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The integration of the Lorentz force equations to give electron or ion paths has been reduced
to simple quadratures for systems in which the electric field is zero and the magnetic field is a
function of one Cartesian or cylindrical coordinate. For several interesting types of magnetic
field variation the quadrature can be carried through analytically; and even for complicated
magnetic fields, or such as are known only empirically, the numerical integration can be
effected without difficulty. From general considerations of the functions involved, it is possible
to determine the extension and periodicity of the orbits for any set of initial conditions. The
representation used is also convenient for obtaining information regarding the dispersion and
focusing characteristics of the trajectories, some of which have unique properties of promise
for use in specific instrument design such as mass spectrometers, beta-ray spectrographs, etc.
Schematic designs of such instruments are proposed, and a discussion is given of their ad-
vantages and special properties.

INTRODUCTION

HE focusing and dispersing properties of a
uniform magnetic field have been applied

with great success in recent years to mass spec-
trographs, mass spectrometers, and P-ray spec-
trometers, as well as to more special uses.

Many instruments have been built and de-
scribed which employ either 180' focusing or the
focusing properties of sector-shaped magnetic
fields. All are generically of the same class, of
which the 360' analyzer is the only one having
the property of perfect focusing. However, it is
not practical to attempt to utilize the latter
because of the physical impossibility of locating
both a source of ions -and a collector at exactly
the same place.

In contrast to the wide application of the
focusing and dispersing properties of a uniform
magnetic field, little use has been made of the
focusing properties of non-uniform fields. The
problem of calculating paths, dispersion, and
focusing characteristics for a general type of non-
uniform field is one of great mathematical diAi-

culty. ' There are, however, some cases of con-
siderable physical interest in which the magnetic
field varies in a fairly simple manner, and for
which it is possible to calculate exactly the
paths, dispersion, and focusing properties.

In all cases where the pole faces of a magnet
or an electromagnet are symmetrically located
with respect to a median plane, the magnetic
field at any point on th'e plane will be per-
pendicular to it. For an ion or electron moving
in this plane the problem of describing its path
reduces to a two-dimensional one.

For those cases where the magnetic field in
the median plane can be expressed as a function
only of one Cartesian coordinate, or as a function
only of the radial distance from the axis of sym-
metry, for cases of circular symmetry, the equa-
tions describing the ion or electron paths admit
of a simple treatment. Even if the dependence of
the field upon such coordinates is kriown only
experimentally, the complete solution may be de-
termined by simple numerical integration to an
accuracy equal to that with which the magnetic
field is known. The general theory will be out-
lined and discussed below and certain cases
analyzed in detail.

GENERAL THEORY

The Lorentz force equation for a charged
particle in the presence of a magnetic field H
and the absence of an electric field, is:

e
&=-vXH,

c
* For an abstract of a preliminary report of this work see

Phys. Rev. 65, 352 (1944}.' While there is a vast literature on the general optics
of charged particles moving in magnetic fields, application
of the type considered here do not appear to have been
given specific treatment.

where e =charge of particle in e.s.u. ; c=velocity
of light; and v= velocity of particle in cm/sec.
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In addition to Eq. (1), we have the equation: However, from Eq. (2), we have:

(x) '+ (iI) '+ (s) ' = v' =const. , x= a(v' —j')1= av(1 f'—)& (7)

since the 'magnetic field can do no net work on
the charge. For the case of both Cartesian and
cylindrical coordinates, we may, without loss of
generality, consider H to be parallel to the s
direction, so we then have:

(x')'+(j)'=v',

(r')'+(r8)'=v'

Since dy/dx= j/x, we may combine Eqs. (6)
and (7) to obtain:

f
dx (1—f')l

or:
fdx

y=&J

Here v refers to the resultant velocity in a plane
perpendicular to the s direction.

Written out in terms of Cartesian components,
Eq. (1) becomes:

e
X = ——Hgl,

Bzc

We see thus that when H is a function of only
one Cartesian coordinate, the equations of the
trajectory are reduced to the simple differential
equation (8), which permits immediate integra-
tion. When the magnetic field is a function only
of the cylindrical coordinate r, the treatment is
similar. For this case we define a function g(r) by:

. e
jj =—JIi,

mc

e
g(r) = — ~rH(r) dr

vsse r ~
(10)

where H is the magnitude of the magnetic
field, or:

e
r(8) ' = — Iir 8,— —

mc
(4)

Integrating the second of Eqs. (4), we find

e
r8= ~~rHdr=vg.

roc ~

Using Eqs. (2) and (11), we have:

r =W v(1 —g') l', (12)

in cylindrical coordinates. Equations (3) and (4)
cannot in general be solved explicitly if H is a
function of both coordinates, as the equations
will not be linear.

If, however, H is a function of only one
coordinate, the equations are solvable in a
simple manner, as follows:

Referring to Eq. (3), we may assume, without
loss of generality, for this case that H=H(x),
and define a function f=f(x) as:

e
f= I H(x)dx

vmc "

Integrating the second of Eqs. (3), we get:

e
"Hdx=vf

mc

and since r8/r'=r(d8/dr), we have from Eqs. (11)
and (12):

ol:

de 1 g

dr r (1—g')l

gdr

r(1 —g~)2

(13)

(14)

We see, therefore, that the treatments for the
Cartesian case and for the cylindrical case are
similar, and involve essentially nothing more
than two quadratures, either or both of which
may be done numerically if not analytically.

Equations (5) and (10), which define f and g,
will each contain a constant of integration.
These constants may be used to specify the slope
of the trajectory for any desired value of x or r
by direct application of Eqs. (8) 'or (13). The



PATHS OF I ONS AN D ELECTRONS

o=0.5 c'= 0 C2-0.l74 c2-0:5 c="1 c =-l l44 c =, -l 435

(0)

3 (

g C~
C

-3
(b) (c)

FIG. 1. Various types of orbits possible in a linearly varying magnetic field,
determined by the parameter c, defined by Eq. (17).

other initial condition, namely, the starting
position in the x, y or 0, r plane is taken care of
by the constant of integration in Eqs. (9) or (14).

The fact that the equations defining the
trajectories involve the radical (1 —f')'* for the
Cartesian case, and the radical (1—g2)' for the
cylindrical case, has a very simple and significant
interpretation. Since these radicals must repre-
sent real magnitudes for any physically possible
trajectory, we see immediately that the extension
of the trajectory in the x or r coordinate will be
given by —1 &&f&&1, or —1 &~g &&1, respectively.

If the equation

l f2 —0 (15)

has two real roots, the implication is that orbits
will be bounded as regards extension in the x
coordinate. This follows from the fact that dy/dx
will be infinite for x equal' to a real root of Eq.
(15). If Eq. (15) has only one real root the orbit
is one that comes in from and returns to plus or
minus infinite values of x. For the case where
Eq. (15) has two real roots the orbit will be
either completely closed, or have an infinite
extension in the y direction. The latter orbits
will be of periodic behavior and will, in general,
consist of an infinite number of loops of cycloidal
appearance.

The same general considerations as just dis-
cussed for the case of Cartesian coordinates also
hold for the cylindrical system and figures demon-
strating them will follow in the detailed dis-
cussion of specific cases.

In the calculations for the paths in either
coordinate system the quantity e/vmc enters as
a fundamental constant of the motion. It is

convenient to define this quantity as a, i.e. :

a = e/vmc.

In the discussion of many cases of physical
interest it is more expedient to refer to the
potential of a charged particle as a measure of
its energy rather than to its velocity. We may,
therefore, write a as

1 f'150el *'

a=-I
chmU)

LINEARLY VARYING MAGNETIC FIELD

The linear magnetic field may be defined by:

II=bx,

the origin being placed where the field is zero.
From Eq. (5) it follows that:

cbx
+C,

where c is the constant integration and a =%mc,
as previously indicated.

Introducing the change of variables:

gaby ' gabe &

g=f —
/
y: x=I —

i x,(2) 42)
so that y and x are dimensionless, we find Eq. (8)
takes the form:

dg . C+X

dx L(1 —c —x') (1+c+x') ]'*
(19)

where V is the potential of the-particle in volts
or its energy in electron volts.
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By inspection of the right side of this equation
it is clear that if it is to represent a real trajectory
c &1.Moreover, the nature of the real trajectories
will be determined by the magnitude of c, as
follows:

For 1&c&—1, the trajectories will all cross
the y axis, with a slope = c/[1 —c']&. They will be
symmetrical with respect to y, and the ion or
electron will oscillate periodically between fixed
values of x. If 1&c&0, the trajectory will simu-
late a sinusoidal oscillation with a monotonic
increase or decrease in y, as illustrated in Fig.
1(a). When v=0, the trajectories will have an
infiection when crossing the y axis, as shown in

Fig. 1(b), so that the change in y is still mono-
tonic as the path is traversed. For 0& c& —1, the
variation in y is no longer monotonic, and the
trajectory tends to form loops as it oscillates
between the fixed limits in x [cf. Fig. 1(c)].At
c= —0.46, the loops of consecutive periods on
either side of the x axis touch, and become inter-
laced [cf.Fig. 1(d)] as c is still further decreased.
Complete overlapping of the loops, so as to form
a single figure-eight trajectory, develops for
c= —0.6522. For the range —0.6522&c& —1,
they are again similar to a network of interlaced
figure of eight osci11ations, which spread out and
ultimately degenerate into the single pair of
split loops when c = —1, as shown in Fig. 1(e).

In this whole range of c the maximum exten-
sion of the oscillations, which may be obtained
from the roots of Eq. (15), continually increases
as 0 decreases, according to the equation:

that Eq. '(21) applies directly only to the quarter-
cycle of a single complete oscillation passing
through the origin. Its continuation to both
preceding and following elements of the trajec-
tory is easily made by simple shifting of the
initial point and appropriate changes in sign,
as dictated by Eq. (19).

The wave-length, along y, of the oscillations is
given by:

X=2v2I2Z(k) —E(k) I, (23)

where X and E are the complete elliptic integrals
of the first and second kind, the modulus
k=[(1—c)/2]&, and the absolute value is'used
to take care of the change in sign o.f the enclosed
term at c= —0.6522. ) is expressed in the same
units as g. It will be noted that X=4g(x, ).

In the limiting case c= —1, integration of
Eq. (19) readily gives:

1 v2+ (2 —x') &

ag =—log —(2 —S')&, x)0, (24)
V2 x

from which were plotted the trajectories of
Fig. 1(e).

The trajectories of greatest practical interest
are those for c & —1.The general features of these
can also be deduced by direct inspection of
Eq. (19). These no longer cross the g axis, but
split up into two identically shaped individual
trajectories, for each value of c, placed sym-
metrically on the two sides of the y axis. Each
of these is composed of a series of interlaced or
separated loops extending from

&max= (1 C)' ~ (20) I*-*I= (—1 —c)', to I*-.I
= (1—c)'. (25)

Moreover, from the roots of Eq. (15) the width
of the oscillations is given by:

x, —S„;„=(1—c)&—(1+v)'. (21)

g=—[2E(k) —X(k) —2Z(C, k)+F(C, k)], (22)
v2

where E(C', k), F(C', k) are the incomplete elliptic
integrals corresponding to E, E. It is to be noted

The detailed calculation of the trajectories
may be readily made by introducing the substi-
tution: g=(1—c)icos C and reducing the in-
tegral of Eq. (19) to standard elliptic integral
form. It is thus found that:

and hence recede from the y axis as c is decreased.
The overlapping of the loops increases as c de-
creases [cf.Figs. 1(f) and 1(g)].The wave-length
is given by:

k'q

2)
(26)

where now the modulus k= [2/(1 —c)]&. A plot
of X and (I, —x;„)vs. S,„is given in Fig. 2.
It will be seen that both 'A and the lateral range
of the oscillations decrease as x, increases —i.e. ,

as the trajectories are confined to regions of
greater magnetic field. This is, of course, to be
expected from elementary considerations.
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For calculating the exact shape of the trajec-
tories for this range of c, the integral of Eq. (19)
may again be transformed into standard elliptic
integrals, by setting x'= cos 24 —c with the result
that:

y=(1 —c)'[Z(C, X) —(1——,'n )Z(C, X)j. (2))

As remarked above, orbits of the type illus-

trated in Figs. 1(f) and 1(g) are of greatest
interest. This is because of the practical difficulty
of obtaining a'field variation in which H is an
odd linear function of x. Also, for any restricted
region of an actual non-uniform field H may be

where Hp is the magnitude of the field strength
at the value of x chosen as the origin of the
coordinate system„and b is the constant deter-
mining the rate of change of H with x.

The function f then becomes:

aHp
e~*+c, (28)

aHp e"+c

('aHp'.o*+.-
I

(29)

where c is a constant of integration which may
be adjusted to give the orbit the desired slope
at any value of x. For this case Eq. (8) becomes:

I.O

By making the transformation:

aHp
v = e'*,

08

0.6

0.4

Eq. (29) may be readily integrated to give the
general solution:

1 c
y= a—sin —' (v+c)—

b (1—c')&

0.2
Xlog

I1—(v+ c)'I'+ (1—c')'
, (30)

(1—c')&

0
0 ) 2 5 4 5

X max.

F16. 2. The variation of the dimensionless wave-length )
and lateral range x, —x;, of periodic orbits in a linear y
varying magnetic field, with the maximal extension x,„.

when
~
c

~
(1, and

1y=a- sin-' (v+c)
b

+ sin
(c' —1)~

1 —c' —cv
(31)

considered linear with distance to a first approxi-
mation. The orbits calculated from Eq. (19) will

therefore represent the actual paths of the ions
or electrons to at least a first approximation.
Application of such orbits as in Figs. 1(g) and
1(f) to magnetic focusing instruments will be
discussed below.

EXPONENTIALLY VARYING FIELD

For the case of an exponentially varying field
in Cartesian coordinates we may wnte rV as:

H =Hpe',

when c& —1.
For the special case, c= —1,

1 (vq & (2v —v')~
y=a- 2sin-') —

~
y

b E2) v

Orbits defined by Eq. (30) are illustrated by
(a), (b), and (c) in Fig. 3. In each case the
particle enters the magnetic field from x= —~,
or, physically speaking, from a region of very
weak H. As must obviously be the case, each
orbit is symmetrical about the x axis. Each path
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Fro. 3. Various types of orbits possible in an exponential magnetic field, deter-
mined by the parameter 8, defined by Eq. (28). All orbits are for singly-charged
particles of 300-ev energy and 150 atomic mass units. Note: The second line of the
explanation at the right of the cut should read H0=4.46)&10' oersteds.

is shown in the neighborhood of IT=Hp, which
establishes the origin of the x coordinate. Orbits
(a), (b), and (c) represent a particle of 150
atomic mass units and 300 electron volts energy
coming from x= —~ with initial slope of 1, 0,
and —1, respectively. Orbit (d) is for a particle
of the same mass and energy but so projected in

the x, y plane that the path has infinite slope at
x=0.

Orbits of the type illustrated by (b) are of
particular interest, as the total extension in the

y direction depends only on the exponential
coe%cient b, and is independent of the values of
the mass and velocity of the ion or electron.
This fact is immediately seen upon setting c=0
in Eq. (30), which physically corresponds to the

particles approaching regions of stronger mag-

netic field with an original direction parallel to
the x direction. This situation affords an oppor-
tunity for perfect focusing, further discussion of
which will be given later.

If the ion or electron is introduced into the
magnetic field in such a manner that its subse-

quent orbit is bounded in the x direction, it will

be of the type illustrated by (d), Fig. 3. This

type of orbit is also of interest as regards applica-
tion to focusing problems, and will be discussed
in more detail below. For this type trajectory
the total width in the x dimension is readily
calculated from the separation of the roots of
Eq. (15).

The behavior of orbits of type (d) as regards
their total width in the x direction and their
wave-length X can be discussed in a manner

similar to that used for the linearly varying
field. For a particular value of c we have:

1 b
x . =—log (1—c),

b aHp

b
x;„=—log —(—1 —c).

GHp

(32)

As e( —1 for all such orbits the arguments of
the logarithms will be positive. We may express
x,„—x;„as a function of x, by eliminating c
in Eqs. (32) to give:

1 (
x ..—;.=x,...—-log

~

b aHp)

which behaves qualitatively like the similar

quantity for the linear case which is plotted in

Fig. 2.
From the nature of Eq. (31) it is seen that the

orbits are periodic with a wave-length of
given by:

or

2x( c
~ =—

] 1+
b I (c' —1)&)

aHp
g»max

2' b
'A =—1+

b ( aHp
C»mss

b )

(33)

RADIAL FIELDS

Although Eqs. (10) and (14) make it possible
to determine the path of a charged particle in
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any field of circular symmetry, the functional
variation of H we shall discuss here is given by:

Hp
H=

m+1

where n& —1, and Ho is a constant. It will, of
course, be physically impossible for H to obey
this relation for values of r including the origin.
However, it will suffice if the relation is obeyed
within certain limits of r, or for values of r above
a definite radius.

For this case (and e 4 1) g(r) becomes:

aHo e
g= +

(1 ri)r--r'
r, Centimeters

40

M *

M ~ 35
M *150
300 electron volts

FIG. 4. Non-periodic orbits with common asymptotes in
a radially varying magnetic field, with n=3, for singly-
charged particles of 300 ev and various atomic masses M.

and we have:

l t a~a c l-+—
i

&(] —~)y~+i y2)

QHo c+-
/

dr. (35)
(1 I)r" r—

Equation (35) is in general more amenable to
numerical than analytical treatment.

One case of important physical interest does,
however, admit of simple analytical treatment.
This is that of charged particles approaching
regions of strong H from regions of weak H,
and with an initial direction along a radius
vector and toward the axis of symmetry.

then it follows that in the limit as r—+~,

de h

dr rcos0
~ ——~g

r

By Eq. (34), such an asymptotic behavior can
be satisfied only if n& 1 and c= —h. Accordingly,
in inverse power radial fields for which n) 1, —c
is simply the normal distance from the polar
axis with which the particle enters the field.
The restriction n & 1 evidently means that if n & 1

there can be no orbits which enter the field

along linear paths parallel to a radius vector.
If 0 &n & 1 the value of c can be determined by
fixing r(d8/dr) at a given radius, computing g
from Eq. (13), and then c by Eq. (34).

If n=0, the orbits entering or leaving the field
at r = ~ will asymptotically cut the radii vectors
at an angle sin ' aHo. For this case the integral
for 8(r) can be readily evaluated to give ex-
pressions similar to Eqs. (30) and (31). If
—1&n&0 the orbits will be restricted to finite
regions of the (r, 8) plane, and be bounded by a
maximum value of r.

Returning to the special case n&1, and also
assuming that the particle actually enters the
field along the polar axis (c=0), we may readily
integrate Eq. (35) and obtain:

1
0= ~—sin i

n

aHo

(1-n)r" (36)

Orbits of this type for n =3 are plotted in
Fig. 4. It is interesting to note that these orbits

Before discussing the solution for this par-
ticular case it will be of interest to examine the
general features of the orbits defined by Eq. (35).
It will be noted first, from Eq. (34), that if
n) 0 (&1),g(r)~0 as r~~. Hence by Eq. (13),
r(d8/dr) ~0 as r +~ . —This means that for
m)0 (WI) all orbits entering the field from
infinity must be asymptotically parallel to a
radius vector. As all radii vectors are equivalent,
these orbits may thus be considered as necessarily
entering the field parallel to the polar axis
(8=0). If, in particular, these orbits asymptoti-
cally degenerate into linear paths at a normal
distance h from the polar axis, i.e. , so that

r sin 0=k,
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30pvolts

l2 Cm

specific cases, the orbits previously discussed
have certain characteristics of promise for instru-
ments such as mass spectrometers, mass spectro-
graphs, beta-ray spectrometers, etc. For example,
Fig. 7 illustrates the orbits of ions of rpasses 1,
35, and 150, expressed in atomic mass units, and
all having a kinetic energy of 300 electron volts.
The type of equation which describes these
orbits, as well as that of Fig. 3(b), is obtained by
setting c=0 in Eq. (30), giving

(GBpy=a-sin-'( e" f.)
(37)

FIG. 5. Typical orbits in a radially varying magnetic field,
with n = ~; which are convex to the origin at r =&min.

have an angular spread independent of mass and
energy, quite analogous to those for the expo-
nentially varying field in Cartesian coordinates,
shown in Fig. 3(b). These trajectories will be
discussed in more detail later.

Other types of orbits obtainable in radial
fields are illustrated in Figs. 5 and 6. In Fig. 5
the particles are so projected, in a field with
n= 2, that the paths are convex with respect to
the origin at the points of closest approach.
These were determined by numerical integration
of Eq. (35), after choosing the point of minimum

approach and determining the corresponding
value of c. In a similar manner were computed
the orbits shown in Fig, 6, which are concave to
the origin at the points of closest approach. In
Fig. 5 may be seen a periodic or cyclic type of
orbit of the same general properties as possessed
by the periodic orbits in the Cartesian coordinate
cases.

For periodic orbits, the equation

1—g'=0,

which is analogous to Eq. (15) for the Cartesian
ease, must have two real and unequal roots.
For a given value of n and c it is possible to
determine whether the resulting orbit will be
periodic or not by determining whether g will

pass through both the values —1 and +1 as r is
increased.

From these figures and Eq. (37) it is seen that
all such ions which initially approach an expo-
nentially varying field in the direction of in-
creasing H will turn and recede in an opposite
direction. Also, the ions will recede asymptoti-
cally to a line displaced from their original line

- of approach by an amount independent of the
momentum of the particle and depending only
upon the exponential coefficient b.

With this arrangement all ions beginning at a
point where the field is negligibly weak, and with
a direction toward regions of increasing II, will

return to a single point where the magnetic
field is also negligibly weak.

A schematic diagram of an instrument which
might be designed to utilize this type of orbit
may be seen in Fig. 8. The design shown here is
for a mass spectrometer, but with obvious
changes it could be used as a beta-ray spec-

~H

fl
2" l O'Oersteds

l5P

&PP volts

l2Cm

APPLICATIONS

In addition to illustrating the application of
FIG. 6. Typical orbits in a radially varying magnetic field,

the general method of calculation given above to with n=-,', which are concave to the origin at r =rmig.
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trometer, or for special studies such as electron
or ion scattering, etc. By adjusting an aperture
or slit, located as shown in Fig. 8, the instrument
may be made to focus either only particles of a
narrow momentum range, such as ions of a
definite mass, or particles of a wide momentum
or energy range. An idea of the amount ef
dispersion taking place at the region of the slit
may be obtained by inspection of Fig. 7, which
represents paths of physical interest. The separa-
tion in the turning points of any two ion beams
of momentum parameters ay and c2 may be
readily calculated from Eq. (37), which gives

C

4P

4

2-

IO-

1 a2 1 (rnid) i
x y

—x2 =—log —=—log
b a& b (nrv) 2

For an instrument such as this, it would be nec-
essary for the magnetic field to vary in an expo-
nential manner only over a region large enough
to encompass the dimensions of the instrument.

In designing pole pieces of an electromagnet so
as to obtain an exponentially varying field, the
first requirement is to have the dimension in the
direction perpendicular to the x, y plane long
compared to the size of the instrument desired,
so as to allow the field to be accurately two
dimensional. Next it would be necessary that
the design be such that the three equations:

8'M O'M
+ =0

Bx l9s
(38)

=0

=Hpe'

at a=0, (39)

Hpe"
3f= sin bs.

If the magnetostatic potentials of the opposing
pole faces are +3fp and —3fp, respectively, we

be satisfied, where M represents magnetostatic
potential.

A solution of Eq. (38), which also satisfies
Eqs. (39), is:

V)
t
4J

E
dJ 4

O

2-

r' i r r T ~ r
-I2 -IO -8 -6 -4 -2' 0 2

CentImeterS

Fj:o. 7. Typical orbits with common asymptotes in an
exponentially varying magnetic field.

have the equation:

(40)

to define the contours of the pole faces.
In Fig. 4 are seen orbits which, for the case of

radially symmetric fields, are analogous to the
orbits just discussed. They are defined by Eq.
(36). It is obvious that since these orbits are
analogous to those of Figs. 7 and 5, the same
focusing properties could be applied in corre-
sponding instruments. As for the Cartesian expo-
nential field, the optics of the radial field system
is such that ions originating at a .point where
the field is negligibly weak, i,e., at "infinity, "and
with an initial velocity toward the center of
symmetry of the field, will be all focused, regard-
less of their individual momenta, at another
single point. This point will be on a radius
vector which is rotated from the line of approach
radius vector by an angle which depends only
upon the exponent in the equation defining the
variation of H with r. It must also be remembered
that orbits with this property are possible only
for n) 1 in Eq. (34).
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FrG. 8. Schematic diagram of a magnetic analyzer utilizing an
exponentially varying magnetic field.

A schematic diagram of an instrument de-
signed to employ this type of orbit is shown in
Fig. 9. An idea of the dispersion obtainable may
be seen from Fig. 4, and may be expressed
analytically as:

Ar 1 Au 1 A(mv)

r nc n mv

8 ( BEE) 1 8 f' 83I'l!+. I
sine !=0, (41)ar( ar ) sine ae ( ae)

1f BMq Ho

r E ()C j r~+'

(42)

' D. K. Kerst, Phys. Rev. 00, 47 (1941}.

wher'e r and r+Ar are the turning radii for
particles of parameters a and a+ha. Fields which
decrease with radial distance with the same
functional form have been successfully used in
the betatron. '

To obtain the field variation just discussed the
circularly symmetric pole faces must be so
shaped that the following equations are satisfied:

where M is the magnetostatic potential, and C is
the latitude angle.

Setting p=cos C, and 3E= (Ho/r")F(y), we find

F(p) must satisfy the Legendre equation:

O'Il OI
(p' —1) +2p——n(n —1)F=O.

Op2 Op,

To fix the specific solutions for F(p) applying
to the present problem, the equivalents of Eq.
(42), ~amely: F(0)=0; F'(0) = —1, are to be
imposed on the functions F(p).

If we let the opposite pole faces have magneto-
static potential +3fp,and —350, the contours
will be given by:

IIoF(8)

&Ma

the sign of F(8) automatically changing in passing
from one pole face to the other, so as to ensure
a real value for r.

As the region over which it is desired that II
have the specified functional form will not extend
to the origin, the pole faces in this region need
not follow the shape required by Eq. (43). This
physical observation also obviates the apparent
difficulty arising from the singularities at p, = &1
in the functions F(p) when n is not an integer.
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The periodic or cyclic orbits of the type in

Figs. 1(f) and (g), and Fig. 3(d), also have
properties of promise for focusing applications.
One of the most important of these properties
is illustrated in Fig. 2. This shows how the
wave-length ), or spatial periodicity of the orbit,
decreases with increasing x, . This curve was
drawn for II varying linearly with x, but its
character will be essentially the same for other
functional variations wherein II increases mono-
tonically with increasing x.

An application of such orbits may be' made to
the design of a mass spectrometer or similar
instrument, as indicated schematically in Fig. 10.
In such an instrument the ions are so acceler-
ated by a suitable source that they are projected
into the magnetic field with the x„„„for each
orbit lying within the exit slits.

In Fig. 11 may be seen a schematic diagram of
the state of affairs at the exit slits Si and S~ of
such an ion source. We shall assume that the

- potential distribution in the source is such that
all ions acquire essentially the same potential,
and that the last two slits, i.e. , S~ and S2 in

Fig. 11, are at the same potential and are
operative only in defining the emergent beam.
Moreover, these slits will be assumed to be
geometrically similar and located identically as
regards the x coordinate.

ce

~e
~~0

Fir, 9. Schematic diagram of a magnetic analyzer utilizing
a radially varying magnetic held.
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FiG. 10. Schematic diagram of a magnetic analyzer
utilizing periodic orhits in an exponentially varying mag-
netic field.

With such an arrangement all ions leaving the
exit slits will follow orbits having approximately
the same radius of curvature at the slits, differing
only in the angle of emergence.

In Fig. 11, (c) represents the orbit with the
smallest value of x, that can emerge- from the
slits, (d) that with the largest value of x,„,
while (a) and (b) represent the paths of greatest
divergence in angle of emergence. As S~ and S2
cover the same range along the x direction, the
x„„will be the same for orbits (a) and (b).

Consider now the orbits (a), (b), (c), and (d)
when the particles have advanced by exactly
one wave-length in their periodic paths, Since
(a) and (b) have the same x,„, they will have
the same X. Therefore a slit S~' of the same width
as S~ and located at the same values of x, but
rlisplaced along y by a distance X, will collect
both (a) and (b). That is, (a) and (b) will pass
through S~' with exactly the same geometry as
they passed through 8&. As orbit (c) has a smaller
value of x,„,it will be displaced slightly upward,
relative to (a) and (b). Conversely, as orbit (d)
has a larger value of x „„,its 3 will be smaller
than that of (a) and (b). Hence as it passes
through Si' it will be displaced slightly downward
relative to (a) and (b).

This shifting of the orbits (c) and (d) relative
to (a) and (b) means that the latter will limit the
lateral spread in the ion beam when entering
S&' just as they defined the angular spread in
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The calculation of the dispersion at the region
of the selector slit or aperture is easily made by
application of Eq. (29). For this purpose it is
convenient to choose the origin at the exit slits
of the ion source. Then, since dy/dx= 0() at the
ion source (x=0), c must have the value

~(a) )I(b)

c=1—

At the turning point of the orbit, i.e., at the
plane of the selecting slits, dy/dx= 0() again, so
that:

S,
giving for the location of the turning point:

x=—log 1—
b

b)

S2 For two ion beams of momentum parameters a~
and a2 the turning points will then be separated
by a distance:

2b-

FIG. 11. Schematic diagram of the geometry of the
orbits at the source and collector slits of an iristrument of
the type shown in Fig. 10.

(xg —x2) =—log
b

the beam emerging from the source slits Sj
and 52. In the design of such an instrument, as
schematically shown in Fig. 10, the final two
exit slits will correspond to 5~ and 52, and the
collector slit should be of the same dimensions
as SI and located at the same distance along the
x axis. The separation along the y axis between
S~ and 5~' will then define the wave-length ) for
which the above-described focusing process
applies. Any ion may be made to follow an
orbit of any chosen X by properly fixing the
accelerating voltage in the ion source. It is to be
noted that for the collector the one slit 5~' is
sufhcient. S2 is shown in Fig. 11 only to indicate
the geometry of the"orbits at this point, If the
instrument is to be used so that only ions of
one mass or of small range of momentum are to
pass the collector, an aperture or slit may be
introduced, as shown in Fig. 10.

A similar type of instrument could be designed
using the periodic orbits in a radial field, such
as shown in Fig. S. Similar considerations with
respect to focusing and the use of selector slits
will be applicable to such instruments. Finally,
it should be noted that the above discussion has
referred to particles moving in the median plane
between the pole pieces generating the magnetic
field. Hence in practical designs account will
have to be taken of the perturbations in the
orbits of particles off the median plane owing
to the curvature of the magnetic flux lines.
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