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The Multiyle Scattering of Waves*

I. General Theory of Isotroyic Scattering by Randomly Distributed Scatterers
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While the problem of the multiple scattering of particles by a random distribution of scat-
terers has been treated classically through the use of the Boltzmann integro-differential
equation, the corresponding problem of the multiple scattering of waves seems to have received
scant attention. All previous treatments have considered the problem in the "geometrical
optics" limit, where the rays are regarded as trajectories of particles and the treatment for
particles is then applied, so that the interference phenomena in wave scattering are neglected.
In this paper the problem of the multiple scattering of scalar waves by a random distribution
of isotropic scatterers is considered in detail on the basis of a consistent wave treatment. The
introduction of the concept of "randomness" requires averages to be taken over a statistical
ensemble of scatterer configurations, Equations are derived for the average value of the wave
function, the average value of the square of its absolute value, and the average flux carried by
the wave. The second of these quantities satisfies an integral equation which has some simi-
larities to the corresponding equation for particle scattering. The physical interpretation of
the results is discussed in some detail and possible generalizations of the theory are outlined.

INTRO DUCTIO N

HE problem of the multiple scattering of
particles by a random distribution of scat-

terers has been treated in some detail in litera-
ture. ' These treatments are all based essentially
on the Boltzmann integro-differential equation
of conservation in phase space and are thus
classical rather than. quantum-mechanical in
foundation. On the other hand, a consistent
treatment, based on the wave equation itself, of
the multiple scattering of waves by a randomly
distributed collection of scatterers, has not, to
the writer's knowledge, yet appeared in liter3. -
ture. Those treatments which have appeared, for
example, in discussions of the problem of the
propagation of light through stellar atmospheres
and through turbid media, ' are all based on the
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approximation of considering light rays as the
trajectories of particles (photons), which are then
treated on the basis o( the Boltzmann equation.
This, in a sense, corresponds to treating light
scattering in the "geometrical optics limit" wher e
interference phenomena characteristic of waves
is neglected. Such t treatment might be expected,
a priori, to be valid if the wave-length of the
waves is small compared to the mean free path
of the associated particles in the scattering
medium, but the only satisfactory justification
for such a treatment lies in showing that the
wave treatment leads to the same results.

The investigation of the multiple scattering
pf waves is not only important for the above
reason but also for several others. The multiple
scattering of sound waves by the water droplets
of a fog or by other collections of small obstacles
often occurs in cases where the interference
effects may not be legitimately neglected, and
thus this problem cannot be satisfactorily dis-
cussed except by a wave treatment. Also in the
scattering of electrons and other fundamental
particles by aggregates of nuclei, atoms, or
molecules in gases, liquids, and amorphous solids,
the use of the classical particle mechanics may
be questionable, and the quantum-mechanical
treatment of this problem necessitates the inves-
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tigation of the multiple scattering of waves.
Finally, the connection between the so-called
coherent scattering (leading to the macroscopic
phenomena of refraction and specular reRection)
and the incoherent scattering can only be appre-
ciated through a consistent wave treatment of
scattering from beginning to end.

In this paper we shall develop a wave theory
of multiple scattering for the case of scalar waves
which are isotropically scattered by a random
distribution of scatterers, the "randomness"
being defined explicitly in the next section. We
deal with abstract waves of unspecified type so
that the treatment is applicable to any type of
wave satisfying the scalar wave equation. The
concept of randomness being essentially statis-
tical, it is necessary to concentrate one's interest
in the average values of physical quantities, the
averages being taken over a statistical ensemble
of collections of scatterers. The quantities of
greatest interest are the wave function itself, the
square of its absolute magnitude, or its mean
square value, and the Aux of some quantity
(energy, probability, etc.) carried by the wave.

The determination of the average value of the
wave function is practically identical with the
already treated theory of the index of refraction
of material media (other than crystalline media)
for light, ' but is included in the present treat-
ment since it forms a necessary introduction' to
the second problem of determining the average
value of the square of the absolute value of the
wave function. It is shown that the average
value of the wave function satisfies the wave
equation in a continuous medium in which no
scatterers are present and in which the velocity
of propagation is different from the velocity ins

the original medium in the absence of the scat-
terers and is, in general, a function of position
and complex rather than real in value. In other
words, the incident wave and the scattered
waves combine on the average to form a wave
w'hich travels uniformly without scattering at a
diff'erent velocity from the incident wave and
with attenuation. This wave shows refraction
and reAection phenomena and thus describes the
coherent aspects of scattering, such as the
specular reAection taking place at a boundary

3 M. Born, Optik (Julius Springer, Berlin, 1933), pp.
313 G.

between a region where scatterers are present
(in sufFiciently great density) and a region where
no scatterers are present. An example would be
the reQection of light at a glass-vacuum interface,
the atoms of the glass being the scatterers.

The principal contribution of this paper, how-
ever, lies in the treatment of the average of the
square of the wave function, which is in general
diff'erent from the square of the average value
of the wave function. The difference represents
what is usually referred to as the incoherent
scattering, the term incoherent referring not to
a lack of definite phase relationship between the
incident wave and the wave scattered by a par-
ticular scatterer, but to the statistical super--
position of these scattered waves when propa-
gated to the point of observation because of the
"random'" distribution of the scatterers. The
average of the square of the wave function will

be shown to satisfy an integral equation which
has some similarities to the form of the Boltz-
mann integro-differential equation governing the
multiple scattering of particles. This integral
equation is just as fundamental to the problem
of the multiple scattering of waves as the Boltz-
mann integro-differential equation is to the
problem of the multiple scattering of particles.
The physical interpretation of the integral equa-
tion may be fairly readily recognized: The equa-
tion states that the average of the square of the
wave function at any point is equal to the square
of the average wave function at the point plus
contributions representing scattering from all
other portions of the medium; these contribu-
tions are proportional to the average of the
square of the wave function at each point and to
a scattering cross section per unit volume at
each of these points. The value of the scattering
cross section per unit volume at each point and
the mode of propagation from each point to the
point of interest are exactly defined in terms of
the scattering properties of the individual scat-
terers and the properties of the statistical
ensemble of scatterers studied. In fact the
integral equation could be derived from its
a posteriori physical interpretation, but in that
case the value of the scattering cross section
per'unit volume and the mode of propagation
of the scattered waves would have to be intro-
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duced ad hoc, so that such a derivation could
hardly be considered rigorous or fundamental.

STATISTICAL CONSIDERATIO NS

Since there is no inherent limitation in the
theory restricting it to the case where all scat-
terers have identical scattering properties, we
shall assume that the scattering properties of the
scatterers are determined by a scattering param-
eter denoted by s. In some applications s may be
a continuously varying physical parameter such
as the radius of water droplets in the problem
of the scattering of sound by a fog, or it may be
simply an index identifying particular types of
scatterers such as various types of nuclei present
in the problem of the scattering of neutrons by
an amorphous solid or by a gas. In what follows
we shall assume it to be a continuous variable,
but the transformation of the equations in case
it takes on only discrete values involves only an
obvious replacement of integrals by summations.

If we have a collection of N scatterers and are
given for each its position and the value of s
which characterizes its scattering properties we
shall say that we have a particular configuration
of the scatterers. Now, in the problem of mul-

tiple scattering of waves by a collection of
amorphously distributed scatterers, one rarely
has sufficient information to establish the micro-
scopic configuration of the collection and one is
therefore not so much interested in the values
of physical quantities for a particular configura-
tion of the scatterers as in the average value of
these quantities, the average being taken over
the ensemble of possible configurations of the
scatterers consistent with what information one
has as to the macroscopic state of the collection.
Thus if we specify the positions of the scatterers
by their position vectors x~, x&, . r~, and their
scattering properties by the values of the scat-
tering parameters s~, s2, s~, a particular con-
figuration of the scatterers will be given when
all the r s and s s are specified. We may then
indicate the ensemble of configurations in which
we are interested by a probability distribution
function P(ri, r2, r~, si, s~, s~) so that

P(ri, r2, r&, si, s2 ' ' 'sg)dr, dr)

Xdr~dsidsm ds~, (1)

represents the probability of finding the scat-
terers in a configuration in which the first
scatterer lies in the element of volume dr~ about
the point r~ and has a scattering parameter
lying between s& and s&+ds&, the second scat-
terer lies in the element of volume dr2 about the
point x2 and has a scattering parameter lying
between s2 and s2+ds2, etc. To find the average
of a physical quantity over the ensemble of con-
figurations we then multiply its value for the
configuration (ri, rm, r~, si, s~, . sg) by (1)
and integrate over all values of the r s and s s
accessible to the scatterers.

In this paper we shall be interested only in
probability distribution functions in which the
probability that a particular scatterer is located
in some volume element and has a value of s
located within some range ds is independent of
the locations and scattering parameters of the
other scatterers and is the same for all scatterers.
In this case we may write for the probability dis-
tribution function

P = (1/S) n(ri, si)n(r2, s2). . .n(rz, s~). (2)

'I he average number of scat terers per unit
volume in the neighborhood of the point r having
scattering parameters lying between s and s+ds
is then

n(r, s)ds,

and the total number of scatterers per unit
volume in the neighborhood of the point r is

n(r) = n(r, s)ds,

the integration being taken over all values of s.
Finally the normalization of the probability
requires

~ ~
n(r, s)dsdr=lV

where V represents the total volume accessible
to the scatterers.

We shall call the average of a physical quantity
over the ensemble of configurations a configura
tional average and shall denote it by enclosing the
quantity which is averaged in angular brackets.
Thus if f is a function of the r, 's and s s, its
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configurational average is

V V V

)(I (r, , s;)dsids~ dsridrqdr2 dr~. (3)

If we wish to omit the integration over the
positions and scattering powers of one or more
of the scatterers we shall indicate this by sub-
scribing the indices of these scatterers to the
angular brackets; thus (f); indicates that the
integration over r, and s, is to be omitted in (3).

STATEMENT OF THE PROBLEM

a scatterer proportional to the external field

acting on it. In the above g(s;, rq) will be referred
to as the scattering coeff'icient for the jth scatterer
and will be abbreviated to g;.

The problem which we shall consider in this
paper is then the following: Given the function
g(s, cv) and the distribution function n(r, s) for
the scatterers, and given also the form of the
wave function $0(r) which is present in the
medium in the absence of the scatterers (the
incident wave), to And the configurational
average of the wave function, P(r), and of its
mean-squared value, tg(r) ~', in the presence of
the scat terers.

In this section we shall make a precise state-
ment of the problem which we shall treat in this
paper. Interest here will be restricted to the case
of steady-state scattering of waves of a single
frequency ~ so that the value of the scalar wave
function at the point r at time t can be repre-

1

sented as lt(r)e'"'. In the absence of scatterers
from the medium, P(r) will then satisfy the wave
equation

V'it +ko'/=0,

where ko ——io/co and co is the wave velocity in the
scatterer-free medium. Furthermore we shall
consider here only isotropic point scatterers,
that is; those which scatter spherically sym-
metrical waves (s-wave scattering only). In this
case the wave function in the presence of the
scatterers will have simple poles at the positions
of the scatterers and in the neighborhood of the
jth scatterer will behave like

A, exp [—iko~r —r;~ j

FUNDAMENTAL EQUATIONS

Consider a particular configuration of the
scatterers. We then attempt to represent the
value of the wave function at the point r in the
form

where we have introduced'the abbreviation

exp [—iko~r —r'~ j
E(r, r') =

The equation represents the field as the sun~ of
the incident wave and spherical waves diverging
from each of the scatterers. The external field
acting on the jth scatterer is then

P'(r) =tL'0(r)+ P A;B(r, r, ).
j'(w j)

We must then have, according to Eq. (6),

~ =g 0'(»)

We may then dehne the externaL fieLd acting on
the jth scatterer as

&, exp [—ikon r —r,
~ j

P (r) =P(r) — '

/r —r, i

this field having no singularity at r= r;. We then
characterize the scattering properties of the
scatterers by the relationship

a;=g(s, , M)y'(r;), (6)

making the strength of the scattered wave from

so our equations become

4(r) =A(r)+2 g;4'(r )&-'(r, r )

P (r,)=go(r;)+ Q g,'f'(r;)F(r;, r;). {8)

Ihese represent the fundamental equations of
multiple scattering.

The direct method of solving our problem
mould then consist of solving the set of simul-
taneous linear algebraic Eqs. (8) for the P'(r;)
and substituting these in Eq. (7), thus giving

P(r) as a function of the positions and scattering
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parameters of '.the scatterers. Taking the con-
figurational average of this quantity and of the
square of its absolute value according to Eq. (3)
would then give us the desired results. Unfor-
tunately, it does not seem possible to carry this
procedure through because of the complexity of
the necessary integrations, and it is necessary to
resort to another procedure. This alternative
method consists of attempting to find equations
satisfied by (~P(r) ~) and (~P(r) ~') and then
solving these equations for the desired averaged
quantities. Ke shall now carry through, with
some approximations, this latter procedure.

THE CONFIGURATIONAL AVERAGE OF THE
WAVE FUNCTION

Let us take 'the configurational average of
both sides of Eq. (7) formally to obtain

(~( ))=~.( )+~ g;«(,»;

n(r;, s;)
XZ(r, r ) ds,dr,

for the configurational average of the wave
function.

To see the physical significance of this equa-
tion, let us apply the operator

g2+Q 2

to both sides of the integral equation, remem-
bering that

(|7'+ho') E(r, r') = —4m 8(r —r'),

where 6(r —r') is the three-dimensional Dirac
6-function defined by the equation

f(r) if r lies in V
J~f(1')8(r —1')dl' = (14)

0 if r lies outside of V.

We then obtain

to be on physical grounds, we may substitute
(P(r,)) for (P'(r, )), under the integral sign in the
above equation thus obtaining the integral
equation

8'(r)) =A(r)+ Jl G(r')(P(r'))E(r, r')dr', (1l)

=P,(r)+ G(r;)(P~'(r;));B(r, r;)dr;,

where

V (P(r))+I, g(r))= —4~G(r)g(r)). (15)

If we write this as

G(r) =,~g(s, 0~)m(r, s)ds. (10) where
~'(4(r))+~'(r)(4(r)) =o,

k'(r) =ko'+4s. G(r),
The quantity Q'(r;)); represents the external
field acting on the jth scatterer averaged over
all possible configurations of all of the other scat-
terers. The only rigorous way of evaluating it
seems to be to solve the set of simultaneous
linear algebraic Eqs. (8) and then ca.rry out the
necessary integrations to obtain the above con-
figurational average. This again is not feasible.
We therefore must resort to the approximation
of' replacing the external field acting on the jth
scatterer averaged over all configurations of the
other scatterers by the average field which would
exist at the position of the jth scatterer when the
scatterer is not present. This last average field
would differ only by a term of the order 1/X
from' Q(r;)), so tha, t if X is large, and if the
above approximation is valid, which it appears

p(r;) =Lim p(r) is singular, but gi(r;)) =Lim (p(r)) is
I-+I& I~Ij

regular.

we see that (P(r) ) satisfies the wave equation in
a "continuous medium" in which the velocity of
propagation depends upon the scattering coef-
ficients and density of distribution of the scat-
terers and is, in general, a function of position.
Thus the problem of finding the average value
of the wave function has been essentially reduced
to solving a boundary value problem in the wave
equation. The boundary conditions are implied
in the integral equation itself and depend on the
function G(r). If G(r) is everywhere continuous
and approaches a constant value or zero at
infinity, then the boundary conditions are that
Q (r) )—$0(r) be everywhere continuous and
have a continuous gradient and at io.finity
represent outward travelling waves. In another
important case, that in which G(r) is sectionally
continuous, the boundary conditions are that
Q (r) )—$0(r) be everywhere continuous and have
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R coIltlnuous normal der lvRtlve Rcl"oss R surfRcc
of dlscontlnulty of G&r) aIld at 111f1111tyIepfese11t
outward travelling ~aves, provided again that
G(r) approaches a constant value or zero at
infinity. In both cases, of course &f(r)& must
approach Po(r) as G(r) becomes zero everywhere.

Tllls reduction of the dete1111111a'tloll of &$(r))
to the solution of a boundary value problem in

the eave equation corresponds, of course, to the
well-known theory of the refractive index for
light of gases.

We note also that the integral equation (11)
can in principle be solved directly. One method
of solu, tion is the Liouville-Neumann method of
successive substitutions or iteration method. '
It consists in repeatedly substituting the ex-
pression for Q(r)) as given by the right-hand
side of the integral equation for Q (r') ) under the
integral sign, thus yielding in our case the
in6nitc serlcs

where

p„(r)=, ' G(r')f I(r')Z(r, r')dr' {IIIWO) (18)

is attached. This yields

0 (r)4*(ro) =A(r)A*(r.)+A(r) L0"(ro) —A*(ro)j
+A*(ro) I.4 (r) —A(r) j
+2 g'g'*4 "(r')0'"(r')&(r, r')&"(ro, r')

p
+Z'g;g'*4' (r')4' *(r')~(r, r,')~*(ro, r')

'The prime on the last summation indicates that
terms for which j'=j" are to be omitted from
the sum. If we now take the configurational
RverRge of bOth sides of this cquRtloIi we obtRln

&0(rM '(«) )=A(r) A*(«)

+A(r)LQ*(ro)) —A*(ro) 3

+a.*(")LQ( )&-s.( )3

+~ II(rs )8"(rI )0"*(rI'))I'

XB(r, rsI)E (ro, rp)drp

N —fat+ ~' G(r')G*(r')9 "(r-)0'"*(r')»"

XZ(r, r;)Z*(ro, r;")dr;dr;", (19)

which, if it converges uniformly, is the desired
solution.

Reverting foI R moment to thc Rpploxlmatlon

(QI(r;)&,~Q (r,))) made at the beginning of this
section, it should be mentioned that it would be
desirable to demonstrate its validity mathemati-

cally rather than on intuitional grounds. Unfor-

tunately it has not yet been found possible to do
this. A 81II111Rr approximation must bc made lQ

the next section to which this remark also applies.

THE CONFIGURATIONAL AVERAGE OF
I4(r) I'

To obtain the con6gurational average of

IP(r) I' we follow an analogous procedure to
that used for P(r), but the analysis now becomes
somewhat more involved. To begin we 6rst mul-

tiply the expression for P(r) as given by Eq. (7)
by the corresponding expression for P*(r) with

r set equal to ro, where the asterisk denotes the
complex conjugate of the quantity to which it

'Whittaker and. Watson, Moderw Analysis (Cambridge
University Press, 1927), Chap. XI.

H(r) = Ig(s, or) I'n(r, s)ds.

We Iiow mRke a similar assumption to that. made
in the preceding section, although the physical
meaning is not so clear in this case. We assume
that it is valid to replace

&4"(r')4"*(r')&' by &4(r;)P(r')&

&0"(r')0'"*(r')»' ~ by &0(r')F(r')&.

Making this substitution and replacing (N 1)jX—
by unity since we are assuming X is large (com-
pared to unity) we obtain the integral equation

&4(r)P(r )& =Co(r)to*(r )

+~.{)«e(")&-~.*&"»

+A*(«) I &4(r)) —A(r}j
+ II(r')Q(r')p*(r')&Z(r, r')8 {ro, r')dr'

4y

+g"
g

G(r') G'(r") &@(r')0'(r")
&

XZ(r, r')Z'{ro, r")dr'dr". (21)
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By substituting the right-hand side of Eq. (9)
for Q (r) ) and the. complex conjugate for
(P*(rp)) in the ~ above equation we obtain a
simpler form of the equation:

= JI II(r') (P(r')P*(r'))E(r, r')EP(r„r')dr'

+ ~ G(x')G'(x") [(W(r')4*(r"))
Vu V

—(P(r'))(PP(r"))]E(r, r')EP(rp, r")dr'dr". (22)

Now the above integral equat'ion for (p(r) P(rp) )
is in too complicated a form to obtain practical
solutions of it directly. However, we can simplify
the equation further in such a way that reason-
ably rapidly convergent series solutions may be
obtained in many cases. An examination of the
integral equation (22) shows that by obtaining
the Liouville-Neumann iteration solution of the
equation, considered as an integral equation in

[Q (r)P*(rp)) —(P(r))Q*(rp))jwith the first term
on the right in Eq. (22) considered as the in-
homogeneous term of the integral equation,
Q(r)P*(rp)) satisfies the integral equation

vergence of the series, in general. An improve-
ment on the situation is possible by obtaining a
more rapidly convergent series for the kernel.

To do this we first find the partial difkrential
equation satisfied by I (r, rp, r'). lf we apply the
oPerator (Voo+kp')(V'+kp') to both sides of Eq.
(24), where i7' is the Laplacian operator in the r
coordinates and V'0' the Laplacian operator in the
r0 coordinates, the result of this operator acting
on Mp will be 16pr'6(r —r')b(rp —r'), while the
result of the operator acting on the remainder
of the series is readily found to be 16prpG(r)

XG*(ro)I.(r, rp, r'). Thus the integral equation
kernel satisfies the partial differential equation

to both sides of this equation, and remember that

k'(r) =kp'+4orG(r),

k"'(ro) =ko'+4prG*(r, ),

(16)

(16')

[(~o'+ko') (~'+ko') —16pr'G(r) G"(ro) $L(r, ro, r')

= 16prob(r —r') b(rp —r'). (27)

If we now add

I 4m.G(r) [V'o'+ 0*'(rp) ]
+4prG*(ro)[V'+k'(r)]}L(r, rp, r') ( )

the equation can be written

where the kernel L(r, rp, r') is given by the
iteration series:

[(V '+k*'(r )][V'+ko(r)]L(r ro r')

= 16pro8(r —x') 5(rp —r')

+ }4sG(r) P'p'+kPP(rp)]

I.(r, rp, r') = P IrI„(r, ro, r'),
2i=0

Id„(r, rp, r') = Jt JI G(r")G*(r"')

X -V, i (x", r'"; r') E(r, r")

(24) +4prG*(ro)[V'+k'(r)]}L(r, ro, r'). (29)

Let us now turn our attention to the function
K(r, r') defined as the solution of the equation

7'X(r, r')+k'(r)Z(r, r') = —4prb(x —r'), (30)

XE*(ro, r'")dr"dr"', (25)

Mo(r, r, ; r') =H(r')E(x, r')EP(rp, r'). (26)

This solution has the disadvantage that the
series solution for the kernel I(r, rp, r') will be
very slowly convergent since the factors E(r, r")
and E*(ro, r"') in the iteration integrals are
imaginary exponentials and do not promote con-

which represents outward travelling waves at
infinity. It will be noted that X(r, r') bears the
same relationship to Eq. (15) as E(r, r') does to
Eq. (4). X(r, r') is a Green's function for Eq.
(15) and can be interpreted as the wave field

produced by a point source of unit strength
placed at the point r' in a medium in which the
propagation constant at the point r is given by
k(x). Then X(r, r')X*(rp, x') satisfies the equa-
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tlon

[V '+0*'(r,)][V'+k'(r)]K(r, x')K*(ro, r')

= 16s'b(r —r') 8(r, —r'). (31)

From this one readily finds that I.(r, ro, r')
satishes the integral equation

I.(r, ro, r') =K(r, r')K*(ro, r')

+—
l~

' [{G(r")[V'"'+&""(r"')1
4x ~v v

The solution to our problem has thus been
reduced to solving the integral equation

+ ~II(r') & I
k(r') I'&L(r, x; r')«' (»)

In case the kernel I.(r, r; r') can be a'ccurately
represented by the first term in the series (33),
the integral equation becomes

yG+(r///)[V//2+$2(r//)]} I (r// r///. x/)]

XK(r, r")K~(ro, r"')dr"dr"', (32)

I.(r, ro, r') = Q I.„(r, 'ro, r'),
@=0

(33)

+G*(r'")[V"'+k'(r") ]}

XI-, ~(r", r"', r')]K(r, r")

as may be verified by substitution in Eq. (29).
The Liouville-Neumann iteration procedure ap-
plied to this integral equation gives us a new
series solution for the kernel of our integral
equation:

+~~II(r')&14(r') I'&
I K(r, x') I'«' (38)

This latter equation is probably the most im-
portant practical result of our investigation.

AUXILIARY PHYSICAL QUANTITIES

There are several other quantities of in&-

portance in wave propagation theory and we
shall now obtain expressions for the con6gura-
tional average of these. The first of these is the
gradient of the wave function. It is readily ob-
served that the operation of taking the gradient
and the integrations involved in obtaining the
configurational average commute so that the
average of the gradient of the wave function is
simply the gradient of the configurational aver-
age of the wave function:

XK*(ro, r'")dr"dr'", (34) &Vy(r)) = V6t (r)). (39)

Lo(r, ro, r') =K(r, r')K"(ro, x'). (35)

I &(r, ro, r') = —"G(r")K(r",r')

This, in general, will be a quite rapidly converg-
ing series since K(r, r') contains a real negative
exponential. The successive series terms will
contain increasingly larger numbers of integra-
tions involving the negative exponential and will
thus die out rapidly. Thus, for example, the
second term in the series is

The other quantity of importance is the Aux
which is proportional to the quantity

We may obtain the configurational average of
this quantity by taking the gradient of both
sides of Eq. (23) with respect to r and subtracting
from this the gradient of both sides of the same
equation with respect to ro. On subsequently
setting ro= r, we obtain

XK(r, r")K*(ro, r')dr"

—
~~G~(r")K*(r",r') K*(r„r")K(r, r') dr". (36)

+ tII(r')&lf(r') I')[VI.(r, r, ; r')

VOL*(r, xa, r')]/0-r—dr'. (4l)
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Again if I(r, ro, »') can be replaced by the first
term in its iteration series, this result can be
written

(&()&=(P()&'(4()&—(4(')l (4*()&

PHYSIGAL INTERPRETATION

In order to interpret the results which we have
obtained, it is useful first to consider the scat-
tering of waves by a single scatterer. In this
case the wave function becomes simply

y(») =P, (») ~g,y, (»,)Z(r, r,), (43)

which is the sum of the incident wave and the
spherical wave scattered from the scatterer. If
we consider a plane incident wave

Po(») =A exp [ ik, —r],

+~I'P(»')(l4(»') l'&[&*(» r') ~I'(», »')

—X(», »') ~X*(», »')]dr'. (42)

Thus (5) can be calculated when (IP(») I') is
known.

0.= 4~I—m(gi)/ko (49)

is usually referred to as the extinction cross
section, being the sum of the capture and scat-
tering cross sections. In practical problems, the.
imaginary part of gi. is usually negative so that
the ' extinction cross section is positive. Ex-
pressed in terms of the more familiar cross
sections, the scattering coefficient g j. becomes

(t7g kot7g)* Oooo

E4~ F6~2 )
(50)

Ke may then define a scattering cross section
per unit volume, S,(r), by

wave gives the so-called absorption or capture
cross section', 0 „since it represents the area'.

which when multiplied by the incident flux per
unit area normal to kp, gives the Aux which is
effectively lost from the wave field. Thus

4m.Im(gi)
~, = —4xlgil'-—— (r.+—0., (48)

kp

=4+)" lg(s) I'n(», s)ds=4-II(»), (51)

and an extinction cross section per unit volume,

I"

and integrate the Aux per unit area in the scat- S'(») = &'(&)~(» ')d'
tered wave, P=f.*V'P, rP, 'VP, *, wh—ere P, repre-
sents the second ternion the right in Eq. (43),
over a sphere whose center is at the position of
the scatterer, we readily find that this total flux is

4~ix, lg, l'a'. (45) S,(»), by

If we divide by the flux per unit area normal to
kp in the incident wave, ikpA, we obtain what is
usually referred to as the scattering cross section,

.=4 la I'. (46)

4~i' pig l'~i'+4~(g, —g,"')~'. (47)

The negative of this quantity represents the net
inward flux through the sphere. Dividing the
latter by the flux per unit area in the incident

It represents an area which when multiplied by
the incident flux per unit area, gives the total
flux in the scattered wave.

Now if one integrates the flux per unit area
caused by both incident and scattered waves
[that is P*VP PV'P*, where P i—s given by (43)$
over the same sphere, one obtains

4x
Im[g(s) jm(», s)ds

&p"

4m= ——Im[G(») ].
kp

(52)

6If there is no "true" capture, 0, must be zero. For a
particular field, this can be shown from the field- equations
and, where appropriate, the boundary conditions at the
scatterer. However, g will still be complex because of
"radiation resistance. "

Let us now examine Eq. (15) which governs
the propagation of the average value of the wave
function in the case where G(r) is a constant
independent of position. In this case the plane
wave solution of the differential equation will be
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of the form

(P(r)&=A exp L
—iit r],

where
I
Ir

I
=k and the direction of Ir is the direc-

tion of pI'opRgRtlon of thc %'Rvc. Now Slncc k 1s

1n gcnc1Rl complex th, c wRvc represented 1n Eq.
(53) is attenuated with distance. Now we have

k'=ko'+4irG='ko'+4~Re(G)+4iriIm(G), (54)

so that %'hen the number of scatterers per unit
volume is suf6ciently small we may expand the
squRI'c root fol k to obta1Q

2Ã 2%i
k ko+ Re(G)—+ Im(G).

ko ko

Thus the flux in the wave (53) is reduced by the
fRCtol

2Ã 2

exp —lip (G) —s—se

ko

per unit distance. Hence in this case the medium
acts as if it removes in a unit distance a fraction
equal to the extinction cross section per unit
volume of the Aux carried by the wave. Alter-
natively, we may say that the medium acts as
1f CRch. 8CR ttcrcr I c1Tlovcs fl 0Q1 thc %'Rvc Rn

amount of Aux equal to its extinction cross
section times the. Aux per unit area incident on
it in the average wave. This Aux is partially ab-
sorbed (if the capture cross section is not zero)
and partially scattered out of the average wave

propagating through the medium. It should be
noted that this simple picture is applicable only
when thc QUITlbcI' of scattcrcrs pcI' UQ1t volUIQc

is sufficiently small so that the above expansion
of the square root is valid. Otherwise there is
interference between the Scatterers and they no
longer cRQ bc COIlsidcIcd to absorb and scRttcr
independently.

In addition the phase velocity c(r) of the
average wave is different from the please velocity
In thc scattclcI-f Ice Illcdlum:

scatterer. When the scattered waves are com-
bined with the incident wave there is a pro-
gressive advanceInent or retardation of the phase
of the disturbance Rnd thc result RppcRI'8 Rs R

change in the phase velocity. '
Let us now turn our attention to the physical

interpretation of our integral equation for the
con6gurational average of the square of the
wave function written in ternls of the scattering
cross section per unit volume Isee Eqs. (51),
(3&)1:

(lf(r) I'&= l(4(r)&l'

+— ~ (r')(I4(r') I'&L(r, r; r')«' (58)
4x &

Assume first that we may replace L(r, r; r') by
the first term in the series (33), I X(r, r') I'. Now

we have already pointed out that X(r, r') can
be interpreted as the value of the wave function
at the point r caused by a unit point source at
the point r', in the continuous medium I

charac-
terized by the propagation constant k(r) j in

which (lP(r) & is piopagated. Thus iil this case
the integral equation above simply states that the

1 of (IP(r)I'& t y poi t r i q 1 to th
mean-square value of the average wave at the
point r, I Q(r)& I', plus contributions owing to
scattered waves from all other points of' the
medium, the strength of the sources per unit
volume at these other points being proportional
to the value of (Ig(r) I') at these points and to
the scattering cross section per unit volume at
these points. The various contributions, it will

- be noticed, combine as if the waves to which they
arc 0%'1ng RI'c sscok8f8t/E, that 18) bcR1 R randoITl

phase relationship to one another. If we obtain
the series solution of this integral equation by the
Liouville-Neumann method, this solution, too,
has a simple physical interpretation. The solution

GRQ bc %'Ilttcn

&14(r) I') = 2 +-(r)

———+
2 (g2

e„(r)=— S,(r')+ i(r') IZ(r, r') I'dr', (60)

Th18 IIlRy be attributed to thc fact that thcIc 18
+o(r) = &4(r) & I

' (61)

a difference 1Q phase between thc wave 1nc1dent The condition for no disPersion in the Presence of the
scatterers is obviously: g(cu, s) =a2y(s), where y is inde-

on a scatterer and the scattered wave from thc pendent of ~.
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Thus the first term in the series represents the
contribution caused by the average wave, the
second term, the contributions caused by a single
scattering of the average wave from each point
in the medium to the point in question, the third
term, the contributions caused by scattering
twice of the average wave, etc. Hence, when
L(r, x; x') can be replaced by the first term in
its series solution, we have a very simple and
logical physical interpretation of the integral
equation which we have derived.

When the full series solution for L(r, r; r') is
substituted in the integral equation, however,
the meaning of the additional terms is not so
clear. An examination of them indicates that
they are some sort of residual interference terms
which are not eliminated in the averaging process.
This is apparent from the fact that the imaginary
exponential terms are still present I Eqs. (34),
(36)]. The physical interpretation of each term
is quite simple: Thus, the terms corresponding to
the next term in the series for L, that is Li LEq.
(36)], may be interpreted as the resultant at
the point r of a wave scattered from the point r'
to r by two paths, a direct path from r' to r and
also by propagation from r' to another point r"
from which the wave is rescattered coherently to
the point r, the result being summed over all
intermediate points r". Similarly the higher
terms of the series correspond to larger numbers
of intermediate coherent scatterings, It is dif-
ficult to see, however, why these additional
terms should be present in the equation. A rough
calculation of the order of magnitude of these
terms shows that in many practical cases, they
are not very significant. Thus the ratio of the
terms caused by I & to the terms caused by
Lo= IX(x, r') I' seems to be of the order of mag-
nitude of (k' —&02)/ko', so that if the change in

the velocity of the waves in the medium pro-
duced by the introduction of the scatterers is

small, these higher terms are of little importance.
In conclusion, it may be helpful to point out

that in most measurements on waves it is the
mean-square value of the wave function rather
than the wave function itself that is measured;
therefore (IP(x) I') will usually be of more inter-
est than Q (x)). Now the difference between

(IP(x) I') and I(P(x))I' can be interpreted from
the view of our statistical ensemble of con-

figurations as effected by the statistical fluctu-
ations of P(x) about Q (x)) in different members
of the ensemble. Another method of viewing this
difference may be helpful in bringing out the
physical interpretation. Consider instead of a
statistical ensemble of configurations of scat-
terers, a collection of scatterers which are moving'
about slowly (so that Doppler effects may be
neglected) in such a way that over a period of
time the collection passes through'all the con-
figurations of our original ensemble. In this case
(If(x) I') can be interpreted as the long time
average of Iig(x, t) I~, P(x, t) being the value of
the wave function at the point r at the time t.
For such a collection of sca,tterers Q(x)) has
little physical significance unless

(IN(x) I') —
I Q(x)) I'«&I4(x) I') (62)

To define the meaning of Q(x)) precisely, one
may say that if f(x, t) represents the value of
the wave function at the point r at time t, then

g (r)) is the function which makes the integral

(63)

a minimum, the integration being taken over a
length of time sufficient for the collection of scat-
terers to have passed through all the con-
figurations of the ensemble.

On the other hand, we have still to indicate
why in scattering by a fixed configuration of
scatterers, "incoherent scattering" is observed.
The answer to this question lies in the fact that
the regularly propagated wave or "coherent scat-
tering" is precisely defined only as an average
over the ensemble of configurations. For a fixed
configuration, all of the scattering is strictly
coherent but is artificially divided into a part
which is estimated to propagate uniformly and
a remainder which is referred to as "incoherently
scattered. " The basis of this distinction lies in

the fact that for a collection of a large number
of scatterers a particular "unprepared" collection
will have particular physical properties which
do not deviate greatly from the average physical
properties of a properly defined statistical en-
semble of collections because of the lack of "cor-
relation" implied in the word "unprepared" as
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to the positions of the individual scatterers. This
allows one to estimate the properties of the aver-
age over an ensemble from an experiment on a
particular configuration with a very high prob-
ability that the estimate is correct, although the
possibility exists of a wide deviation if the se-
lected ensemble should be particularly strongly
ordered. In experiments usually several samples
are used so as to guard against this remote pos-
sibility. Vte cannot enter further into this dis-
cussion of the relationship between statistical
concepts and experiment, but refer the reader to
almost any text on statistical mechanics for
further elucidation.

8 VZ(r, r,), (64)

where B is some vector function of the external
field acting on the scatterer, such as its gradient.
By adding further terms corresponding to quad-
ripole scattering, etc. , one could, in principle,
adequately treat any type of sca,ttered wave. The
difFiculties in this extension of the theory appear
to be simply ones of increasing complexity of t'he
expressions handled.

(2) One might attempt to consider more
general forms of probability distribution func-
tions than those included in Eq. (1).Such more
general functions would involve correlations
between the positions of various scatterers so
that the probability' of finding a particular scat-
terer in the neighborhood of some point would

be a function of the positions of one or more of
the other scatterers. This type of function would

allow a more accurate representation of the
state of a8@irs in "amorphous" solids, liquids,
and imperfect gases where such correlations do
exist. Tempting as such a generalization might
be, the well-known difficulties which arise in

DISCUSSION

It is of interest to indicate the directions in
which the'present theory may be generalized to
embrace a wider range of phenomena:

(1) We may attempt to lift the restriction to
isotropic (s-) scattering. This could be accom-.
plished by including higher order scattering
terms. Thus, in the next approximation we would
include terms corresponding to dipole (p-) scat-
tering which are of the form

averaging over correlative probability distribu-
tion functions, are discouraging of elegant
attempts at a rigorous theory in this direction.
Some promise might appear, however, in an
approximate treatment of this problem by sim-

plifying the correlation between scatterers to
that between the position of each scatterer and
the average distribution of the remainder such
as is done in the well-known approximate treat-
ments of cooperative phenomena in statistical
mechanics, or by the use of such methods as are
employed in the theory of x-ray (single) scatter-
ing in liquids.

(3) A further generalization may be made in
the extension of the above treatment to vector
waves. If the vector wave function satisfies the
vector wave equation and if the wave scattered
by a scatterer is proportional directly to the
external field acting on the scatterer, then the
generalization follows immediately. However, in
the case of greatest practical importance, elec-
tromagnetic waves, the above is not true. The
wave scattered by a scatterer is to first order
proportional, not to the external field acting on
the scatterer, but to the curlcurl of this field. '
This introduces singularities into the integrands
of the integral. equations which must be omitted
from the integration by enclosing them by small
spheres. These singularities lead in the treatment
of the average value of the wave function to the
well-known Lorentz-Lorenz eGect, ' but the deri-
vation along rigorous lines is long and involved.
These singularities appear to cause still more
difficulty in the treatment of the average value
of the square of the wave function (electric or
magnetic Geld strength) but there seems no
reason why the analysis cannot be carried
through. The problem is of sufficient practical
importance as well as theoretical importance to
warrant additional study.

(5) Another generalization could be attempted
in the direction of considering changes of fre-

quency of scattered waves produced through the
Doppler effect by moving scatterers. This is
closely related to the problem of inelastic scat-

8 The vector wave function is the Hertz vector Z in
this case; the scattered waves are of the form pB(r, r;),
where p, the dipole moment of the scatterer is proportional
to the external electric field acting on the scatterer, which
is in turn proportional to the curlcurl of the external Z

. field acting on the scatterer.



tering of light and fundamental particles by free
or bound atoms in the quantum theory, since a
change of frequency of the wave function cor-
responds in quantum mechanics to a change in
energy of the associated particle. Such a theory
would be dcvclopcd Rlong llncs ln some wRys
similar to the treatment of diffuse spots in the
theory of x-ray diffraction which are also the
c6'cct of ine1astic scattering of photons by the
crystal lattice. Such a theory might have con-
siderable value in investigating experimentally
the dynamics of thermal agitation in amorphous
solids, Ilqulds, Rnd gRscs.

(6) Finally in a similar manner, the theory
couM be extended to include non-steady state
scattering, in which the incident wave function
does not have a harmonic deperidence on the
time.
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