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The existence of an empty (conduction) band 1.5 or 2.0
volts above the highest filled band in metallic-looking
semi-conductors such as, silicon and certain sulfides is
inferred from the optical properties of these substances.
ReRectivity data of silicon are examined with the aid of
the expression for the complex index of refraction as given
by classical electromagnetic theory. Through use of this
expression, which is checked for internal consistency, an os-
cillator strength of 1.6electrons is calculated for the absorp-
tion, and a dielectric constant at low frequencies of 12.5
is computed. The Wigner-Seitz-Slater method of computing
electronic energy bands in crystals is used to determine the
band structure of silicon. A combination of one s, three p,
and three d functions for each of the two atoms in the unit
cell is made, and through use of boundary conditions of
continuity of value, of normal, and of tangential deriva-

tives, a solution is obtained for the plane x =y. The result-
ing band structure closely resembles that obtained by
Kimball for the diamond, except that silicon is more nearly
metallic than is the diamond. The 3s level of the silicon
atom splits into two bands, the 3p level into six bands, and
the 3d level into six bands; the two 3s bands and the
lowest two 3p bands are completely filled by electrons. At
the observed half-distance between nearest neighbors, the
gap between the uppermost filled band and the lowest
empty band is much greater than that expected from con-
sideration of the optical data. The form of the optical ab-
sorption as expected from band structure considerations is
proposed. The width of the filled bands as observed in soft
x-ray emission spectra is about equal to the width of the
computed bands.

a definite, allowed electronic transition within
the molecule or ion. Our interest, however, is in
metallic reflection extending over a wide range
of frequencies, over most of the visible and per-
haps into the ultraviolet.

Careful examination of the equations relating
absorption and reflection shows that one cannot
get a reHection coefficient of 35 percent or more
over a wide range except by transitions corre-
sponding to a total electron strength of the order
of unity. In metals there are enough electrons in
the conduction bands and these overlapping
bands are su%ciently broad to permit within the
bands transitions which give suf6cient reHection.
It is obvious, however, that in semi-conductors
the conduction electrons, which are few in
number and cannot contribute appreciably to
the absorption, do not play an important part in
the high reflectivity of many members of this
class of substances.

In semi-conductors, the metallic appearance
must be due in general to the existence of a strong
(i.e., f 1), wide absorption band covering the
visible. This can, in the simplest manner, be
ascribed to the existence of a broad, empty (con-
duction) band with a lower limit 12,000—15,000
wave numbers (1.5—2.0 volts) above the upper-
most filled band '

HERE is in addition to the metals another
group of substances which possesses the

so-called characteristic metallic luster. In this
group are the elements silicon and germanium,
and many minerals, mostly sulfides, such as
pyrite (fool's gold, FeS2), molybdenite (MoS2),
galena (PbS), and stibnite (Sb2S3). All of these
substances conduct electricity feebly at room
temperature and may be classed electrically as
semi-conductors. To our knowledge there are no
substances which look metallic and which are not
metals or semi-conductors.

The question at once arises what connection
exists between metallic appearance and con-
ductivity. It is first necessary to determine what
is meant by metallic appearance. Inspection of
reflectivity data' reveals that only metallic-
looking substances such as the previously-men-
tioned semi-conductors have reflection coef-
ficients above 35 percent throughout most of the
visible spectrum. There are some substances such
as the aniline dyes and KMnO& which reflect
metallically in narrow wave-length regions; in
these, the strong reHection is brought about by

*A dissertation submitted to the Faculty of the Grad-
uate School of Arts and Sciences of the Catholic University
of America in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.' International Critical Tables (McGraw-Hill Book Com
pany, Inc. , New York, 1929), Vol. V, p. 254.

2 Such a view has been proposed by F. Moglich and
R. Rompe, Zeits. f. Physik 119, 472 (1942).
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From this brief consideration of the conduc-
tivity and reHectivity of metallic-looking semi-

conductors, certain conclusions seem to be jus-
tified. There exists in these semi-conductors an

empty (conduction) band, with a lower limit
1.5—2.0 volts above the highest filled band, and
a width of several volts. Transitions into this
band from the uppermost filled band are allowed,
and give correspondingly strong absorption and
reHection in the visible. At high temperatures,
some electrons possess enough energy to go
across the 1.5—2.0 -volt forbidden region between
the highest filled band and the empty band;
these high energy electrons in the conduction
band and the holes produced in the filled band

by their leaving are responsible for the intrinsic
conductivity of these substances. Thus the
nearness of this empty band to the filled band
both makes these solids intrinsic semi-conductors'
at high temperatures, and gives them metallic

appearance.

It is the purpose of this section to examine the
refractive indices n, and the coefficients of ab-
sorption nK, of silicon in the visible region as
determined by experiment to provide quanti-
tative evidence of the existence of a band
structure as described in the first section. The
experimental values of n and K are to be used to
find the oscillator strength of the band. Then, as
a check, theoretical values of n' —n'K' are to be
calculated by use of an expression developed for
band absorption through the classical theory of
dispersion. The optical properties of silicon are
also to be used to calculate the dielectric con-

stant of silicon at low frequencies.
For a single absorption line, it can be shown4

from the classical theory of dispersion that at
the frequency v ¹'

p2(] —ig) ' = ] + 1

7!PE Pp —V +ZVV

where N is the number of atoms per cubic cen-

timeter, Pp the frequency of the absorption line,
v' a quantity measuring its width, and f the

' An intrinsic semi-conductor is a substance which in the
pure state has a small electronic conductivity that increases
greatly with rising temperature.

4See, for example, Slater and Frank, Introduction to
Theoretical Physics (McGraw-Hill Book Company, Inc. ,
New York, 1933), p. 280.

"electron number" or oscillator strength to which
the strength of the line is proportional. Classi-
cally, f should be 1.

The absorption coeScient nK is defined so that
the amplitude of light of frequency v, after
penetrating a thickness x of the material, is
diminished by the factor

exp
27i PSKX

If, as in silicon, there is a broad absorption band
instead of a single line, the relationship (1) can
be used if the oscillator strength is distributed
over the band; f is replaced by (df/dvo)dvo, the
oscillator strength in the interval between Pp and
vp+dvp, and the second term of the right side
of (1) is integrated over the entire band. Ex-
pression (1) then becomes

Ne'
n'(1 —i~)' = 1+

1 df
d vo. (2)

7l52 ~ Pp P +iPP dPp

If the real and imaginary parts of (2) are
separated, the following equation is obtained for
the imaginary part:

Ne' df
i2n'K =i

J d vo. (3)
sm ~ (vo' —v')'+v'v" dvo

P V

df 4m
R KVp.

dvp Ne'
(4)

To evaluate df/dvo, it is necessary to have
measured values of n and nK throughout the
band. Using a method developed by Drude, '
Pfestorf' has determined values of m and nK at
intervals throughout the band. From Pfestorf's
data, which are presented in Fig. 1, the values

' H. M. O'Bryan, J. Opt. Soc. Am. 26, 125 (1936).' P. Drude, Wied. Ann. 64, 162 (1898).
'G. Pfestorf, Ann. d. Physik 81, 925 (1926).

The quantity v', which measures the width of
the absorption due to an oscillator element of
strength df at a given vo and arises from radiation
damping, can be assumed to be vanishingly
small, since the radiation damping can be shown
to be negligible. The limit, then, of (3) can be
taken as P' approaches zero, and the result can
be solved for df/dvo In this w. ay it is found that
at the frequency vo the value of df/dvo is' given by
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of n'Ii: listed in Table I and plotted in Fig. 2 were
determined. From the plotted values of n'Ic in

(4), df/dvp was calculated at various frequencies
as presented in Table II and the second curve of
Fig. 2. As shown in Fig. 2, the broad absorption
band lies well within the given frequency limits.
In the following, the letter v indicates wave
numbers, and df/dv = (I/c) (df/dv)

By integrating (df/dv)dv over the entire band
using numerical methods, one obtains' an oscil-
lator strength of 1.6. This absorption is much
too strong to come from transitions to or from
an impurity band. The simplest assumption is
that the absorption is brought about by transi-
tions from a full band to an empty (conduction)
band of the lattice.

Attention can now be turned to the real part
of (2),

Xe' t. (vp' —v') dfn' —n'a' = I+ ll dv p. (5)
mm & . (vpP —v') '+ v'v" d v p

optical data, so that integration can be done only
over the frequencies of the visible range. How-
ever, the assumption can be made that all other
absorption bands lie so far in the ultraviolet that
they do not contribute to the absorption in the

l6000
I

24000
I

32000

WAVE NUMBER

I

40000

FIG. 2. Oscillator strength df/dv and n ~ of silicon. N in
the figure should have been n.

3,000 A

I

4,000 A
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I

5POOA

¹'I df—H
7rm&2 ~' —~P d~

visible range, and add only a frequency inde-
pendent quantity no' —1 to the expression for
n' —n'~' for wave-lengths longer than 2500A.

As the limit v' approaches zero, the expression
for the refractive index n and the cock.cient of
absorption ef~ at the wave number v& is given by

Ne' p I df
n' —n'~'=n 'y ll —dv, (6)

7rmc2 ~ v2 —™vPd™v

in which v is the wave number at which the oscil-
lator strength (df/dv)dv is located, and

FrG. 1. Refractive index and coefficient of absorption
of silicon; data of G. Pfestorf, Ann. d. Physik 81, 925

'

(1926). N in the figure should have been n.

If df/dvp were known for all frequencies, the
integral in (5) could be evaluated with the
limits zero and infinity. As it is, the values of
df/dv p have been calculated through use of

is the contribution this oscillator strength makes
to e' —n'i~." at ™v~', the integration is performed
over the visible region using graphical methods.
The values of this integral for various wave
numbers vi are listed in the fourth line of Table
III; in the third line are given the values of
n' —n'z' determined by experiment. The last line
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is the difference between the third and fourth
lines, and should be equal to no. The data are
plotted in Fig. 3.

The values of the differences are all positive,
as they must be if they are to represent no', they
show no reasonable trend. It can be assumed

that the variations are due to experimental
uncertainties, and as the value of nP the arith-
metical average may be taken: no' ——2.6.

From these data it is possible to calculate the
dielectric constant. The electrical properties of
a material like silicon depend on the bound
electrons and on the free or conduction electrons.
For the dielectric constant as used in space
charge formulae, the contribution of the con-
duction electrons is to be omitted, as the con-
tribution of these electrons to the electric field

has already been taken into account in the space
charge, and would be counted twice if it were also
included in the dielectric constant.

Placing v~ in (6) equal to zero, one finds that the
expression for the dielectric constant at low fre-

quency becomes ¹'
( 1df

& =no + ' — dv.
mme' ~ 7' dv

Graphical integration of the second term leads
to a value of 9.9, and therefore to

e = 12.5.

Apart from the uncertainty of the optical data,
which is difficult to judge, the accuracy of e is
estimated to be &0.5.

In the preceding, any inHuence of the con-
duction electrons on the optical properties has
been completely omitted. If these are completely
free, their contribution to n' would be —(X~e')/
(mme )1/v With Nq =6X10', v =20,000, the
value of the above is —0.024, which is below
experimental accuracy.

12

-6

16000
I

24000
I

32000
I

40000

If the refractive index n is known at zero fre-

quency, the dielectric constant c can be found
from

lim n'=&.
v-+0

WAVE NUMBER

FIG. 3. Observed n' —n'a' and computed value of integral
(7). N in the figure should have been n.

Quantitative investigation of the electronic
structure of solids has been confined largely to
studies of the structure of metallic and ionic
crystals. The atoms which form valence crystals
have so many outer electrons which are affected
appreciably by entrance into the crystalline
state that computation involved in determining
approximately the electronic structure becomes
difficult. As a consequence of this difficulty, the
work on valence crystals has not been extensive,
and no band structure studies of the silicon
crystal have been made. In this section, a method
of quantum mechanical approximation is to be
used to see if the origin of the observed absorp-
tion of silicon can be found in the band structure
as given by this approximation.

A method of obtaining approximate solutions
of the Schrodinger equation which has been used
successfully for valence crystals is the well-known
method developed by Wigner and Seitz' and
extended by Slater. ' Wigner and Seitz observed
that in a crystal having a high degree of rota-
tional symmetry relative to the nucleus, the
potential field acting on an electron in the
neighborhood of the nucleus is spherically sym-

E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
40, 509 (1934).' J. C. Slater, Phys. Rev. 45, 794 (1934); Rev. Mod.
Phys. 0, 209 (1934).



330 JOSEPH F. MULLANE Y

metrical to a good approximation. As in the case
of isolated atoms, the Schrodinger equation can
be solved by separation of variables and by
numerical integration of the radial equation for
the radial function. Each nucleus in the lattice
can be considered to be the center of a roughly
spherical cell which is bounded by planes so that
together with the cells about other nuclei it will

fill all space. The wave function for the entire
lattice can be obtained by solving the Schrodinger
equation in one of the cells, subject to certain
conditions at the cell boundary. This method
was used in the determination of the electronic
energy bands of the diamond by Kimball" and

by Hund" and Mrowka. "
The structure of the silicon crystal like that

of the diamond is face-centered cubic with two
atoms in the unit cell; the edge of the unit cell
is 5.42A in length, " and the distance between
nearest neighbors is 2.35A or 4.44 Bohr radii. As
in the work of Kimball, "one atom of the unit
cell is considered to be at the origin of a Cartesian
coordinate system and the other at the point
(a, a, a); the entire lattice may be formed by
translating these atoms of the unit cell by vectors
of the form n~v~+n2v&+rs3v3 where the com-
ponents of v1 are 0, 2a, 2a; those of v2 are 2a,
0, 2a; and those of v3 are 2a, 2a, 0; and where

n&, n2, and n3 are arbitrary integers.
The Wigner-Seitz polyhedron for silicon is

made up of a tetrahedron formed by the planes
bisecting perpendicularly the lines joining the
atom to its four nearest neighbors. The corners
of this tetrahedron are cut off by the planes
bisecting perpendicularly the twelve lines to the
next nearest neighbors. The result is a sixteen-
sided polyhedron having four large hexagonal
faces."

As there are two atoms in the unit cell of
silicon, it is necessary to consider the be-
havior of wave functions in two Wigner-Seitz
polyhedra simultaneously. The polyhedra sur-

rounding the two atoms of the unit cell are
identical, but are oppositely oriented. The wave

"G. E. Kimball, J.Chem. Phys. 3, 560 (1935).We often
use Kimball's notation."F.Hund, Physik. Zeits. 30, 888 (1935).

'2 F.Hund and B.Mrowka, Ber. d. Sachs. Akad. d. Wiss.
math-phys. Kl. 8'7, 185 (1935).' H. KQstner and H. Rerny, Physik. Zeits. 24, 25 (1923).

'4 A drawing of this polyhedron is presented in reference
10.

I ABLE I. Experimental data

h in A 5780 5460 4360 4060 3660 3350 2810 2540
v 17300 18300 22930 24630 27320 29850 35600 39370
11 K 3.5 3.9 9.4 11.5 12.5 11.0 7.9 3.7

TABLE I I. Oscillator strength.

16000 18000 20000 22000 24000 26000 28000 30000 32000
df
dv

&(106 15 20 30 50 75 90 96 93 89

36000 38000 40000 41700
d&

)&10~ 78 59 37 15
Qv

TABLE III. Comparison of experimental and theoretical
data for n2 —n2~2

V]
~2 ~2@2

Integral (7)
Difference

3623
27600

10.0
4.7
5.3

5451 4286 2998
18300 23300 33300

17.5 17.6 —6.8
16.8 13.3 —8.1
0.7 4.3 1.3

function can be considered to be made up of an
even part U' and an odd part U". The even
part U' remains unchanged in sign in going from
the midpoint of a hexagonal face of one poly-
hedron to the midpoint of the diametrically
oppositely oriented face of an adjacent poly-
hedron; the sign of the function and the orien-
tation of the face in each case are determined
using a coordinate system having its origin at
the center of the polyhedron being used. The
odd part U" changes sign in such translations.
For convenience, the wave function U is written
in the form

U= U&+iU"

In the study of the electronic structure of the
diamond, it was necessary to consider only the
I.-shell electrons in which only s and p states
exist. A combination of eight wave functions and
the eight simple boundary conditions of con-
tinuity of the wave function and its normal
derivative at the four pairs of midpoints suf-
ficed. In silicon, the electrons of interest are in

the 3f shell, and it can be expected that d states
will deserve consideration.

The geometry of the Wigner-Seitz polyhedron
for the diamond lattice is such that only the
centers of the four hexagonal faces can be used

for application of the boundary conditions. Any
combination of wave functions which is to take
into consideration the s, p, and d levels must
contain more than eight functions, the maximum
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that cari be determined by use of the usual
boundary conditions. It is necessary, therefore,
to introduce additional boundary conditions.

It was first attempted to include all five 3d
levels in the combination of wave function. Ac-
cordingly, the odd and the even part of the total
wave function were made up of the 3s function,
the three 3p functions, the five 3d functions, and
one 4f function. As there were four points in each
polyhedron at which the boundary conditions
could be applied, it was thought that the number
of terms in the total wave function must be a
multiple of four; it was for this reason that an

f function was added to the odd and even parts
of the total wave function to give twenty coef-
ficients. Five boundary conditions'at each of the
four joining points were sought. The boundary
conditions selected were the usual conditions of
continuity of the value and of the first normal
derivative of the functions; the new conditions
were the continuity of the second normaf de-

rivative, and the continuity of the two com-
ponents of the tangential derivative. "Solutions
of the twenty simultaneous equations were
sought for the condition" 3II=L =0. It was found
that the equations were not all independent and
would not give twenty solutions. No way of avoid-
ing the difficulty was found, and it was decided to
abandon the attempt to use twenty functions.

A revision of the boundary conditions was then
made in an attempt to get as many independent
equations as there were functions. The revised
boundary conditions were the continuity of the
function and of first, second, and third normal
derivatives. The total wave function was as
before, except that only the three 3d functions
having the surface harmonics xy/r', ys/r', xs/r',
were used. Independent solutions were found for
the condition 3E=L=O, but when numerical
values were calculated, the solutions appeared
completely unreasonable. It appears that the con-
tinuity of normal derivatives of order higher than
the first are not satisfactory boundary conditions.

The conditions of continuity of the second and
third normal derivatives were then replaced by
the continuity of the two components of the
tangential derivative. The same combination of'

"Continuity of the tangential derivatives was suggested
as a boundary condition by W. Shockley, Phys. Rev. 52,
866 (1937).

wave functions was used as in the preceding case.
The first attempt at solution was made for the
condition L=3I=O, but it again appeared that
there were too few independent equations to
determine the s, P, and d function coefficients.
However, when the equations were examined for
the condition which Kimball" uses, X=L, it was
found that fourteen unknowns could be deter-
mined from the sixteen equations. Accordingly,
the 4f functions in the odd and in the even part
of the total function were dropped, and the
values of the coeAicients of the remaining four-
teen s, p, and d functions were determined from
the sixteen equations. As this procedure was used
as the basis of the numerical work which follows,
the solution is given in detail.

The boundary conditions of continuity of the
value of the wave function, of the normal de-
rivative, and of the two components of the
tangential derivative may be stated more ex-
plicitly as:"
"The form of the differential operator in the expressions

giving the components of the tangential derivative may
be developed as follows:. at the midpoint xj, y~, st of a
hexagonal face of the polyhedron let there be a normal
vector with direction cosines xj/r&, yj/r j, and s&/r&, where
rI is the distance to the origin, which is at the center of
the polyhedron. The normal vector to the midpoint of the
face will pass through the origin. In the plane of the face
let there be a second vector through the midpoint with
components dx, dy, and ds and direction cosines dx/ds,
dy/ds, and ds/ds, where ds= (dx'+dy2+ds')&. Then from
the familiar relationship

x&/r& dx/ds+yj/rj. dy/ds+s&/r& ds/ds =0 (A)
it follows that

x&dx+y&dy (8)
~1

The total differential of F(x, y, z) at x&, y&, s& is

dF=—dx+ —dy+ —dz.
BF BIi BIi

(C)Bx By Bs

Using (B), we may then express the tangential differ-
ential as

d P= ———' —dx+ ————dy. (D)

The wave functions listed in Table IV involve x, y, s,
and r

Ii (x, y, s) =P(x, y, s, r)
where r = (x'+y'+s')&. The partial derivatives of the wave
function then are:

(E)

(
8 8$ y 8$+-—
~y ~y ..., , r ~r, ,„,„

~
8 8$ s 8P

(G)Bs Bs @yr r Br ~, y g

The differential quotients enclosed in square brackets
I j refer to differentiation of the variable as it appears
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Ug+i U"= e'&" vl (U'+i U"),

U"+i U'"= e'—~"'&(U"+iU'"),

( 8 Xq 8
i(U'+i U")

&ax s, as)

(9b)

( 8 xq 8
IUg

8X Zi 8Z )

( 8 Xl 8

BX Zy BZ )

( 8

E ay

size�)

( 8 Pq 8
fU-

E ay s, Bsi

t' 8 xl 8= —e'&~ l
~

————~(U +i U"), (9c)
Bx sl Bs )

U" U
= tan

U" Ug

k V
(10)

( 8 yl 8

)

——— )(U +iU-)
(ay s, as)

( 8 py t9
= —e""' '~ ————

~
(U'+i U ). (9d)

dy sl Bs

In the boundary conditions (9c) and (9d), the
differentiation set in square brackets [ ] involves
only the variable indicated as it appears ex-
plicitly in the function operated upon; r is con-
sidered as though it were independent of x, y,
and z.

In the above, k is the wave number vector, and
V is the translational vector from the midpoint
of one hexagonal face to the midpoint of the
diametrically oppositely oriented hexagonal face
of an adjacent polyhedron. By combining terms,
Eqs. (9) reduce to:

explicitly in the function operated upon, with no regard
to the dependence of r on x, y, s.

On substitution of (E), (F), and (G) in (D), the tan-
gential differential at the point x1, y1, z1, takes the form

x1 BP x1 8P z1x1dF= - —+—————————dx
8x r1 8r z1 8s r1z1 8r

Bf. y1 8$ yl 8$ z1y1 8$+ —+—————————dy (H)ay r1 ar z] as r1 s1 ar

When the expressions by which dx and dy are multiplied
fulfill the condition of continuity at a face of the poly-
hedron, the tangential derivative is continuous in any
direction and the function is continuous not only at the
midpoint but in its neighborhood. For want of a better
name, the coefficients of dx and dy are referred to in the
text as the components of the tangential derivative.

As can be seen from (H), the operators involved in
these tangential boundary conditions are

and

Thus the so-called components of the tangential deriva-
tive do not involve explicitly diEerentiation of P(x, y, z, r)
with respect to r.

Wave
function

43
44
45
46

fs
49
$10
$11

$13
$14

Value in polyhedron
about (0, 0,0)

S(r)
v3 (x/r) P (r)
v3 (y/r) P(r)
V3(s/r) P(r)
3(xy/r') D (r)
3(yz/r') D(r)
3 (xs/r2) D (r)

Vr(x/r) P(r)
~(y/)P()
V3 (s/r) P (r)
3(xy/r2) D(r)
3 (ys/r') D(r)
3(xz/r2) D(r)

Value in polyhedron
about (a, a, a)

—S(r')
V3(x /r')P(r')
~3(y'/r') P (r')
VS("/r')P(r')—3(x'y'/r") D(r')—3(y's'/r") D (r')—3(x's'/r") D (r')
S(r')—vS(x'/r )P(r )—~3(y'/ ')P( ')
—V3(s'/r')P(r')
3 (x'y'/r") D(r')
3(y'z'/r") D(r')
3(x's'/r'2) D(r')

In the above, the primed quantities refer to a
coordinate system with origin at a, c, c and the
unprimed quantities to a system with origin at
0, 0, 0. If the boundary conditions are applied
to these two adjacent cells, the midpoints of the
oppositely oriented faces and the translational
vectors V involved are: Pl and Pl with V =0 (the
faces coincide); Pl and P6 with V=vl (com-
ponents 0, 2a, 2a); Ps and P& with V =v,
(2a, 0, 2a); and P4 and Ps with V =vl (2a, 2a, , 0).

To satisfy the boundary conditions at the mid-
points, the wave equation

U =zalea'1+ za2$'2 +zaltP3+ 1a4A/4+ zagged

+ia~f6+ialg&+ bA's+44's+&a4'lo

+I 44'll+ I 54 12+b6413+ flr$14

The joining points of the polyhedron about the
atom at 0, 0, 0 are: Pl ——(a/2, a/2, a/2), P& ——(a/2,
—a/2, —a/2), Pl ( —a/2, ——a/2, —a/2), and
P4 ——( —a/2, —a/2, a/2). For the polyhedron
about the atom at (a, a, a) the joining points are

P5 = ( —a'/2, —a'/2, —a'/2) or (a/2, a/2, a/2),
P~ ——( —a'/2, a'/2, a'/2) or (a/2, 3a/2, 3a/2),
Pl ——(a'/2, —a'/2, a'/2) or (3a/2, a/2, 3a/2),
and
P8 = (a'/2, a'/2, —a'/2) or (3a/2, 3a/2, a/2).

TABI E IV. Values of independent wave functions.
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was built up of the fourteen independent func-
tions whose values in the two polyhedra are
listed in Table IV.

In Table IV, S(r), P(r), an4I D(r) are the
radial parts of the wave functions; x, y, and s are
Cartesian coordinates with origin at (0, 0, 0) and
r is the distance from (0, 0, 0); x', y', s', and r'
are similarly related to the point (Q, Q, Q).

The equations obtained from the boun/ary
conditions are:

s(Q1)+p(Q2+Q3+Q4)+d(Q5+Q6+Q7) =0, (11a)

$(Q1)+p(Q2 Q3 Q4)+d( Q5+Q6 Q7)

+K[s(b1)+p(b2 —b3 —b4)

+d( —b5+b6 —by)] =0, (11b)

$(Q1) +p( Q2+Q3 —Q4) +d (—Q5 Q6+—Q7)—

+L[s(b1)+p(—b, +b3 b4)

+d( —b5 —b6+b,)]=0, (11c)

s(Q1)+p( Q, Q, +—Q4)—+d(Q, Q6 Q7)— —

+ M[s(b, ) +p( —b2 —b3+ b4)

+d(b5 —b6 —b7) ]=0, (11d)

s'(b1)+p'(b2+b3+b4)+d'(b5+b6+b7) =0, (11e)
—KLS'(Q, )+p'(Q2 Q, Q4)——

+d ( Q5+Q6 Q7)]+S (bl)

+p(b2b3b4)+d(b5+b6b7)0)(1 1f)

Lr s'(Q, )—+p'( Q, +Q, —Q ,)—.

+d (—Q5 —Q6+Q7)]+S (b1)

+p'( —b2+b3 —b4)+d'( —b5 —b6+b7) =0, (11g)
—M[s'(Q, ) +p'( Q, Q,+Q4)——

+d'(Q5 Q, Q,)]+s'(b—,)—
+p'( —b, —b, +b4)+d'(b, —b, —b, ) = 0, (11h)

p(b2 —b4)+d(b5 —b6) = 0, (11i)
—KLp(Q, +Q4) +d( —Q5 —Q6) ]

+p(b2+b4)+d( —b5 —b6) =0,
—L[p(Q2 Q4)+d(Q5 —Q6)]+p(b2 b4)

+d(b5 b6) =0, (1—1k)

M[/(Q2+Q4)+d( —Q5 Q6)]-—

+p(b2+b4)+d( —b5 —b6) =o (11I)

p(b, —b4)+d(b5 —b,) =0, (11m)

K—)p(Q3 Q—4) +d(Q5 Q—7)]
+p(b3 —b4)+d(b5 —b7) =0, (11n)

L[—p(Q3+Q4) +d( Q, —Q, )—]
+p(b3+b4) +d( —b5 —b7) = 0, (11o)

M/—p(Q3+Q4)+d( Q, —Q7)]-

+p(b3+b4)+d( —b5 —b7) =0. (11p)

In Eqs. (11) and (18), the Q's and b's are fac-
tors, not arguments.

In the above equations,

s=S(R), s'=(dS/dr), 74,

p =P(R), p' = (dP/dr) „72,
d =D(R), d' = (dD/dr) „73,

where R is the distance from the center of the
polyhedron to the midpoint of the hexagonal
face. The definitions 'of X, I, and 2lf are

K=tan (k v1/2), L=tan (k v2/2),

and M=tan (k v3/2).
Equations (11a) to (11d) express the condition

of continuity of the wave function itself at the
four selected pairs of points, (11e) to (11h) that
of the continuity of the normal derivative, (11i)
to (111) that of the "26 component" of the
tangential derivative, and (11m) to (11p) that
of the "y component. "

To make solution of these equations feasible,
propagation of electron waves is restricted to the
plane x=y, i.e. , k, =0. Then, as in Kimball's
solution, " K =L. The sixteen simultaneous
equations can be broken into two sets of eight
equations. The first set, obtained from the
boundary conditions of continuity of the value
and of the normal derivative, contains s, p, d,
s', p', and d', and the fourteen constants. The
second set of eight equations, obtained from the
boundary conditions of continuity of the com-
ponents of the tangential derivative, contains
only p and d and the twelve constants associated
with p and d. The equations of this latter set are
used to obtain the coefficients of d in terms of
p/d and the coefficients of p; then the coefficients
of d are eliminated from the first set.

As the first step in this procedure, '~Eq. (11I)
was subtracted from (11j) with the result

(M K) [p(a2+Q4) —d(Q—5+Q6)] = 0
or

pQ2 —dQ6 = —(pQ4 —dQ5) .
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By subtracting (11i) from (11k) we find that

pQ2 —.dQ6 = pQ4 —dQ5.

Obviously, then,

from which
pQ2 —dQ6 = pQ4 —dQ5 = 0

pQ2 = dQ6

PQ4 =dQ5.

(12)

(13)

By use of the above relationships in (11j) and
(11k) it is found through similar reasoning that

and
pb2 ——db6

pb4 ——db5.

(14)

In the same way, (11m) and (1in) give the
relationships

(16)

(17)

pb3 ——
dbms

pQ3 =dQ7 ~

and

Equations (11o) and (11p) are identically ful-
filled.

The first set of eight equations was then
simplified by substituting for the coefficients of d
their values in terms of the coefficients of p. These
equations become

$(a,)+2P(a2+a, +a4) (18a)

( p~1—L $'(~&)+I P'+ I(—n2+n~ —n4)d)
'(, P&1+ '(b,$)+~ p'+ ~(

—b, +b, —b,) =0, (l.88)
d )

$ (Gy) +2p (g2 —c3—G4)

+K[$(b,)+2P(b2 —b3 —b4)] =0, (18b)

$(Gy) +2p( —G2+Q3 —G4)

+LL$(b&)+2p( —b, +b3 —b4)] =0, (18c)

$(a,)+2P( n& a&+a4)— —
+ML$(b&)+2p( —b2 —b3+b4)] =0, (18d)

pd'p
$'(b )+( p'+ ~(b +b +b) =0; (18e)di

Pd&—K $ (+i) +
~ p + —

~
(&2 —na —&c)a)

I', pd l
+$'(br)+~ p'+ ((b2 —b3 —ba) =0, (18f)d)

Up to here, no use has been made of the restric-
tion %=I.. These equations are identical with
Eqs. (1a) to (1h) in Kimball's paper" on the
diamond, with p and p' of Kimball's equations
replaced, respectively, with 2p and p'+(pd')/d.
Kimball has obtained a solution of these equa-
tions

—(10K2m2+8K2+8Km+10~'+16)
(19)3X'M'+4K' —4%M+3M'

where co = (p'+1)/y and p =$p'/$'p. This solution
can be used for Eqs. (18) if p is redefined as

$ (p'/p+ d'/d)

2$'
(20)

Through use of Eq. (19), co can be evaluated
directly from k, and since co is known through
numerical computation as a function of E, the
relationship of E and k can be determined.

Determination of B from k involves the evalu-
ation of s, s', p, p', d, and d'. These values were
obtained through numerical integration of the
Schrodinger equation; the details of this com-
putation are given in Appendix I. A plot of cu

against p gives a double-branch curve only the
negative branch of which, as inspection of Eq.
(19) will show, need be considered. As p ap-
proaches 0 and —~, co approaches —~ as a
limit; this corresponds to E=M=O. The values
of $, $', p, p', d, and d' which will make

~
ar

~

= ~
form the limits of the bands at which k =0; these
values are $=0, $'=0, P'/P+d'/d=0, P=O, and
d =O. The negative branch of co has a maximum
of —2 when p, = —1, which corresponds to the
place in the band at which k has the highest
value. At p = —1, $/$'+2/(p'/p+d'/d) =0.

When Eq. (19) is used in the process of finding
E as a function of k, it is found that to each, value
of k there are six values of E. As shown in Fig. 4,
at the observed half-internuclear distance the
lowest of these values lies in the region between
curve (I) $' =0, (k =0), and (II) the lowest

(, p~'l—M $'(ui)+i p'+ i(—a2 —ca+a~)d)
I', p&'&

+$'(bi)+i p'+ i( —
bm

—b~+b4) =0. (18h)di
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branch of s/s'+2/(p'/p+d'/d) =0, (k= ~); the
second value is in the region bounded by this
latter curve and (IV) the lower branch of p'/p
+d'/d=0, (k=0); the region of the third value
is bounded by (III) s =0, and by (V) the middle
branch of s/s'+2/(p'/p+d'/d) =0, (k= ~); the
fourth value is in the region bounded by (V),
and by (VI) p=0, (k=0); the regions of the
fifth and sixth values are not shown in Fig. 4
since they are of such high energy that they are
of little interest. The region of the fifth value
lies between the upper branch of p'/p+d'/d =0,
(k =0), and the highest of the three branches of
s/s'+2/(p'/p+d'/d) =0 (k= ~); the region of

VI .

V

IV

IX
UJ
CO
O
& -0.8-

-I.2-

the sixth value is between, this latter branch and
the curve d=0, (k=0).

In addition to the above six band regions,
degenerate bands arise from Eqs. (3a) and (3b)
in Kimball's paper. " These equations may be
rewritten in the form

2p(a2 —a3) +K2p(b2 —bs) =0,

K(p'+ pd'/d) (a—2 as)+ (p'+ pd'/d—) (b2 b3) =o—
They are satisfied by any value of k if p =0, or
if p'+ (pd')/d =0.

The values of the coefficients were determined
for the case P =0, and are found to be

a4 = [ M/(2K M) ](a2+—a&), —

bg = [K/(2K —M) ][(K iV)a, Ka,], —
(21a)

(21b)

I

I
i i

2
R iATOMIC UNITS)

FIG. 4. Energy bands of silicon as a function of R
(one-half the distance between nearest neighbors). The
curves are: I, s' =0; II, s/s'+2/(p'/p+d'/d) =0; I I'I, s =0;
IV, (doubly degenerate) p'/p+d'/8 =0; V, s/s'+2/(p'/p
+d'/d) =0; VI, (doubly degenerate} p =0.

a4 = —(am+ as) ~ (22a)

b, = [1/(MK)][—Ka, +(M —K)a3], (22b)

b3= [1/(MK)][(M —K)a& —Ka3], (22c)

b4 = [1/K I['a2+aa]. (22d)

Thus two bands of zero width follow p=0, and
two follow each of the two branches of p'/p
+d'/d =0.

Two additional bands of zero width can be
shown to follow the curve d=0. To determine
this it is necessary to go back to the original con-
ditions, and to examine them for this special
case. If d =0, P/0, it follows from relationships
(11j) to (11p) derived from the continuity of the
components of the tangential derivative that
92 Q3 G4 —52 = b3 = b4 =0. By use of these values
in Eqs. (11a) and (11b), we find that sai ——0, and
sbi ——0; it follows that Eqs. (11c) to (11h) may
be written as

d'(b, +b6+b, ) =0, (23a)

Kd'( as—+a6 a—r)+d'( —b~+b, b—,) =0, (—23b)

—Kd'( ai, a6+ai)—+d'—(—bq —bq+bz) = 0, (23c)

—Md'(ai, ag ar) +d'(bg —b—, b—) = Q. (23d—)

Through simple algebra it may be shown from
the above that

bs = —(be+be),

ag ———(1/K) (bg+ br),

(24a)

(24b)

a6 ———(1/2) [(1/K —2/M) (b6+ br)

—(1/K) (bg —by) ], (24c)

a, = —(1/2) [(1/K —2/M) (b6+ br)

+ (1/X) (b6 —br) ]. (24d)

Thus it is possible to express all but two of the
unknowns in terms of the others. From this it is
seen that two bands of zero width are contained
in the solution d =0.

Certain essential features of silicon can be
understood qualitatively through study of Fig. 4.
One would expect that at absolute zero the eight

b =[ K—/(2K M—)][Ka (K— M—)a ], (21c)

b, = [KM/(2K —M)][a,jag]. (2id)

For the condition p'/p+d'/d =0, the coefficients
are



336 JOSEPH F. M ULLANE Y

electrons of the unit cell, four electrons to the
atom, at the observed half-internuclear distance
would fill completely the two lower bands and
the two degenerate bands following curve IV.
With no partially empty bands, silicon would not
conduct electricity at lower temperatures.

That silicon just misses being a metal can
also be seen in Fig. 4. At half-internuclear
distances greater than 3.5, the two degenerate
bands following curve IV touch the empty
bands bounded by curves IV and VI. If silicon
could exist at these increased half-internuclear
distances, it would be a metal of good conduc-
tivity.

To determine the extent by which the band
structure obtained by including consideration of
three 3d functions, besides giving a d band of
high energy, di8ered from the band structure
obtained by using Kimball's solutions" in which

'no d functions were considered, the values of s,
s.', p, and p' calculated for silicon were used in
Kimball's solutions. The results are shown in
Fig. 5 as a plot of energy against half-distance
between nearest neighbors. Kimball's solution
p'=0 (curve IV of Fig. 5) replaces p'/p+d'/d =0
(curve IV of Fig. 4). The curve p' =0 is signifi-
cantly lower than the curve p'/p+d'/d=0; at
the observed half-internuclear distance, the
energy difference of curves III and IV is 0.44
Rydberg units more in Fig. 5 than it is in Fig. 4.

Experimental information about the width of
the llI band of silicon is furnished by the soft
x-ray emission spectra obtained for silicon by
O'Bryan and Skinner. " The emission bands
represent transitions from the broad M band to a
relatively sharp L, level, so that the width of the
observed x-ray band is approximately equal to
the energy width of the 3f band. The width of the
x-ray band of silicon was found to be 19.2~2.5
volts. The width of the band of Fig. 4 at the
observed half-internuclear distance is about 16
volts; that of Fig, 5 is about 9.5 volts. The
photometer curve of the x-ray band is smooth
with a gradual rise and a more abrupt fall,
indicating more transitions of high energy elec-
trons of the 2II shell than of low energy electrons.
One might expect that there would be a well-
defined large peak toward the high energy end

'~ H. M. O'Bryan and H. W. B. Skinner, Phys. Rev. 45,
370 (1934).

O4
CO

L
Z
D
C9

UJ
d)
O
a -O.e-

I
I

2
1

3
R (ATOMlC UNITS

FIG. 5. Energy bands of silicon as a function of R
(one-half the distance between nearest neighbors), using
Kimball's solution for the diamond lattice. The curves are:
I, s'=0; II, s/s'+p/p'=0; III, s=0; IV (doubly degen-
erate), p'=0; V, s/s'+p/p'=0; VI (doubly degenerate)
p=0.

of the x-ray band corresponding to transitions
from the narrow bands (of zero width in our
approximation) following curve IV of Fig. 4. It
has been shown, "however, that the optical transi-
tion probability is not simply related to the level
density in a given energy region.

Unfortunately the results expressed in Fig. 4
do not agree quantitatively with the conclusions
drawn in the first part from the optical properties
and the intrinsic conductivity. The op tical
properties lead us to expect an energy gap
between the full band and the lower conduction
band of not more than 1.5 to 2.0 volts, or about
0.15 Rydberg unit; the conductivity measure-
ments point in the same direction. The energy
gap in Fig. 4, as estimated by extrapolation, is at
least 0.8 Rydberg unit.

It is interesting to compare this energy gap
with that for the diamond and that obtained for
silicon using Kimball's solutions (Fig. 5). For
diamond (2s and 2p orbits) Kimball" has found
a gap of 4 or 5 Rydberg units, which is also much
too high, since diamond absorbs at about 1800A,
and should have a gap of about 0.5 Rydberg
unit. Figure 5, which takes only 3s and 3P orbits
into account, gives an estimated energy gap for
silicon of about 1.3 Rydberg units. The intro-
duction of the 3d orbits brings this down to about
0.8 unit.

"H. Jones, N. F. Mott, and H. W. B. Skinner, Phys.
Rev. 45, 379 (1934).
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The lowest average electron energy of the bands
of Fig. 4 for the region between 2 and 3 units of
length is found to be —0.55 for r=2.35; the
observed half-distance between nearest neighbors
is r = 2.22 atomic units. In Fig. 5, obtained from
Kimball's solutions, the point of lowest average
e1ectron energy as given by (25) is about —0.85
Rydberg unit, occurring almost exactly at the
observed half-internuclear distance of 2 ~ 22 atomic
units.

If we trust the general character of our results
apart from the quantitative side, we can say
that the absorption band consists of several
overlapping bands. There is first the possibility
of an absorption starting in the doubly degener-

V Vl

IV

FREQUENCY

Fzo. 6. Schematic plot of absorption bands of silicon based
on electronic structure as shown in Fig. 4.

' W. Shockley, Phys. Rev. 52, 866 (1937)."This expression is the weighted average of the energies
of the occupied bands and is obtained by taking one-fourth
the sum of: the energy of the two degenerate bands
following curve IV, 2Bzv, the average energy of the band
between curves II and IV, approximately ~(&zv+&z);
ahd the average energy of the band between curves II
and I, approximately 2(Zzz+Bz).

This disagreement of the calculated energy
gaps with experiment is probably explained by
Shockley's statement" that the method of Wigner
and Seitz is fairly good for the ground state, i.e. ,

the full bands —in Fig. 4 the region between
curves I, II, and IV—but leads to completely
erroneous results for excited states, i.e., the
region between curves I II, V, and VI ~ It must
be expected that in reality curve III lies much
lower on the left and is much Hatter.

The average electron energy for a given half-
internuclear distance may be computed from
Figs. 4 and 5 by means of '

~A. =O 625Eiv+0 250@i+0125Ez. (25)

ate level IV; since level IV contains all values
of k, transitions can occur from IV to any level
in the range III to VI ~ Since the electron level
density is usually highest near the middle of an
allowed band, and since VI is doubly degenerate,
the absorption band starting in IV should have
the following character: The long wave limit is
due to a transition from IV to I II; then, to
shorter wave-lengths, follow transitions from IV
to the interior of the band between III and V,
with first increasing, then decreasing intensities,
until V is reached; the end state moves then into
the band between V and VI, with a maximum
intensity for an end state near the middle be-
tween V and VI, whereupon the intensity de-
creases again. At the short wave-length limit,
there is almost a strong line, due to transitions
between the degenerate levels IV and VI ~ This
band, therefore, should have its long wave limit
for transitions between IV and III, an intense
short wave limit due to transitions between IV
and VI, and two maxima in between.

Four other bands in the same region, probably
of much smaller absorption coefficient because of
the spread of the filled levels, are brought about
by electrons coming from the two bands between
I and IV and going to the region between III
and VI ~

There should be one band with a long wave
limit due to transitions between IV and III,
which coincides with the long wave limit of the
band described before, and a short wave limit
due to transitions between I I and V; imme-
diately adjacent is a band with a long wave
limit due to transitions between II and V and a
short wave limit due to transitions between I and
VI. This extends much farther toward the ultra-
violet than does the band originating in the
degenerate level IV.

In addition to these, there should be a band
with a short wave limit due to transitions be-
tween II and V and with a long wave limit due
to transitions between IV and VI ~ Finally, there
should be a band where the long wave limit is
due to a transition between I I and V and the
short wave limit to a transition between I and
III ~

A schematic drawing of the absorption as
brought about by these transitions is presented
in Fig. 6. It is, of course, impossible to give
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TABLE V. Values of Z„and of unnormalized wave functions P at various energies.

Wave
function

Negative
energy
(Rydberg
units)

r Z3

3$

0.0

3$ 3$ 3$ 3$ 3$ 3P 3P 3P

0.2 0.30.2 0.3 0.6 0.9 1.2 0.0

3P 3d 3d 3d 3d 4f 4f 4f

06 00 02 03 06 00 03 06

0.0 14.00
0.01 13.52
0.02 13.06
0.03 12.62
0.04 12.21
0,05 11.83
0.06 11.48
0.0.7 11.15
0.08 10.84
0.09 10.56
0.10 10.29

0.12 9.79
0.14 9.34
0.16 8.92
0.18 8.52
0.20 8.15

0.24 7.46
0.28 6.83
0.32 6.26
0.36 5.76
0.40 5.32
0.44 4.94
0.48 4.60
0.52 4.31
0.56 4.05
0.60 3.83
0,68 3.47
0.76 3.19
0.84 2.97
0.92 2.79
1.00 2.63
1.08 2.49
1.16 2.36

0.00
0.87
1.50
1.94
2.21
2.35
2.37
2.31
2.17
1.98
1.73

1.15
0.49—0.20—0.88-1.52

-2.66-3.53-4.14—4.48—4.60-4.52—4.27—3.90-3.42-2.86-1.59-0.21
1.19
2.53
3.78
4.90
5.88

0.

—2.66—3.54—4.14—4.49—4.61-4.53—4.30—3.93—3.46—2.90—1.64—0.27
1.11
2.45
3.70
4.83
5.82

—2.66—3.54—4.14—4.49—4.61—4.54—4.31—3.94—3.47—2.93—1.68—0,32
1.05
2.38
3.62
4.75
5.75

—2.66—3.54—4.15-4.50—4.63—4.57—4.34—3.99—3.53—3.00—1.77—0.43
0.94
2.26
3.51
4.66
5.68

—2.66-3.54—4.16—4.51—4.65-4.59—4.38-4.04—3,59—3.07
'—1.87—0.55

0,80
2.11
3.36
4.51
5.56

—2.67—3.55—4.17—4.53-4.67—4,62-4.42—4.08—3,65—3.14-1.95—0.66
0.67
1.98
3.23
4.39
5.46

0.00
0.01
0.03
0.07
0.12
0.18
0.24
0.31
0.38
0.45
0.52

0.66
0.79
0,92
1.03
1.13

1.29
1.39
1.44
1.44
1.41
1.34
1.25
1.14
1.01
0.86
0.55
0.21—0.13—0.47—0.80

—1.40

1.44
1.44
1.41
1.35
1.26
1.15
1.02
0.88
0.57
0.24—0.09—0.43—0.75—1.64—1.36

1.44
1.45
1.42
1.35
1.26
1.15
1.03
0.89
0,59
0.26—0.08—0.41-0.73

—1.33

1.45
1.45
1.43
1.37
1.28
1.18
1.06
0.92
0.63
0.31-0.01-0.34-0.66—0.96—1.26

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01

0.01
0.02
0.02
0.03
0.04

0.06
0.08
0.11
0.14
0.17
0.21
0.24
0.29
0.33
0.38
0.48 0.48
0.59 0.59
0.70 0.71
0.83 0.84
0.95 0.97

0.48
0.60
0.72
0.85
0.98

0.49
0.61
0.73
0.87
1.01

1.22 1.26 1.27 1.33

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.01
0.01
0.01
0.02
0.02
0.03
0.04
0.06
0.08
0.12
0.16
0.20
0.26
0.33

o.o6 "~ o.o6
0.08 F 0.09
0.12 0.12
0.16 0.16
0.21 0.21
0.27 I 0.27
0.33, 0.34

1.32 2.13
1.48 1.93
1.64 1.75
1.80 1.60
1.96 1.46
2.12 1.34
2.28 1.24
2.44 1.17
2.60 1.10
2.76 1.05
2.92 1.02
3.08 1.00
3.24 1.00
3.40 1.00
3.56 1.00
3.72 1.00

7.36
8.24
8.57
8.44
7.92
7.09
6.04
4.81
3.47
2.05
0.59-0.88
2 033-3.75-5.11-6.40

7.37
8.36
8.83
8.86
8.54
7.93
7.11
6.12
5.01
3.82
2.58
1.30
0.00—1.29—2.57—3.83

7.33
8.36
8.90
9.02
8.80
8.31
7.62
6,76
5.80
4.75
3.64
2.50
1.33
0,15-1.03

7.36
8.54
9.28
9.66
9.75
9.62
9.32
8.90
8.40
7.84

6.65

5.41

4.18

7.32
8.64
9.59

10.23
10.64
10.89
11.04
11.14
11.22
11.31
11,45
11.64
11.91
12.26
12.71
13.27

7.30
8.77
9.92

10.83
11.58
12.25
12.89
13.57
14.34
15.23
16.30

—1,91
2 «32—2.63—2.85—2.98—3.04—3.04—2.98—2.87
2 073—2.55
2.33—2.10—1.84—1.56—1.26

-1.88—2.31—2.65-2.91—3,11—3.24—3.31—3.35-3.35
3032-3.26—3.18—3.09—2.97-2,84—2.69

—1.86—2.30—2.66—2,95—3.17—3.34—3.46—3.54

—3.64

—3.65

—3.61

—3.53

-1.79—2,26—2.67-3,02
3033—3.61-3.86-4.11-4.35—4.60-4.87—5,14—5.44—5.77-6.12—6.50

1.50 1.56 1.59
1.79 1.88 1.92
2.09 2.21 2.28
2,39 2.57 2.66
2.69 2.94 3.06
3.00 3.33 3.49
3.32 3.74 3.96
3.64 4.18 4.46
3.97 4.65 5.01
4.30 5.14 5.60
4.63 5.67 6.23
4.96 6,22 6.91
5.29 6.80 7.65
5.62 7.41 8.43
5.93 8.05 9.26
6.23 8.70 10.14

1.68
2.06
2.48
2.95

4.04

5,42

7.15

9.35

12.13

15.58

0.49 0.51 0.52
0.69 0.73 0.76
0.95 1.01 1.06
1.27 1.36 1.44
1.65 1.79 1.92
2.09 2,30 2.51
2.62 2.92 3.22
3.22 3.65 4.09
3.91 4.50 5.13
4.70 5.50 6.37
5,58 6.12 7.84
6.56 7.98 9.58

9.50 11.61
11.21 13.98
13.14 16,73

4.04 1.00
4.36 1.00
4.68 1.00
5.00 1.00

-8.70 -6.24—8,46—10.46—12.21

2.97
1.80
0.65—0.49

14.77
16.89
19.78
23.63

—0.63
0.02
0.67
1.30

-2.36—1.99—1.58—1.15

—3.42—3.28—3.12—2.95

7037—8.41—9.67—11.19

6.78 10.08 12.06 19.82
11.53 14.19 25.03
13.06 16.55 31.41
14.64 19.16 39.22

estimates of the relative strengths of these bands
without extensive calculations. "

The experimental data (Fig. 1) seem to show
that the absorption band is complex, but there
is no. sign of an absorption line due to transitions
between degenerate states IV and VI and no sign
of the long ultraviolet "wing" that should come
from transitions originating in the band between
I and II and ending in the band between V and
VI.
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APPENDIX

The field used in the numerical integration of the
Schrodinger equation is a self-consistent field in which no
account is taken of the correlations giving rise to exchange
energy. Since a modification of Hartree's method of ob-
taining solutions of the Schrodinger equation for the free
atom was used in calculating the solutions for the solid, m'

"An account of this method together with a discussion
of the error introduced by neglect of exchange may be
found in Chapter IX, F. Seitz, The Modern Theory of
Solids (McGraw-Hi11 Hook Company, Inc. , New York, 1940).
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the field of the core functions (with small changes) ob-
tained by McDouga112' through the simple Hartree self-
consistent field method was used in preference to the field
calculated more recently, " in which exchange terms were
considered. The core functions were estimated for neutral
silicon by comparing the core functions obtained by
McDougall for Si V with those obtained by Donley'4 for
Si IV and Si III and then applying small corrections. The
extrapolated values differed only slightly from the original
values; the error introduced by extrapolation is believed
to be far less than that brought in by other approximations.
To this core field was added three-quarters the field of a
combination of three 3p electrons and one 3s electron
normalized to 3.18 atomic units, the radius of the sphere

"J.McDougall, Proc. Roy. Soc. A138, 550 (1932)."W. Hartree, D. R. Hartree, and M. F. Manning,
Phys. Rev. 60, 857 (1941).It is noted here that the optical
term values calculated for Si IV and Si V from the field
with exchange do not agree as well with experiment as
those obtained by McDougall (reference 22) using the
wave functions found by methods neglecting exchange in
the wave functions but including exchange terms in the
expression for energy. The authors conclude that neglect
of exchange has two counteracting effects which may
balance each other.

'4 H. L. Donley, Phys. Rev. 50, 1012 (1936).

having the same volume as the cellular polyhedron of
silicon. In consideration of the symmetry of the silicon
lattice, the use of this spherically symmetrical valence
electron field (three-quarters the field of three 3p electrons
and one 3s electron) was thought to be preferable to use of
a non-symmetrical field of three valence electrons (the
field of two 3s electrons and one 3p electron, or of one 3s
and two 3p electrons), as would be used in Hartree's
procedure for obtaining wave functions for the free atom.
Successive approximations were made with energy values
for the 3s and 3P electrons approximately equal to those of
the free atom until the expected difference between initial
and final fields was not greater than about 0.01 at any
point. It was considered needless to seek greater accuracy
in the field than this since the other approximations
required in building up the wave function of the solid
introduce unavoidable error far greater than that brought
in by a field of this accuracy.

In Table V is presented, for various values of r, a tabu-
lation of Z„, the effective nuclear charge for potential, i.e.,

the point charge which would give, if it were placed at the
nucleus, the same potential at radius r as that of the actual
field. Also presented in Table V are the unnormalized
functions P for various energies; P=r times the radial
part of the solution of the Schrodinger equation.


