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In previous work on this subject, the second virial coefficient has been calculated with
numerical success, but on the assumption of intermolecular forces which take inadequate
cognizance of the known structure of the water molecule. In the present paper, all long range
forces are computed in a semi-empirical way from dipole moment, quadrupole moment in
accordance with the Bernal-Fowler analysis, and optical dispersion data. Interactions caused
by quadrupole moments cannot be neglected. Short range repulsive forces are thus left unde-
termined. These are chosen in such a way that the second virial coefficient, in its dependence
on temperature, approximates its measured values as closely as possible. It is found that a
reasonable fit cannot be obtained with the use of the hard sphere model, nor with any model
which permits the polar component of the force to be effective at arbitrarily small distances of
separation. More satisfactory agreement results if the polar forces are eliminated at all dis-
tances smaller than the potential minimum. The best potential satisfying these various require-
ments is given at the end of the paper [formula (22)].

INTRODUCTION so-called induction effect. (3) The forces arising
from a mechanism similar to the preceding, but
through Fields caused by the rapidly rotating
moments associated with electronic motions
within a molecule instead of permanent moments.
This is known as the dispersion effect. It is
present regardless of whether the molecule has
a multipole or not.

The short range forces are repulsive; their
origin lies partly in the electrostatic repulsion
between the molecular nuclei, partly in electron
exchanges. They are not of spherical symmetry,
but their angular dependence has not been
described for the case of water molecules.

We now give a brief survey of the history of
the present problem. The theory describing
effect (1) of the preceding paragraph was de-

veloped by Keesom' at the time when all van der
Waals forces were thought to originate in per-
manent multipoles. His treatment of dipole
interactions is adequate for the problem at hand;
his work on quadrupoles, which considers only
linear structures, is in need of generalization
before application to water molecules can be
made. Furthermore, Keesom considers molecules
having only a dipole, or only a quadrupole
moment. The exact treatment for the combina-
tion of both is very unwieldy and will not'be
attempted here; an approximation will su%ce
for our purposes.

' W. H. Keesom, Physik. Zeits. 22, 129 (1921).

'HE present paper has as its principal
purpose the determination of the forces

acting between water molecules. To this end,
we rely on the theory of van der Waals forces to
provide an expression for the interaction at large
distances of separation. The short range repulsive
forces are at present beyond purely theoretical
treatment. It might be expected, however, that
when the attractive forces are known, available
empirical data, such as the values of the second
virial coefficient at different temperatures, would
fix within reasonable limits the repulsive forces
as well. This will prove to be the case.

To give a general survey, we list first the
various types of forces which compose the total
interaction and state their physical origins.
Among the long range forces there are: (1) The
attractions or repulsions between the permanent
multipoles borne by a water molecule. These
include not only the customary dipole forces to
which the attention of most writers has been
limited, but also quadrupole and higher types.
For it will be seen that H20 carries a sizable
quadrupole moment whose presence may not be
neglected. Since the Boltzmann factor makes
alignment of the multipoles more probable than
other orientations, the net effect, called align-
ment effect, is attractive. (2) Attractions caused
by the induction of additional multipole moments
by the fields of permanent moments —the
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The. induction eff'ect was considered by Debye'
and Falkenhagen. ' Formulas developed by them
may be used in this work. For the theory of dis-
persion forces introduced by London, we refer
the reader to a review article by one of the
authors. 4

An early analysis of the H20 problem' which
included consideration of all effects here men-
tioned resulted in the prediction that the
molecule, in order to produce virial coefficients
of the known magnitudes, possesses a quadrupole
moment of about 5&i0 " e.s.u. In this work,
the repulsive forces were treated somewhat
inadequately, their effect being described by an
infinite repulsion at a distance of separation
equal to the kinetic theory diameter. (Hard
sphere model. ) This Action, frequently employed
in the past, makes the results extremely sensitive
to the choice of that diameter, which is empiri-
cally ill defined and therefore sometimes leads to
a specious semblance of success. Wohl' and
Briegleb, using similar methods and approxi-
mations, discussed the situation from a general
chemical point of view.

More recently, the problem has been recon-
sidered by .Stockmayer. ' He shows that the
temperature behavior of the second virial coef-
ficients of water and ammonia is described with
numerical correctness by assuming the molecules
to be point dipoles. His calculation permits much
latitude in the choice of other parameters of the
interaction and shows, in fact, that the forces
producing such agreement are far from unique.
In a sense, this type of success is satisfying, but
it teaches very little about the actual properties
of the molecule and augments our knowledge in
no fundamental way. Since our prime concern is
with the actual forces, the assumption of point
dipoles is inadequate.

The work of Goff, Anderson, and Gratch'
contains the significant indication that the hard
sphere model, when used in conjunction with a

' P. Debye, Physik. Zeits. 21, 178 (1920).
'H. Falkenhagen, Physik. Zeits. Sowjetunion 23, 87

(1922). For a correction to this paper, see reference 5.
4 H. Margenau, Rev. Mod. Phys. 11, 1 (1939).' H. Margenau, Phys. Rev. 30, 1782 (1930).

K. Wohl, Zeits. f. physik. Chemic B23, 105 (1933).
~ G. Briegleb, Zeits. f. physik. Chemic B14, 36 (1931).
W. H. Stockmayer, J. Chem. Phys. 9, 398 (1941).

~ J. A. Goff, J. R. Anderson, and S. Gratch, Heating,
Piping and Air Conditioning 15, 319 (1943).

plausible set of force parameters, is not capable
of yielding the correct temperature dependence
of the second virial coefficient for water. This is
true even when the essentially spherical force
field, employed as an approximation by these
authors, is replaced by a field of dipole symmetry
as will later be shown in this paper.

We consider the various effects of interest in
the order in which they were listed in the
second paragraph of this introduction.

INTERACTION BETWEEN PERMANENT
MULTIPOLES

For the sake of completeness and systematic
development, we include in this section a few
results that are known. The method is perhaps
more direct than those found in the earlier
literature.

Let a set of discrete point charges ei be situated
at vector distances r;= (x,, y;, z;) from an origin
0. Another set of charges e), is placed at distances
pq = (&q, q&„pq) from an origin 0; the displacement
of 0 relative to 0 is R.The mutual static potential
energy between these sets is then

If we introduce "relative displacement vectors"
o,), ——ri —Io)„Vcan be expressed in two equivalent
simple forms, the operator form

which results from a Taylor development, and
the Legendre form

(2)

obtainable on application of a well-known ex-
pansion theorem in terms of Legendre poly-
nomials. In the last expression, Q.g, is the angle
between e,&, and R: cos n, &,

——(z,—fy/o;&, ) provided
we take the Z axis along R, as will henceforth be
understood. Equation (2) is the more useful for
our present purposes. If

Pe;=Pe), ——0,
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as we are supposing, the terms for which l=0
and 1 make no contribution to (2). For suffi-

ciently compact charge distributions and suffi-

ciently large R, this series converges rapidly. In
most molecular problems, terms beyond l=4
need not be considered. To this approximation,
insertion of the Legendre polynomials gives

V= —(1/R') P e,e&(2s; f& x,$&
—y,g—&)

+ (3/2R') Qe,egt r, 'pi, —s,pg'
i

+ (»;4+2y, m 3s'—l ~) (s' b)—]
+(3/4R')Qe ez[r '2p&2 '5 s2 p2 5r 2i„2

—15s,2)i,'+2(4s, fi, x;P—i, y;q—i,)']
+ (1/2R') Pe,ei,[3(r 2+ pi, ')

i

X (4s,h —x,b —y, n~)

+5(s,'+ fi,') (3x,ti.+3y;n~ 4s;fi,—)] (3)

Summations 1 to 4 represent, respectively,
dipole-dipole, dipole-quadrupole, quadrupole-
quadrupole, dipole-octupole interactions.

In physical problems, it is usually necessary
to calculate

~t exp (—U/kT) sin HidHi sin H~dH, dy,

exp ( —V/kT)dQ, (4)

Oj and 02 being the polar angles between fixed
lines in the molecules and Z, q the relative
azimuth. If only the first summation of U is
retained, this integral can be evaluated exactly,
for U then has the simple form

—(PiP2/R') (2 cos Hi cos 02

—sin Hi sin Hi cos y), (5)

where the p's are dipole moments. But in general,
a series expansion of exp ( —V/kT) must be
performed before integration. The number of
terms to be retained in this series depends on T.
&n the application to be made later, one should
strictly use terms up to V", but the labor in-
volved in such a computation appears pro-
hibitive. We therefore adopt the following
approximate procedure.

Since J'U"dQ vanishes for odd n, the first
term which occurs in the expansion is J'V'dQ.
This will be computed exactly for the whole of
expression (3).For sufficiently high temperatures
this is the decisive contribution to (4), though
that is not true in our application. We then
evaluate (4) including the dipole term only, but
augmenting the coefficient pip2/R' in (5) in the
proper way so that the mean square of the ap-
proximate V is nearly equal to J' U'dQ. This will
require the addition of a term in R ' to pip2/R',
a term characteristic of the quadrupole inter-
action. We proceed now to the calculation of
J' V'd Q —=8s( V')A

In squaring U, the cross terms between dif-
ferent summations of Eq. (3) may at once be
omitted, for they will be seen to vanish when the
integration over angles is performed. A great
number of others may also be omitted; the jus-
tification for this curtailment will appear later
on. The significant terms to be retained are given
here in part:

V' = (1/R') pe, e;ei,e„(4s;sgi,f„
+x'xr64+y *y~mn. )

+ (9/4R') Pe,e;sic„(r,'rr'fi f„
+s'fsrpi, 'p~'+4x's'xrsrM~+ . )

+ (9/16R")2 + (1/4R") 2 . (6)

To obtain (U2)A. it is thus necessary to compute
averages of the type (x,"xp)A„, (x,"yi )A„, etc. This
procedure is somewhat complicated by the fact
that the vectors r; and r; are not independent—
since the whole molecule is being oriented in the
evaluation of the averages in question —but lie
along rays always making a fixed angle 0;; at 0.
However, averages over Greek and Latin letters
may be carried out independently because they
refer to different molecules.

A convenient method for carrying out the
averaging process with respect to connected
coordinates appears to be this. We introduce
Euler angles n, P, y and let R(n, P, y) be the
matrix which, when applied to the vector r,
produces rotation about the origin through
n, P, y. Starting with any special, permitted
position of the vectors r~" and r2 such as

rio =r&k, r2' = rm(sin 012j+cos Hi2k),

10 We now write 1, 2 for the former indices i, j.
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we obtain their most general position by applying to them the matrix R:
I'y = RX'g, X'g = Rr2 .

These vectors have components

xi= —rl sill p cos y x»=rl slI1 81»(sin cL cos p cos r+cos A sill 'r) —f» cos 811 sill p cos y

yl=rl Sill 8 Sill 'y yo =r» Sill 811(—S111 R Cos p Sill 'y+Cos I COS y)+f1 Cos 81» Sill p Sill y

si ——rl cos P s» r, sin——811 sin n sin P+r» cos 81» cos P.

The desired average over any quantity Q is then simply
2 II

{Q&»g = d& Sill pdp ' d"rQ,
8x' ~0 ~0 0

with 811 held fixed and Q expressed through the preceding relations. The results needed here are:

(x,x;)»„——(1/3) r,r; cos 8,;
(x'yI&». =o

(x,'x;)», ——(1/5) r,'r; cos 8,;
(x,'xII)», = (1/15)rPrI»(1+ 2 cos' 8;;)

(x"yI&"=o

(x"y ')» = (1/15)r'r '(1+sin' 8")

(x;xiyII&», = (1/15)r,rI» cos 8;;

(x,y;x;y;)», ——(1/30) r 'r '(3 cos' 8"—1)

(x;y;SII)», ——0

(x;y s,s;&»„——0

(x;y;SII&»,
——0

(x,y;x,s;)», ——0

4 cos' Ist;;—cos 0;;
(s,&s,'-xf,x;).,=r, Ir I

I05
2 cos' 8;,+3 cos 8,;

(s s )»„—rrr'—
35

(s,'x;SI'y I&»„——0

{s;Ix,s,'&»„——0.

In addition to this list we note that averages
over terms of odd power, such as x'y, are always
zero. Many other relations may be produced by
noting two operations with respect to which the
formulas ahorse are invariant: (1) interchange of
ally 'two coofd illa'tes; (2) Interchailge of tile
indices i and j throughout. If averages over
higher powers of V than the second were needed,
similar integrations over a greater number of
connected coordinates would have to be per-
formed.

Combination of (6) and (7) yields finally a
relatively simple result for (V')»„.

( V'&», ——ge,e;e»e„r,r;PI(COS 8,;)p» p„PI(COS 8»„)
3R'

Xp,

+ fr lr»IPI(cos 8,,)p»—p„PI(cos 8»„)
Rs

+r;rgi(cos 8;;)p»'p„'PI(cos 8»„)j

+ 1'~ fq PI(cos 8lI) p» p» Pl(cos 8»p)
5R"

Lr, r; P, (cos 8;,)p, p„P,(cos 8,„)3R"

+f,rIPI(cos 8;q) p» p» P»(cos 8»») j ~ (g)

The I s are again Legendre polynomials. Here,
obviously, the 0's with Latin indices refer to one,
those with Greek indices to the other molecule.
This answer, the general form of which (though
hardly the numerical coefficients appearing in it)
could have been predicted from symmetry con-
siderations, immediately suggests the introduc-
tion of certain invariants:

Dipole-invariant: I =pe, r;e;r;PI(cos 8,;),

Quadrupole-invariant: 3E= Qe,r Ie;r»»PI(cos 8;;),

Octupole-invariant: M =ge;r e;r ' I(P»co8;s;).



FORCES BE I WEEN MATER MOLECULES

C.I34 A

.39A

eg2 .756 A .756 A

Fic. 1.Electrical structure of the water niolecule assumed
in calculation of moments. Note: In the figure the minus
signs should be plus, and the plus sign should be minus.

Equation (8) then takes the form

2 1
(V&)A„— j (&)Q&&)+—(~(&)I (&)+I u)~(&))

3R' R'

1 14 4.
~(L)~(2)+ (I (&)+(2)+Qn)1, (2)) . (9)R" 5 3

they read:

L —p'
2 2 2 2~=Q**+Q-+ Q-+ (3Q*.—Q*.Qy.)

2 2+ (3Q- —Q*'Q**)+(3Q"—Q-Q* )
N = O. +0„„„+O.„,+60.,„+60.,+60..„„

+60,„,+60 „+60„„+150,„,
30zzz(Ozyy+Ozzz) 30yyy(Ozzy+Oyzz)

30zzz(Ozzz Oyyz) 30zzzOyyz

—30 „0„„—30,„„0g„.
Ke now return to our original plan for the cal-
culation of J' exp (—V/kT)dQ. This involved
the replacement of the correct V of Eq. (3) by
an approximate t/"' of the form

where

V'= ——+u(R) f
R3

f=2 cos 8~ cos 8&
—sin 8~ sin 8y cos p

The invariants may also be expressed as func-
tions of multipole moments. On defining, as
usual,

dipole moment =y = Q„e~r;,

components of quadrupole moment

=Q, =P;e;x,', Q y=P;e;x,y;, etc. ,

components of octupole moments

=0„,= P, e;x,', 0„„=P;e;x,2y;, etc. ,

in such a way that ( V')A, ——( V")A, as nearly as pos-
sible. Since (f')A„———, we have

2 L2 2Lu
(V")g,=——+ +u' .

3R R3

On comparing this with (9), in which all super-
scripts may now be omitted because we are
dealing with two similar molecules, we find
u = (3M/2R') so far as the first two terms on the
right of (9) are concerned. This choice makes the
contribution of the 1/R" term somewhat too
small for the case of H20, but this is not a
serious matter since that contribution turns out
to be small anyway. Henceforth, then, we use

/L, 3 cVq
V= —

~

—+-—(f(8 8 v).
ER' 2 R')

ln calculating the constants of Eq. (10) for the
water molecule we have assumed the electrical
structure proposed by Bernal. and Fowler, "who
place a charge +-,'e at each of the H nuclei, and
a charge —e on the bisector of the H —H dis-
tance, 0.20A away from the 0 nucleus. The mass
structure, needed to locate the center of mass
about which quadrupole and octupole moments
must be computed, is that determined by Mecke
and Baumann. " Details are depicted in Fig. 1,
where C represents the center of mass. They give
the known value p=1.87&&10 ' e.s.u. for the
dipole moment. Furthermore, we find

L =35.2&&10 ' e.s.u. , M =56.6)&10 "e.s.u. ,

%=99.6&&10 69 e.s.u.

With these values, Eq. (9) becomes

t'8. 27 &(10 " 39.9&(10
(V')A. =

(
+

R6 R'

183&10 "4q
+ (

ergs'. (12)

At R=3A, which is near the distance of closest
approach of two molecules, the three terms here
retained are, respectively, 11.3, 6.1, and 3.1

"J.D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515
(1933)."R. Mecke and W. Baumann, Physik. Zeits. Sowjet-
union 33, 833 (1932).K. Freudenberg and R. Mecke, Zeits.
f. Physik 81, 465 (1933).
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X10 '7 erg' which shows that omission of the
quadrupole moment entails a very serious error.
On the other hand, the approximate U of Eq.
(11) becomes

(3.52X10 " 8.50X10 ")
+ If(e~e~e) (13))

It gives a (V')A, which agrees with (12) in the
first two terms, of course, but makes the coef-
ficient of the last term much too small (48.2
instead of 183). This, however, will be regarded
as acceptable in view of the inaccuracies of the
model.

INDUCTION EFFECT

In describing the induction effect, the analysis
of reference 4 will be followed. If the potential
energy produced by one molecule at the position
of the other is p, the energy induced in the
latter is ——,'n(Vy)', where n is the molecular po-
larizability. To be sure, this energy depends on
the orientation of the inducing molecule (and to
the extent to which n is a tensor upon the
orientation of the other as well), but this
dependence is much less pronounced than in the
preceding effect. In particular, the energy cannot
change sign. Instead of introducing an angular
function in the integral j' exp (—V/kT)dQ, we

shall therefore average over directions at once.
This leads to the induction energy

(L 3M
-!-((~~)')"=--I + + I, (14)

ER' 2R' )

wherein L and M are the former invariants. For
the two interacting molecules, this expression
has to be multiplied by 2. In the next section,
reasons will be given for choosing the value of ot.

to be 1.44X10 '4 cm'. We thus obtain as the
contribution of the induction effect to the inter-
molecular energy in water

f'10 " 24X10 "
V= —

I
+ +

I
ergs. (15)

E. R' R' )

The leading term of this expression is only about
10 percent of the first part of (13) at R=3A,
which indicates the relative importance of the
two effects.

s —1=
10700X 10'~—v'

(16)

and one proposed by Holemann and Goldschmidt,

3 07X10"
s —1=

12500X10»—v2

They permit computation of a by extrapolation
to v=0. Both yield n=1.44X10 " cm'. We
believe this extrapolation to be more accurate
than the former value and shall, therefore, use it
in the present work.

In a similar way, the force parameters C and
D will be computed from (16) and (17).Equation
(16) involves a resonance energy of 13.55 ev
and an oscillator strength of 2.41; the respective
quantities in (17) being 14.7 and 2.81 ev. Both
resonance energies are smaller than the ioniza-
tion energy (18 ev). The constant D may be
computed from a formula previously published. "

"F.London, Zeits. f. physik. Chemic B11,222 (1930).
"C.and M. Cuthbertson, Phil. Trans. A213, 1 (1913).

P. Holernann and H. Goldschmidt, Zeits. f. physik.
Chemic B24, 199 (1934).

"N. E. Dorsey, Properties of Ordinary Water-SNbstance
(Reinhold Publishing Corporation, New York, 1940)."J.D. Stranathan, Phys. Rev. 48, 538 (1935).

"H. Margenau, J. Chem. Phys. 0, 896 (1938).

DISPERSION EFFECT

The dispersion effect produces an interaction
energy also of the form —(C/R') —(D/Rs). The
value of C calculated in reference 4 and used in

previous work on the second virial coefficient"
was obtained with the use of London's" formula
in which the "resonance" energy was set equa1
to the ionization energy of the molecule, and n
was taken to be 1.5X10 '4 cm'. This procedure
can be improved by employing optical dispersion
formulas, two of which are available. "

Dorsey, " in his valuable compendium on
water, assumes as the best value of the polariza-
bility 0.=1.59X10 "cm'. This is derived from
Stranathan's" and other measurements of the
dielectric constants. As might be expected in

that type of work, the measurements are some-
what discordant, and Stranathan admits a pos-
sible error of 10 percent in n.

On the other hand, Dorsey lists, without com-
ment on the implied discrepancy, two one-term
dispersion formulas, one due to Cuthbertson,

63X10
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This procedure leads to C=33.7 X 10 " erg
cm' D =95 X 10 "erg cm' on the basis of (16);
C= 36.4X10 " erg cm' D = 95 X10 " erg cm'
from (17).The value of D is to be regarded as
quite uncertain. We take as the contribution of
the dispersion effect to the intermolecular po-
tential

(35X10 " 95X10 "y
P = —

~
+ [ .rg. . (18)

R' Rs )
SECOND VIRIAL COEFFICIENT

After determination of all constituents of the
long range van der Waals energy, attention will

now be directed to the short range repulsive
forces. Concerning them there is but meager
information. Attempts to derive specific details
from a large variety of empirical data led us to
abandon the search for a potential the uniqueness
of which could plausibly be accepted before
calculating the equation of state:

p8 8+ + o ~ ~

R 1 v

in particular the second virial coefficient 8. The
procedure has therefore been inverted: The re-
pulsive potential is to be determined by seeking
agreement with known values of 8 at different
temperatures.

Two facts, however, may be assumed. A survey
of the material on the crystal structure of ice, '
considerations by Bernal and I' owler, the density
of water, etc. , indicate that the minimum of the
total potential must lie somewhere between 2.7
and 2.9A. While the concept of a minimum has
no precise meaning for forces which depend on
angles, this realization nevertheless proves to
be a guide. It is possible, for example, to calculate
the average orientation of adjacent water mole-
cules in ice and fix the minimum with some pre-
cision. The value of R chosen for this was about
2.80A. Such deliberations, however, serve only
for preliminary orientation; it develops that
choices widely different from this do not yield
proper values of B.

The second fact concerns the form of the
repulsive force law. Calculations on simpler

'8W. H. Bragg, Proc. Phys. Soc. London 34, 98 (1922).
B. E. Warren, J. Chem. Phys. 6, 666 (1938).

(45 X 10—oo 119X 10 ' )+R' Ro j

b(R) =
3.52X10 " 8.5X10 "

+R'

The parameters A and p are not quite as dis-

posable as they might seem, even if no condition
is imposed on the position of the minimum. The
condition that there be q, minimum at all
drastically limits the choice. Result (19) is to
be inserted into the well-known formula

00 dQ
RodR ! (] —exp (—P/kT)) —.(20)

~i 0 Sx

The second integration yields

dQ
1 —exp [—a(R)/kTj J~exp (—bf/kT)—

2'
=1—exp ( a/kT)F(b/kT—).

Let b/kT= x. Then—
I

(—xf)" dQ ~ r (xf)'" dQ
J'(x) = Z

y! 8or»=o J (2n)! 8x

the last because J'f"d0= 0 for odd X. Now

dQ 1 2.4 ~ 2n ~ (2l)

J
2n ~ I

--
I

—=Go-
8or 2n+1 1 3 (2n+1) &=o E1)

"Because of an oversight, a different value of the
coefficient in the last term of a(R) has been used in the
subsequent numerical calculations. We have, unfortu-
nately, neglected the quadrupole moment in computing
the induction effect, so that the coefficient in question
was 95 instead of 119. Revision was not made because
this term makes only a minor contribution to J3 and is not
known with sufficient accuracy.

molecules and atoms of spherical symmetry show
that the exchange energy, in a sufficiently large
range of distances, may be represented in the
form A exp ( —R/p), which will here be chosen.

At first thought, then, one would try a total
potential pieced together from (13), (15), (18)
and the latter expression, i.e. ,

V =a(R)+b(R) f(8&, Oo, oo)

in which"

a(R) =A exp ( —R/p)
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TABLE I. Comparison of experimental and calculated
values of B in cm'/mole on the basis of the hard sphere
model.

700'K
600'K
500'K
400'K

alcaic

—65.9—112.4—215.2—542

+exp

—65.4—99.0—166.4—346.9

Rel. error

—0.8 percent—13.5 percent—29.3 percent—56.2 percent

TABLE II. Comparison of experimental and values of
B in cm'/mole calculated on the assumption of a potential
minimum.

700'K
600'K
500'K

alcaic

—65.9—109.9—200.2

+exp

—65.4—99.0—166.4

Rel. error

—0.8 percent—11 percent—20 percent

so that
G2

F(x) = Q x'".
n=o(2yg)!

(21)

was carried out graphically. This is much less
tedious than expansion of the integrand and sub-
sequent term-by-term integration.

If A~ ~ while p~0, U reduces to the poten-
tial characteristic of hard spheres. This was one
of the first models tried. It involves only one
disposable parameter, and this is adjusted by
making 8 come out correctly at one temperature.
Measurements with which comparison is here
made are those of Keyes, Smith, and Gerry. "

In the calculation with the hard sphere model,
only the attractive terms of the potential are
used. If the infinite barrier is placed at R = 2.87A,
sufficient agreement results for T= 700'K. Table
I shows what happens at lower temperatures.

This outcome, while at first unpleasant, is par-

'F, G. Keyes, L. B. Smith, and H. I'. Gerry, Proc.
Am. Acad. Arts Sci. '70, 319 (1936).

While it is quite possible to integrate e 'f without
expansion —the result being either a series in
Bessel functions or a definite integral over Bessel
functions —the present form of F(x) has been
found most convenient for problems of this type.
We have prepared a numerical table of F(x) with
x ranging from 0 to 10.The remaining integration,

b(R)
8 = 2m%~I R, 1 —exp [ rI, (R)/kT]F — dR

kT

ticularly interesting in view of the fact that
Stockmayer' was able to obtain good agreement
at all temperatures with the use of the hard
sphere model, when he neglected the quadrupole
moment. The discrepancies incurred can, how-
ever, be made to tell us more about the repulsive
interaction. They are due, it seems, to the large
coefficient of the angular part of the potential,
which makes a proportionately larger contribu-
tion to 8 at lower temperatures. We therefore
attempt to neutralize this eA'ect by using finite
values for 2 and p.

A typical calculation involved the use of
p = 0.28A (a value in this neighborhood seems to
be required in order to produce a minimum at all;
cf. also the findings of R. Heller") and A =3.155
X10 ' erg. These correspond to a potential
minimum, computed with the proper value of f
as explained, at 2.80A. The results are given in
Table II. While the correct 8 is obtained at
700'K, the same sort of discrepancy appears at
lower temperatures, though it has diminished
somewhat in magnitude. Numerous trials were
made with other sets of parameters, notably
those corresponding to a minimum at 2.76A
(0—0 distance in ice), at 2.90A (intermolecular
distance in liquid water), and at 3.10A. These
yielded no better success.

The conclusion is therefore inescapable that a
potential of the form (19) cannot be used for the
purpose at hand. This might indeed have been
expected, for it implies that the function f,
which is characteristic of polar behavior, is
effective all the way into the origin R=O. On
the other hand, the repulsive potential which is
taken to be independent of angles provides no
mechanism for counteracting this fictitious
polarity at close distances of separation. A more
reasonable representation of the potential ap-
pears to be this. Assume the polar forces to be
active for R)R;, the range in which the
molecules may indeed be regarded as permanent
multipoles. But for R(R;„, let all interactions
be of spherical symmetry. Though the latter
hypothesis is but an approximation to the truth,
it is a better approximation than the very ex-
treme and specific one of dipolar symmetry.

Such a representation does not yield a con-

' R. Heller, J. Chem. Phys. 9, 154 (1941).
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tinuous curve for all orientations of the mole-
cules. This analytic fault will have to be accepted
in order to avoid the artificial difficulties which
the construction of a continuous function would
entail. Thus we take

V~ ——a'(R), R (R;.
~2 a(R)+b(R)f(0~0&'p)R )R. ..

where a' differs from a in having a different set
of constants A ', p'. For A and p, the preceding
calculations strongly suggest 3.25 X 10 ' erg,
p=0.28A as most likely values. This leaves A'
and p' to be determined. There appears to be
some latitude in their choice, and we cannot be
sure that the adjustment here proposed is unique.
But the effect of reasonable alterations on 8 is
not large.

One relation between them will be obtained

by requiring continuity between U& and V& at
R;„, that is, at 2.80A for some definite tem-

perature, say 706'K. Thus

dQ
exp ( —V&/kT) =

~
exp ( —V&/kT)—

8zr

=exp [—a(R)/AT) J'[b(R)/kT]

at T=700'K and R=2.80A. (If this fit were
tried at R=2.90A, it would require the use of a
negative A'. This again shows one of the self-

stabilizing aspects of the procedure. ) The second
relation is provided by the requirement that 8
shall have its experimental value at some tem-

perature at the middle of the range. The work
involved here is obviously tedious, and no claim
will be made that the present investigation is

exhaustive; slightly diferent values of the con-
stant may produce an even better fit. Orl taking
A'=2.4X10 ' erg, p'=0. 15A—a model which

TABLE III. Experimental and calculated values of 8 in
cm'/mole by use of adjusted constants.

700'K
600'K
500'K
400'K

CR1C

—68.9—101.1—164.4—329.8

+exp

—65.4—99.0—166.4—346.9

Rel. error

—5.4 percent—2. 1 percent
+1.2 percent
+4.9 percent

approaches the hard sphere case—the tempera-
ture dependence of 8 (see Table II I) is obtained.
While the agreement is not perfect, the improve-
ment is very considerable and indicates that the
repulsive potential adopted is not far from correct.

The small quantum correction, computed by
Stockmayer' for dipoles, does not improve the
calculated values materially. An estimate for the
present case shows that it reduces the error at
700'K to about —5 percent while increasing that
at 400'K to about 5.5 percent.

Summarizing the work, we find that

2 4X10 ' exp ( —R/0. 15A —c(R)

if R&2.80A
(22)

V=& 3.25X10 ' exp ( —R/0. 28A)

—c(R) b(R)—(2 cos Oi cos 0~

—sin 8~ sin gp cos y) if R) 2.80A

with

(45 X 10—6o 95 X 10—z6

c(R) =
I + I ergs

R' R' )

(3 52X10 " 8 50X10 ")
b(R) =

I
+ I

ergs
R' )

represents the best intermolecular potential for
water molecules in view of available facts.


