but acts on other charges.
Therefore, each charge is under the action of the retarded
fields of the others, but only under the radiated part of its
own field.

The particle of charge e and mass m has two kinds of
momentum and energy: (1) the kinetic four vector

dx~
md =Gk n,ds

and (2) the four vector of the acceleration energy and
momentum

, d2xi'
Gae 2 2

ds

The four vector Ga, arises from the interaction of the
charge and its radiated field. Since the particle is under the
action of the external field and its own radiated field,

In order to obtain an indication of how a relativistic
treatment might affect this problem, the authors repeated
the calculations by use of the Gordon-Klein equation.
The general character of the solution was found to be
unchanged.

The authors wish to thank Professor A. F. Stevenson for
helpful discussion.

IE. Schrodinger, .Proc. Roy. Irish Acad. A40, 9 (1940). Also, L.
Infeld, Phys. Rev. 59, 737 (1941) and A. F. Stevenson, Phys. Rev. 59,
842 (1941).

2C. Gilbert, Quart. J. Math, 9, 187, Eq. (9) (1938), and A. G.
Walker, M. N. R. A. S. 95, 263 (1935).

I E. T. Whittaker and G. N, Watson, iModern Analysis (Cambridge,
1940), Secs. 10.7, 10,71, 10.72 and Chaps. 14.

4 T. J. I. Bromwich, An Introduction to the Theory of Infinite Series
(The Macmillan Company, New York, 1926), Sec. 79, p. 241, example.

~ Reference 4, Sec. 79, p. 241, rule (ii).
~ Reference 4, Sec. 51, p. 149.

the equations of motion ought to be;

d'xI' e dx"
1 2 1 (~ext, p+ Brad, p) ~

ds c ds

If we apply the laws of conservation of, energy and mo-
mentum we get:

d & 2
dxl" d'xpd'xp e & dx"

d (Gkin+Gac) 3e
d d 2 d ~

= ~ext, p d (2)

because the rate of loss of energy and momentum is

dx" d'xP d2xp-'e'—
ds ds' ds'

according to the well-known Larmor formulae, Comparing
Eqs, (1) and (2) we see that:

Equation (3) is satisfied by taking:

Iip tip tip
~.ad = 2(~.,t —~adv).

From Eq. (4) it results that:

tip
~at 2 (~ret+ ~adv) ~

We define the stress-tensor T""of the field in which there
are n point charges in the following way:

47rT' &' —+SPAN + Ig u(ppdp )

tip pd
~i ~i, at~i, at'pv q~p (~i ~j, at+&, at'p ) (6)

Equation (6) ensures the conservation of the energy and
momentum of the system of the field and particles, and
leads to- a finite field energy which is not always positive.
The energy and momentum of the field derived from the
stress tensor T&P are the components of a four vector.
A detailed exposition of the theory will be given elsewhere.

Our theory leads to the Lorentz-Dirac classical equations
of motion and to a finite field energy without introducing
any energies and momenta of non-electromagnetic nature
besides the kinetic ones. There are no subtractions of
infinite quantities.

The Radiation Fi.eld of a Point Electron
J. LEITE LoPESN AND MARIQ ScHQNBERG

Department of Physics, University of Sao Paulo, $8o Paulo, Brazil
December 18, 1944

iHE radiation field of the electron has been defined in
different ways. The most usual is to take it as the

part of the retarded field of the charge that depends on the
retarded acceleration and varies inversely with the retarded
distance to the charge. Though this definition presents
many obvious inconveniencies, it has the advantage of
giving the right amount of'the radiation emission. Diraci
has proposed the following definition of the radiation field
of a point charge:

tip tip tip

~rad, D = ~ret ~adv&


