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Probability Method Applied to the Analysis of Recrystallization Data
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(Received July 12, 1944)

Probability equations are developed for the purpose of analyzing recrystallization data to
determine what mechanisms may operate during recrystallization processes. The equations
allow for inexact variations in orien tation changes provided the va'riations are small,

P(E) =1.43m' gives the probability that a nucleation will result in an orientation falling within
u radians of a specified one A on a chance basis. Other equations are given for the probability
of occurrence of nearly common orientations for various types of groupings. Values of prob-
abilities are given in tables.

INTRODUCTION

f 'EW crystals are produced whenever a single
crystal is deformed a small amount and

heat-treated above its recrystallization tempera-
ture. In general, the changes in orientation that
occur cannot be described in terms of simple
mechanisms such as twinning or as the rotation
of the lattice about a single axis. Furthermore,
if a mechanism is postulated that involves a
large number of transformations, it may be of
little 'use in predicting changes in the crystal
lattice unless appropriate selection rules are also
introduced to limit the number of final orienta-
tions. Such rules would depend upon experi-
mental conditions,

In an attempt to overcome some of these dif-
ficulties, the writer has found it useful to analyze
recrystallization data with the aid of probability
equations. These equations are developed in the
present paper. The first relationship, Eq. (1),
gives the probability that a single nucleation will

produce an orientation falling within 0. radians
of a specified one A assuming all possible orien-
tations as equally likely. Any nucleation that
satisfies this condition is called event E and its
probability, P(E). The reciprocal of P(E) will

be called N. It is the maximum number of events
similar to E.We might say that there are N ways
for an orientation to occur and if each way is
equally likely, then the probability that it is E
is 1/X. Call each of the X configurations a state
(a classified orientation). These states, instead of
orientations, may be used in considering mech-
anisms of recrystallization. The number of states
allowed for a given mechanism, however, must
be considerably less than N if the mechanism is
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to have much meaning. In this connection, an
illustration is given for a mechanism that would
produce high order twins. Finally, an application
is made of P(E) to obtain Eqs. (2a) and (2b)
for the probability of occurrence of new crystals
having nearly common orientations.

PROBABILITY P(E) OF OCCURRENCE OF AN
ORIENTATION IN A GIVEN STATE

Consider all orientations that agree within n
radians of A, defined by three mutually per-
pendicular poles A~, A2, A~ of {100}planes, as
belonging to the set E, i.e. , in a state E. An
orientation 8 belongs to E if-no {100}pole of
8 departs from A by more than 0. radians. We
ask, "What is the probability of occurrence of
event E if an orientation is selected at random
from a group of random orientations?" If E is to
occur, 8 must be taken from a subset of the
group of random orientations having one pole
within n radians of one pole of A. Consider the
subset for pole A1 and call a selection from it
event Ji. Complete a set I"'by taking all such
orientations. From this set make further selec-
tions, each having a pole within o, radians of A2,
and thus obtain a set G. Finally, all orientations
of this group that have a pole within 0. radians of
A3 may be taken to form a set II.

The probability of E (event E) will be
P(E) =P(F)P(G)P(H) where P(F) is the prob-
ability of F, P(P) is the probability of G after F
has occurred, and P(H) is the probability of H
after Ii and G haVe OCCurred. 1 2a

' Arne Fisher, Mathematical Theory of Probabilities,
(The MacMillan Company, New York, 1922), p. 29.

~ Thornton C. Fry, Probability and Its Engineering Uses
(D. Van Nostrand Company, Inc. , New York, 1928),
(a) p. 116; (b) pp. 19, 20.
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ln order to obtain P(E), the original group of
random orientations will be represented by a
plot of (100] poles on the surface of a hemisphere
of radius R. Let k be the number of poles per
unit area, thus giving a total of 2+R'k poles and
2irR'k/3 orientations. Computing the area near
Ai, we find that there are 2ir(1 —cos 0.)R'k poles
within a radians of Al. Each pole belongs to a
unique orientation. Consequently, there are
2ir(1 —cos cx)R'k orientations that belong to the
set Ji. Expressing probability in the usual way,
we get at once for low values of u'.

2ir(1 —cos n)R'k
P(F) = =3(1—cos n) ='-', n',

2+R'k/3

arc equal to 2[(Ru)' —(RP)21'. I'herefore,

2J) 2k(n —P) 2[(Rn)' —(RP)' j'*RdP

P(G) =
a

2 2k(n —P) ~/2 R RdP
0

= 2n(1 —4/3ir) = 1 15.n

The remaining poles of set G near A3 are dis-
tributed within an approximate square of dimen-
sions 2nR in a rather complicated way. Con-
sequently, the integration required to obtain
P(II) would be difficult to carry out. However,

the error being only —,
3
—, of one percent for n

equal to 10'.
Figure 1 is a stereographic projection of the

plot of set Ji. The poles have a density k in the
large circle about A ~. The distribution of poles in

the band of width 20,R containing A2 and A3 is

assumed to be uniform along the band, but the
distribution across the band must be found.
Divide the large circle about Aj into rings of
width MP. Consider one of radius RP. It contains
approximately 2mRPRdPk poles, the error being
—,
' of one percent for 0. equal to 10'. Twice this
number of associated poles are spread uniformly

along 180' arcs that fall within a band of width
2PR (see Fig. 1). These arcs produce a uniform
distribution of the poles. Considering every
value of P, it may be seen that the distribution
across the band, to a good approximation, is
linear, varying from zero for P equal to n to a
maximum at the center of the band. It may be
represented by a(n —P) and must satisfy the fol-

lowing equations, the integration being carried
out over -', the band along a 90' arc:

a
n'Rir'k = 2 a(n P)R~/2 R—dP

~ p

Rir/2 2~R gives the approximate area wherein
one-half the associated poles fall. Consequently,
a=2k.

We must now obtain all the poles in the circle
about A ~ in order to calculate P(G). Consider an
arc where the density is 2k(n —P). To a good
approximation the circle intercepts a length of

As

FIG. 1.Stereographic projection of the plot of set F together
with diagrams used in calculating P(G).

we can say definitely that

xo.'R'
&P(II) &1,

(2nR)'

or P(II) is between s./4 and 1. Substituting the
values for P(F), P(G), and the limits of P(II) in

the equation for P(E), we find that

1.35~' &P(E) &1.72m'.

Although this range is sufficiently accurate for
most applications, a more definite value of P(E)
may be obtained as follows:

write P(E) =P(F)P(I).
The set I is to be obtained from J' in such a

way that all poles fall within the circles about
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A2 and A3. Since a lengthy derivation is needed
in this case, only the result will be given, namely:

(as before, approximations have been made for
length of arc). Substituting the values for P(F)
and P(I), we get:

P(E) =1 43m. '

As an illustration, Eq. (1) gives P(E) = 1/1140
for n equal to 5'. In this case, the maximum
number of states (N) is 1140.

PROBABILITY OF OCCURRENCE OF AN
ORIENTATION IN ONE OF SEVERAL

GIVEN STATES

Case I: Two states, X and I., in which all

orientations are uniquely classified. (We may
have overlapping circles in this case, but one of
the three circles for one state must not overlap
a circle of the second state). The probability that
an orientation will occur in state E by chance is:

P(K) = 1.43m'.

The probability that it will occur in state I. is
also 1.43n'. The probability that it will occur
either in state X or I. is:

P(K or L) =P(K)+P(L) = 2 X 1 43n'.

Case II:Two states, S and T, overlap so that
a unique classification of all orientations is im-

possible and some have to be described as being
in states S and T. In this case, we should think
of each as a state only when it is alone; together,
we should think of them as being less than two
states.

The probability that an orientation will occur
either in state S or T by chance is less than the
value obtained for Case I. We note that if S
and T are allowed to merge, the probability
drops from. 2X1.430.' toward 1.43m', correspond-
ing to a transition from two states (Case I) to-
ward one state. A correction owing to the amount
of overlapping area might be made for the circle
having the smallest amount of overlap, but the
non-uniform distribution of poles within a circle
for a state would make this correction difficult

to determine. Nevertheless, there would be a

number f such that P(S or T) f=1.43n', and
1 &5&2.

Case III:When data for standard twin groups
through three generations are plotted on a
stereographic net, ' it is found that no over-

lapping occurs among the 52 orientations until
n becomes equal to about 2-,".The probability
that a new crystal will occur in one of the 52
states, when all N states are equally likely, is:

(2.5s ) '
P=52/N=52P(E) =52X1.43~

& 180)
= 0.00619= 1/161.

When 5' is taken for o., the number of states
X is 1140, but the maximum number of states
allowed on the basis of a mechanism that pro-
duces only three orders of twins is 52. Because
of overlap, there is some degeneracy among the
states and their effective number is reduced as
pointed out in Case II. Consequently,

52 1
P& or

1140 22

This result means that recrystallization with-

out any mechanism or preferment should not
result in a 5' type fit more than once in every 22

times if we restrict a fit to one of the 52 first-,
second-, and third-order twins. A mechanism of
recrystallization of this degree of complexity
should not be hard to test experimentally. 4

PROBABILITY OF OCCURRENCE OF ORIENTA-
TIONS FOR VARIOUS TYPES OF GROUPINGS

Consider a group of random orientations exist-

ing in N states, II~, Hg, II~ . Hy (N=1/P(E)).
Select n orientations (n&&N) in an independent
manner and suppose that these fall into l states
in such a way that m& belong in one state, m& in

another state, etc. , up to mk in a kth state (m &~2),
and one each belongs in the remaining l —k states.
Suppose further that some of the k states con-

tain an identical number of orientations. Desig-

nate the number of equal size groups by rj, r2,

etc. We ask, "What is the probability of occur-

' Data on four generations of twins have been obtained
at the Pittsfield Works' Laboratory and are now being
prepared for publication.' In this connection, considerable data have already
been accumulated at the Pittsfield Works' Laboratory of
the Qqqer@l Flectric Company.
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rence of such a group?" The group in this case
may be represented as follows:

m(1) m(2) m(3) m(k) 1 1 1
HS(1) Hx(2) HS(3) ' ' 'Hx(k)HZ(k+1)HS(k+2) ' 'HS(l) $

where the superscript* gives the number of orien-
tations in a particular state. We do not, however,
specify the states in advance. As an example,
consider the case of throwing three dice to obtain
a pair. In one throw we use three orientations
(n) out of six (N), but to get a pair one orienta-
tion must occur twice. Therefore, l equals 2,
k equals 1, and rn1 equals 2. Figure 2 gives an
illustration of a more general orientation group

4

N! k!
X

(N —k)!k! rg!r2!
or

(N —k)!r~!r~!

We may also write combinations for the l —k
states that are occupied by only one orientation
each. Since k states of the N have been used in
forming the group nz1m2 . .mk, there are N —k
remaining to select from to get the l —k singly-
occupied states. The number of combinations is:

(N —k)! (N k)!—
or

[N k (l —k—)]!—(l —k)! (N —l)!(l —k)!

The number of combinations, however, is in-
creased if all the m's are not the same. Suppose
one of the m's occurs r1 times, another r2 times,
etc. The number of unique arrangements'b of m1,
m2. ml„. is the factor needed. It is k!/rI!r2!
The number of combinations leading, there-
fore, to a

m(1) m(2) m(3) m(k)
Hg(1) Hg(2) H~(3) H, (k)

type group is:

Fro. 2. Stereographic diagram showing states 1, 2, 3, 4,
and 5 containing 3, 2, 2, 1, and 1 orientations, respectively.
a is 5'. N=1000.

The number of combinations of N states taken
k at a time for a group where

m1 —m2 —PE3 ' ' ' —mk
N!

(N —k)!k!
* In superscripts and subscripts mI is written as m(1);

m. as m(2); m3 as m(3); etc.

existing in five states with n, I, k; ns1, m2, m3,
r1 and r2 equal to 9, 5, 3; 3, 2, 2; 2 and 0, re-
spectively.

To obtain the probability of occurrence for the
general case, consider first any group of k states
of the following type:

m (1) m (2) m (3) m (k)
H~(1) H&(2) H&(3) H~(k).

Any one of the combinations containing n orien-
tations could have been selected in a number of
unique ways, namely,

n!
m1!m2! mk!

Therefore, the total number of ways to form a
specified type of group is:

N! (N —k)! n!
X X

(N —k)!r&!r ! 2(N l)!(l —k)! —m&!m2! ml, !

Since the total number of ways to make n
selections is N", the probability of getting the
specified type of group is:

k

Pm (1)m (2) ~ ~ m (k)

N!n!
(2a)

m) lm) I. . .ml!(N —l) l(l —k) IN"rl lrml. . .

When I =n, this equation reduces to:

NP'=
(N —n)!N"

an expression giving the probability that all n
orientations occur in different states.
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TABLE I. Probability of occurrence of orientations for various types of grouping.

Type of group
k m1 m2 m3 m4

1 2

2 2 2

1 3

3 2 2 2

2 2 3
PO (N —n)!n!

3!2!(N —n+3)!(n —5)!

Probability from Fqs. (2a) and (2b)

N!

(N —n)!N&

, Po (N —n)!n!
P2—

2! (N —n+1)!(n—2)!

Po (N —n)!n!

2!2!(N —n+2)!(n —4)!2!

P' (N —n)!n!
P3

3'! (N —n+2)!(n —3)!

(N —n)!n!

2!2!2!(N —n+3)!(n—6)!3!

Probability

P' n(n —1)
P2=—

2 N —n+1
1

P2 (n —2)(n —3)
P22 =—

4 N —n+2

, P, (n —2)
P3 ———

3 N —n+2

P3 (n —3) (n —4) (n —5)
P222 =

8 N —n+3

P (n —3)(n —4)
P2a =—

2 N —n+3

4

.I 2222—

Po (N —n)!n!

(2!)4 (N —n+4)!(n —8)!4!

2

4 P23 (n —5) (n —6) (n —7)
P2222 =

32 N —n+4

1 5

At least two in one state

Po (N —n)!n!
.I. 4=———P =

4'! (N —n+3)!(n—4)!

P' (N —n) '!n!
P5—

5! (N —n+4)!(n —5) '.

1 —Po

1

P3 (n —3)
P4

4 N —n+3

, P4 (n —4)
P5—

5 N —n+4

1 —P'

TABLE II. Values of Pm(1)m(2). .~ for N= 1000.

Type of group
m1 m2 m3 m4

n =20
k

Pm(1) m(2) ~ ~

k
& Pm(1)m(2). -

n =10
k

+m(1)m(2) ~ ~ ~

k
Z Pm(1)m, (2).~ .

n=S
k k

+m(l)m(2) " ~ Pm(1)m(2) ~ ~

0
1 2
2 2 2
1 3
3 2 2 2
2 2 3
4 2 2 2 2
1 4
1 5
At least two in one state

0.8259284
0.1599657
0.0124616
0.0009773
0.0005070
0.0001352
0.0000117
0.0000042
1.4X 10 8

0.1740716

0.8259284
0.9858941
0.9983557
0.9993330
0.9998400
0.9999752
0.9999869
0.99999]1

0.9558606
0.0434044
0.0006125
0.0001166
0.0000030
0.0000024
4.5X10 '
0.0000003
3.2X10 "
0.0441394

0.9558606
0.9992650
0.9998775
0.9999941
0.9999971
0.9999995

0.9999998

0.9900350 0.9900350
0.0099401 0.9999751
0.0000149 0.9999900
0.0000099 0.9999999

9.9X10 '

5.0X 10-9
9.9X10 "
0.0099650

If we substitute P' in Eq. (2a), we get:

+m (1)m (2)" m (k)

P'(N n)!n!—
(2b)

m, !m~! mI„!(N—l)!(l—k)!r~!r~!.

Successive applications of Eq. (2b) give the
probabilities listed in Table I.

If a small value of n is taken, it can be shogun

readily for any N whatsoever that the sum of
the probabilities for all possible groups is one.
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For instance,

1 2 1 2 1 1
P'+P2+P22+P3+ P32+P4+Pf, ——1,

when n is 5 and N& 5.
The values of N!, etc. , in the expression for P'

may be obtained by using Stirling's formula. If
n is small, however, it is easy to compute P'
directly with the aid of either logarithms or an
electrical computing machine.

Table II gives some numerical results on
probabilities for one value of N and three
values of n.
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The Photoconductivity of Sodium Chloride in the Far Ultraviolet
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(Received August 7, 1944)

Measurements have been made on the wave-length dependence of the photoconductivity of
an uncolored sodium chloride crystal in the far ultraviolet region of 900 to 1350 angstroms in

order to test the theories of I eierls, Frenkel, and Mott regarding the existence of discrete
energy levels, called exciton levels, lying just below the conduction bands. A region was found
between 1300 and 1350 angstroms in which there was large absorption but very small if any
photoconductivity or external photoelectric effect indicating the existence of exciton states.
At wave-lengths shorter than 1300 angstroms both the photoconductivity and the photo-
electric effect began to set in and these showed a doublet structure. 'I he photoconductivity
rises abruptly at the second absorption peak in the absorption spectrum and shows structure
which locates energy levels above the ground state. The experiments of Podubnij on the
iodides are a contradiction to this experiment inasmuch as the alkali halides should reasonably
be expected to behave similarly.

INTRODUCTION

EIERLS,' Frenkel, ' and Mott' have intro-
duced the concept of non-photoconductive

absorption in crystalline insulators because of the
possible existence of discrete energy levels lying
just below the conduction bands. The withdrawal
of an electron by light of quantum energy corre-
sponding to the distance AB, Fig. 1, leaves a hole
in the filled band below A. This electron, termed
an "exciton" by Frenkel, is then thought to be in
the electric field of its positive hole, giving rise to
discrete energy levels. Absorption of light of
quantum energy corresponding to the distance
AE would be a photoconductive absorption. A
test for the existence of these exciton states would
be to compare the dependence of photoconduc-

* Now at Corning Glass Works, Corning, New York.
' R. Peierls, Ann. d. Physik 13, 905 (1932).
2 J. Frenkel, Physik. Zeits. Sowjetunion 9, 158 (1936).' N. F. Mott, Trans. Faraday Soc. 34, 500 (1938).

tivity and absorption on wave-length for an
alkali halide crystal. Experimental data on the
photoconductivity of pure alkali halides are very
meager. To the author's knowledge the only
previous work is by Podubnij4 in which potassium
and sodium iodide were illuminated over a wave-

length range of 2500 to 1900 angstroms. The data
showed photoconductive currents which depend
in the same way on wave-length as does the
absorption, and Podubnij concluded that all the
absorbed energy is used to produce photocon-
ductivity. There is no evidence that any care was
taken to separate the primary photoconductive
currents from secondary currents which Gudden
and Pohl' have shown must be done in order to
obtain interpretable results.

4 Podubnij, J. Exper. and Theo. Phys. 8, 410 (1939).
~ Hughes and DuBridge, Photoelectnc Phenomena (Mc-

Graw-Hill Book Company, Inc. , New. York, 1931), p. 291.


