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The diffraction of electromagnetic radiation by a hole
small compared with the wave-length is treated theoreti-
cally. A complete solution is found satisfying Maxwell's
equations and the boundary conditions everywhere (Sec-
tion 4). The solution holds for a circular hole in a perfectly
conducting plane screen, but it is believed that the method
will be applicable to much more general problems (Sec-
tion 8). The method is based on the use of fictitious mag-
netic charges and currents in the diffracting hole which has
the advantage of automatically satisfying the boundary
conditions on the conducting screen. The charges and
currents are adjusted so as to give the correct tangential
magnetic, and normal electric, field in the hole. The result
(Section 5) is completely different from that of Kirchhoff's

method, giving for the diffracted electric and magnetic
field values which are smaller in the ratio (radius of the
hole/wave-length) {Section 6). The diffracted field can be
considered as caused by a magnetic moment in the plane of
the hole, and an electric moment, perpendicular to it
(Section 6). The theory is applied to the problem of mutual
excitation of cavities coupled by small holes (Section 9).
This leads to equations very similar to thee for ordinary
coupled circuits. -The phase and amplitude relations of
two coupled cavities are not uniquely determined, but
there are two modes of oscillation, of slightly different
frequency, for which these relations are opposite (Section
10). The problem of stepping up .the excitation from one
cavity to another is treated {Section 11).

i. THE PROBLEM

''N microwave work it is often important to
~ ~ know the e6'ect of a small hole in a cavity
upon the oscillation of that cavity. For instance,
two cavities may be coupled by a small hole in
their common boundary (Fig. I); in this case,
we wish to know the characteristic frequencies
and the phase relations for the oscillations of the
coupled system, Or a hole in a cavity may serve
the purpose of getting radiation out of it; then
we want to calculate the amount and the spatial
distribution of the emitted radiation. Another
similar problem would be to calculate the e8ect
of a small gap in a wave guide upon the propaga-
tion of waves along that guide.

A less practical problem but probably the
simplest one of the same type, is the digraction
of electromagnett'c waves by a small hole in an
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infinite plane condttctt'ng screen This is . the
problem which we are going to solve first

Fro. 1. Two cavities, a and P, coupled by a small hole.
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(Sections 3—7); the application of the solution to
the practical problems mentioned is then rather
straightforward (Sections 9—11).

The available theoretical methods are entirely
inadequate for the treatment of our problem.
In the usual Kirchhoff method, the diffracted
field is expressed in terms of the incident field
in the hole. However, the Kirchhoff solution does
not satisfy the boundary conditions, vis. , it does
not give zero tangential component of the
electric field on the screen. In most textbooks,
the pious hope is expressed that Kirchhoff's
method will give at least the first term of a
convergent series. This is probably true for the
diffraction by an opening, large compared with
the wave-length, because then the diffracted
field will be relatively small on the screen, thus
"almost" fulfilling the boundary conditions. But
it is certainly not true for a small hole; in fact,
our exact solution of the problem will turn out
to be entirely different from Kirchhoff's. The
failure of Kirchhoff's theory will be demonstrated
mathematically in Section 2.

Kirchhoff's method has the additional defect
of being a scalar theory while the electromagnetic
field is essentially vectorial. This shortcoming
has been remedied in the last forty years by a
number of writers; a very good account of the
vector equivalent of Kirchhoff's theory is given
in Stratton's book, ' to which we shall frequently
refer in this paper. The vectorial theory ensures
the fulfillment of the divergence conditions,
div E=div H =0; i.e. , it gives transverse waves
in the wave zone which would not necessarily
be the case in Kirchhoff's scalar formulation.
However, the vector formulation in no way
improves the situation regarding the fulfillment
of the boundary conditions on the conducting
screen.

The only rigorous solution of any diffraction
problem known to me is Sommerfeld's solution'
of the diffraction by a conducting semi-infinite
plane, or by a wedge. As is well known, this
solution is rather complicated although the'
problem is the simplest imaginable, being two-
rather than three-dimensional. It appears hope-

' J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), p. 464 ff.

2 A. Sommerfeld, Riemann-Weber's

Differential

gleich-
nngen der Physik, seventh edition, p. 433.

less to look for a rigorous solution of our problem
along the lines of Sommerfeld's solution. A slight
similarity between his and our method will be
pointed out later (Section 6d).

The main simplifying assumption we are going
to use is that the hole is small compared with
the wave-length. This means that the incident
electromagnetic field is almost constant over the
hole. We believe, however, that. our method can
be generalized to holes of larger size (Section 8).

2. THE FAILURE OF KIRCHHOFF'S THEORY

We may identify Q, e g. , with one of the com-
ponents of the electric field, say E„.The deriva-
tives of Q will then be connected with the mag-
netic field. If the conducting screen is placed at
x =0, the boundary condition is

Q=O at x=0.

Let electromagnetic waves come in from the
left (x (0), the corresponding wave function may
be Qp. Then according to Green's theorem, the
wave function at any point r on the right of
the screen is

t9Qp Bp
d. ——,(")~(ly—"I)+uo(")—,

Bx' Bx

with the Green's function

y(y) siI:r/r (3a)

The integration variables are y', s'. The coordi-
nates r of the "field point" and x' (=0) are kept
constant. The solution (3) is rigorous if the
integral is extended over the entire surface x' =0,
with the correct values for uo(0, y', s'). However,
the distribution of Qp on the plane x' =0 is not
known. Kirchhoff's method consists now in

putting uo ——Buo/Bx'=0 everywhere on the screen
outside the hole, and replacing Qp by the field
of the incident wave in the hole.

Suppose now the hole is very small compared
with the wave-length, then Qp may be assumed to

The failure is most easily seen in the simplest
formulation of the theory, vis. , Kirchhoff's own,
scalar formulation. Let Q be a scalar wave
function satisfying the wave equation

V'Q+ O'Q =0.
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be constant over the hole and we obtain, re-
membering that q is a symmetrical function of
r and r,

-Buo By(r)
u(r) = —A y(r)+up

Bx Bx
(4)

I
B(r) =—

~t do[&hnXH(r') y

—(nXE(r')) Xgrad y —n B(r') grad yj. (5)

In this n is a unit vector in the direction of the
inward normal to the surface, i.e. , in our case
the positive x direction. The first integral in
Stratton's formula is omitted because there are
assumed to be no charges or currents. The nota-
tion is slightly changed (1) because we use

where A is the area gf the hole. We can now
make two alternative assumptions, vis.:

(o) uo in the hole has the value given by the
unperturbed incident wave. Then both Np and
Bup/Bx' are different from zero. If we have an
incident plane wave traveling at an angle 8 with
the x direction, we have

Bup/Bx = whup cos 8:. (4a)

(b) We may take into account the reHection of
the incident wave by the conducting screen and
put Np equal to incident plus reflected wave.
Then we have in the hole up=0 while the value
of Buo/Bx' is doubled.

Now consider the expression (4) on the screen
(x=0). Then it follows immediately from (Ba)
that By/Bx= 0 so that the second term in (4)
satisfied the boundary condition (2). The first
term in (4), however, does not vanish by any
means. Unfortunately, it is just this 6rst term
which remains present when assumption (h) is
made. Therefore, for either of the assumptions
(6) and (&), 'tile boundar y cond ltloll (2) is
violated on the "right-hand" (back) side of the
screen. This wouM only be different if we could
represent the field by the second term in (4)
alone.

The vectorial theory has the same defects.
If there are no currents or charges in the half-

space x&0, the electric 6eld at a point r in that
half-space is given by Eq. (19),p.466, in Stratton's
book, which is

Gaussian units so that Stlatton s cop ls replaced
by h, (2) because we use the gradient with respect
to the coordinates of the field point r (point at
which the field is to be calculated) rather than
of the source point r' (point on the surface where
the field is given), (3) because we have inter-
changed the notations r and r', and (4) because
we have reversed the sign of n.

If the integral is extended over the entire
surface x'=0, Eq. (5) is of course correct. How-
ever, according to Kirchho8's method, the in-

tegral is only extended over the hole, and for E
and H we insert the 6eld of the wave incident
from the left, i.e. , Zp, Hp. These quantities may
be again considered as constant over the hole
which permits integration as in Eq. (4).

Now let us again consider the electric held at
a point r on the screen. Then grad cp will be a
vector in the -plane of the screen, and the same
is true of n XH and of nXE. Therefore the 6rst
and last term in (5) give tangential components
of B, thus violating the boundary condition
Bt, ——0. Only the second term satis6es the
boundary condition, giving an electric 6eld
normal to the surface. Again, this second term
is the only one which drops out if we include the
reflected wave in calculating Z(r') and H(r') in

the hole.

+p tan —0

which may also be written in the form

~XZp=0.

(6)

This makes automatically.

Hp n=0.

. Hp t, and Ep„, are in general different from
zero. On the right-hand side of the screen, the
field in zero approximation vanishes identically.
Then the zero approximation 6eld satisfies the
boundary conditions everywhere on the screen
but not in the hole: In the hole, H and the
normal component of 8 are discontinuous.

3. MATHEMATICAL FORMULATION

Let Hp, Ep be the 6eld on the left-hand side
of the screen if there is no hole. This field fulfills

the boundary condition for x=0 (plane of the
screen)
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We write now the actual 6eld

H=Ho+Hj for x &0, (&)
H=H2 for x&0,

and similarly for the electric 6eld. Then we have
the boundary conditions:

Eg ~,„——Z~ (,„ in the hole,

Ei g,~ ——Eg i. ——0 for x =0 outside the hole, (Sa)

H2 gg~ H] fg~ —Ho fsg ln the hole+ (Sb)

The boundary conditions for the normal com-
ponents are automatically fu161led if those for
the tangential components are satis6ed.

It is easily seen that all boundary conditions
for Eg and Hj are satis6ed if B2 satisfies the
boundary condition (Sa) and if we put, for any
x&0, and any y and s':

Zi„(—x, y, s) =Z2„(x, y, s), (9)

Hi„( x, y, s) = H—~„(x, y, s),— (9a)

and correspondingly for the s components, Map&.-
well's equations are consistent with (9), (9a) and
will further make

I BH
curl Z+— = —4s I*.

c Bt
(11a)

These equations are identical with Stratton's
Eqs. I and III, reference 1, p. 464, except for the
units used: We are using Gaussian, non-rational
units, and we measure p* in "magnetostatic"
units, J* in "magnetoelectric" units. The con-
tinuity equation corresponding to (11), (11a) is

vis. , the second. Such a term would be produced
by a distribution of "magnetic currents" over
the hole (cf. Stratton'). We shall therefore
assume a distribution of magnetic currents in the

p/ane of the hole, but instead of assuming the
current density to be proportional to rt&(E, we
shall determine it so as to satisfy the boundary
conditions (10), (10a).

The magnetic current density J* and charge
density p* can be mtroduced Into Maxwell's
equations in the same way as the electric charge
and current, vis. ,

div H=4xp*,

IIi ( x, y, s) =H—2,(x, y, s), (9b)

(12a)

(10) so that (3a) represents an outgoing spherical
wave. Then (12) becomes

II2 ~.„——, —',IIo ~,„ in the hole.

Likewise, from (9c) we get the similar condition
(12b)div J*=ikp*

Z2~= ~g&o, ~ in the hole. wit

&i*(—» y, s)= —&2~(x~ y~ s) (9c) We shall assume the time dependence of all

Inserting (9a) into (Sb) we find that H2 must
quantities to be as

satisfy the boundary condition g
—sto t

IIo and Eo, , may be considered as known.
The problem is then to calculate the 6eld

Zm, H2 subject to the boundary condi'tions (Sa),
(10), and (10a). These conditions are vahd
irrespective of size and shape of the hole. How-
ever, in the following, we shall assume the hole
to be small compared with the wave-length so
that Ho„, Ho„and Eo, may be considered as
constant over the hole, and we shall take the
shape of the-hole to be circular, of radius c.

It need hardly be pointed out that J* and p~

have no physical meaning.
We shall not use magnetic volume currents

and charges but only magnetic surface currents
(density X) and surface charges (density it);
g corresponds to a discontinuity of H„at the
surface $cf. (11)] and X to a discontinuity of
Zi., I cf. (11a)].The quantities X and n satisfy
a continuity equation exactly like (12b), vis. ,

4. SOLUTION div X=ikq. (13)

As we have seen in Section 2, only orie of the
terms in (5) leads to an acceptable solution,

The electric and magnetic 6eld ean be ex-
pressed in terms of E and q most conveniently
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with the help of a scalar and vector potential,
VZS. ,

8=curl I'",

i &P
H= ———grad P.

c Bt

(14)

(14a)

Equations (14) and (14a) automatically satisfy
the Maxwell equations

1 BP.
curl H= ——,

c Bt
(15)

div X=0. (15a)

(16)

From Eqs. (11), (11a) we find f and F in exact
analogy to the electric case. If only surface
charges are present, we obtain

II= —grad f, (19)

and since we also neglect the retardation in q,
(16a) reduces to

(20)

a. Determination of n from H&,„
In the solution of our problem, we are greatly

helped by the fact that the hole is small. Then
the retardation may be neglected, and II may
be considered essentially as the magnetostatic
field corresponding to the charge distribution g.
The first term in (14a) or (18) is small; indeed,
from (13) we find that K is of order gka where a
is the radius of the hole; moreover, grad q is of
the order y/a so that the first term of (18) is of
the order of (ku)' times the second. Since the
hole is assumed to be small compared with the
wave-length (ka((1), we shall neglect the first
term of (18) altogether. Then (14a) reduces to

(16a)

Inserting these results, and the time dependence
(12a), into (14a) we find the magnetic and
electric fields explicitly [cf.Stratton, reference 1,
p. 466, Eqs. (19) and (23)]

E(r) = ~K(r') Xgrad y do (17)

and [Stratton, reference 1, Eqs. (20) and (23))

FI(r) = I (ikK(r') y —g(r') grad &p)da (18).

The gradients are taken with respect to the
coordinates of the field point r (cf. Section 2 for
differences between our and Stratton's notation);
the integral goes over the area of the hole.

It is seen immediately that (17) satisfied the
boundary condition (8a), sis , E&,„v.ni ahesson
the screen everywhere outside the hole. In the
hole, E&, is of course not zero but directly
related to K [cf. Section 7, Eq. (61)].However,
the problem remains to determine X in such a
way as to satisfy the boundary conditions for
the magnetic field in the hole, vis. , (10), (10a),
and this is, of course, a more dificult task.

In our approximation we may assume H& to
be constant over the hole and equal to —', II&

[cf. (10)].Then we have from (19)

(21)

The potential problem given by (20), (21) is
fairly well known from electrostatics we seek a
two-dimensional charge distribution which gives
a constant field, ~HO, inside the region occupied
by the charges. It is known that a constant
inside field is produced by a uniform distribution
of dipoles in an ellipsoid, the dipoles having (in
simple cases) the same direction as the field. If
we now assume the x axis of the ellipsoid 2h to
be very small, the ellipsoidal charge distribution
will be equivalent to a surface charge distribu-
tion. The cross section of the ellipsoid in the YZ
plane should, of course, be taken equal to the
hole so that we obtain a rotational ellipsoid with
semi-axes, u, a, h. The surface density of dipoles
is proportional to the ordinate of the ellipsoid,
i.e., proportional to

(21a)

'The following argument was taken from H. Hertz's
solution of the elastic problem of the contact between
two spheres. See H. Hertz, Crelle's J. 92 (1881) or A. F.. H,
Love, Theory of Elasticity.
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The surface charge density is then proportional to

Hp. r'
Hp grad p, =—

(a2 y&2) $
(22)

Ho r'=Ho r+Hop cos (oo —P). (23a)

The integral Eq. (20) becomes, when we insert
(21) and (23):

(2~ ~ p(oi dp
C dp

"o "o (ao —yI2) *

X[Ho r+Hopcos (n —P)j=2Ho r. (24)

The factor p from the element of area cancels the
factor q =1/~r r'~ in (20). It is—more convenient
to integrate in (24) along a whole chord such as
RS in Fig. 2, instead of separately over the parts
RP and PS. Then the integral over P goes only
from 0 to or, and assumes positive (on PS) as
well as negative (on RP) values.

Now we 6nd from Fig. 2,

a' —r"=a' —OQ' —QT'=s' —x', ' (25)

where s=QS is half the length of the chord and

x=QT= p+QP= p+r cos p. (25a)

It would also be possible to determine the
coefficient of (22) from electrostatics.

We shall, however, determine this coefficient
by direct calculation, thus at the same time
verifying the solution (22). We put therefore

Hp ''F

g= —C (23)
(a2 y~2) $

In the integral (20), we introduce the coordinates
p= ~r r'~ and—p, the angle between the vectors
r' rand r (—cf. Fig. 2). Then if n is the angle
between r and Hp, we have

Fro. 2. Illustrating 'the integration, Eq. (24) to (26).
0 is the center of the hole, r=o, I' is the field point r,
RS any chord through P, T any point r' on this chord.

so that
C= 1/oro. (27b)

I

The assumption (23) therefore actually solves
the integral equation, and the magnetic charge
density is

Hp r.I
oy2 (a2 —r")i

From the charge density we can obtain the
current density X, using (13).We find

ik
K = (a' r")'Iio. — —

7r2
(29)

Integration over p gives

Coy or(Ho r ,'Hor cos n—) -= 2Cor2Ho r (27a)

x goes from —s to +s, and we have

dx

s

(26)

Remembering that Hp has vanishing normal com-
ponent everywhere on the plane x=0, we see
that X is entirely in the plane of the hole, as it
should be.

pdx
orr cos p. —

(a2 F2)~g
(26a)

Then (24) becomes

=~Hp r.

Coy I dP(Ho'r —Hor cos P) cos (a —P)

b. Boundary Condition for E„

The correct normal component of Bp, vis. ,
E&„——~Ep, must also be obtained by a suitable
distribution of magnetic currents X, from (17).
It can easily be seen that the distribution (29)
does not contribute appreciably to (17). Expres-
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sion (29) is of the order kaHO, grad p is of order
1/a', and the integral (17) goes over an area of
order a'. Therefore the contribution of (29) to
(17) is at most of order kaHo while actually the
normal component of Ep is of the same order
as Ho. [In'reality, the spatial dependence intro-
duced by the grad operator in (17) makes the
contribution of (29) of the order (ka)'Ho only. ]

Therefore we must obtain an additional mag-
netic current distribution Xg to fit the boundary
condition for E„. However, we must take care
that the new current distribution does not give
rise to an additional magnetic charge density g
which might destroy the -agreement obtained
above for the magnetic field. This is most easily
achieved by letting the magnetic current lines be
closed circles. Mathematically we must have

dlv Kg=0.

For the actual evaluation it is most convenient
to use (14), (16). The given electric field Z is
normal to the surface and had the value —,'Bp,
which may be considered constant over the hole.
Therefore (14) gives

c. Final Formula

The total magnetic current and charge density
in the hole is now

1
K =Krr+Ks ———

~
ik(a' r")—'Ho

1
r'XZo ~, (33)

2(a' —r")i )

r 'Hp
~2(g2 ri2) g

(33a)

S. CALCULATION OF THE DIFFRACTED FIELD

The diffracted field B, H for x)0 can be
calculated by inserting (33), (33a) into (17) and
(18).According to its construction, this field will

satisfy Maxwell's equations and all boundary
conditions.

We shall carry out the integration at large
distance from the hole, kr)&1. Let ~ be a unit
vector in the direction of r, i.e., in the direction
of propagation of the diff'racted wave. Then we
have

~= g&pXr (30) grad q =zkwy

The integral equation for the components of E In some of the integrals we may replace j by
is the same as for g in Section 2, e.g. , its value for r =0, vis. ,

dy'ds'
1= —Jiy ——~Z p, ,z, (31)

s iver/r (35)

(35a)q = q p(1 —~ks r').

In other cases, it is necessary to expand y in
powers of r' and keep the linear term; then we

which corresponds to 20, 21 . Therefore we obtain
have, in analogy to (28),

~p, .s'
2s'(a' —r") -'

(31a) a. Evaluation of the Electric Field

According to (17) and (34), the electric field is
and altogether for the current giving the required
value of Z.

E(r) = —~k~X~ Kiddy'ds'. (36)

Kg —— r'X&p
2ir'(a' —r")i

32 It is convenient to calculate separately the con-
tributions of Krr and Ks Lcf. (33)].We have

It is easily seen that this solution satisfies the
condition (30a). Moreover, since Bo is normal to
the plane, the vector Xz is entirely in the plane
of the hole as it should be. The contribution of
Ks to the first term in (18) can be shown to be
of order (ku)'Zo which is negligible.

ik
KJr pdy'ds' = Hollo I (a' r'2) &—2rrr'dr'—

(37)
2i

=—kG Hp(pp.3'
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The contribution of E'z is slightly more difficult
to calculate because Xg contains the factor r'
and therefore p must be expanded in the form
(35a). The first term, pop, does not give any con-
tribution so that we obtain

Inserting (33a) we get

k' &'
(

r'dr'
H&2&= »222 I dp » r'Hp r' .(41a)

~p &p (a' —r")'*

Now
ikq p

j K&222dy'ds' =—
27r2

r2~ pa rldr~

dP —» r' r'XEo, (37a)
(a2 r 2)k

and therefore

dP v ' r Hp ' r = m'r 2Hp ~ hl

2
H&') =—k'a'q zHp ~.

3x

(41b)

(42)

where r' and P are polar coordinates in the plane
of the hole. Remembering that Ep is in the x
direction, (normal to the hole), we find

Remembering the vector identity,

Ho —IIo»» = » X.(Ho X») (42a)

tdP» r'r'XEo= prr"—EoX» (37b) we find the entire magnetic field, (40) + (42),
becomes

z
%Eddy ds =—ka'+px~qp

3'
H=H&'&+II&'& = ——k papppp»

(38) 3m

X (2Ho X» —Eo). (43)

Inserting (37) and (38) into (36) we find This expression is a transverse wave as it should
be. Thus the field H(2) serves to satisfy the
transversality condition. In fact, since (42) is
entirely longitudinal (in direction of »), H&2&

serves only to eliminate the longitudinal component
of H"& and leaves tke transverse comPonent un

- changed. This result will be important in the
application to the cavity problem (Section 9).

Comparing (43) and (39) we see that

E= kpapq o» X—(2Ho+Eo X») ~

3' (39)

We see that B is always perpendicular to a,
i.e., the waves are transverse. Moreover, for a
point r on the conducting screen, x lies in the
plane of the screen and Hp and I~: XBp do likewise.
Therefore E is normal to the screen thus satis-
fying the boundary conditions. (44)

(44a)

H=&X&

b. Magnetic Field

The first term of (18) follows directly from as is required by Maxwell's equations for Plane

H&'& =2k) Kp&d&r

c. Total Radiation

Poynting vector of.the diffracted field is
1= ——kpa222o(2IIo+EoX»). (40) c

3r S=—ZXH
4~

This field is not transversal; only the second
term (EoX») has this property. From (39) and
(40) we see that

c k4g'
»(2»XHp —» X» XEo)' (45)

36m' r'

(40a)Z = —~XH"'.

The second term of (18) gives

Now let 8 denote the angle between the propaga-
tion vector a and the vector n normal to the
screen (x direction) and &2 the azimuth of », i.e.,
the angle between the plane of ~ and n and the
plane of Hp and n. Then the intensity of radiation

H&2&= —j 2& grad ada= —k2»222 I 2&» r'do. (41).
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in the direction ~ is, per unit solid angle,

~tot
~o

sin ede dur2
~I
S I

Jp

koao(4Ho2+2o') (47).
277r2

The expressions Ep2 and IIp' on the right-hand
side denote the time averages.

6. DISCUSSION OF THE RESULT

a. Comparison vrith the Kirchhoff Solution

The result for the diffracted 6eld is entirely
different from that of the Kirchhoff theory.
Quite obviously, the polarization of the radiation
is different because our solution satisfies the
boundary condition while Kirchhoff's does not.
Also the angular distribution of the total radia-
tion is different (cf. Subsection c, below). How-
ever, the most striking difference is the absolute
value of the field. As is easily seen from expres-
sion (5), the Kirchhoff solution gives magnetic
and electric 6elds of the order

IIx ka'Ho.

Our solution gives instead [cf. (39), (43)]

Hgg~k a Hp

w'hich differs from II~ by a factor ka. In addition,
our solution has a smaller numerical factor.
Therefore, for small holes, the radiation trans-
mitted through the hole is very much smaller
than Kirchhoff's theory would indicate. The
fields Z and JI are reduced roughly in the ratio
a/X where X is the wave-length of the radiation.
The radiation intensity is therefore reduced by a
factor of the order (a/X)2.

b. Representation by Electric and
Magnetic Dipoles

Turning now to our solution itself, we note
that the field may be considered as owing to an

k'a'[/Ho' cos' g cos' n
36m'

+ (sin 0Eo —2Ho sin n) '] .(46)

The radiation is thus not symmetrical about any
axis. The total radiation in all directions is

electric and a magnetic dipole. The field of a
magnetic dipole of moment M at the origin is,
according to usual electromagnetic formulas:

1

H=koo oioX(MX2), (48)

8= —k ppKX~ (48a)

Similarly, the field of an electric dipole of mo-
ment I' is

B= koyo~ X (I'X ~)

H=k ppKX+.

(49)

(49a)

Comparison with (39) or (43) shows that the
hole is equivalent to a magnetic dipole

2
M = ——a'IIp

3'
and an electric dipole

1
I' = ——a'Bp.

3'

(50)

(50a)

Each of the dipoles is antiparallel to the re-
spective field in the hole as might be expected.
Accordingly, the magnetic dipole is in the plane
of the hole and the electric one in the direction
of the normal. These directions are just those
required to fulfill the boundary conditions for the
electric field on, the screen. The magnetic moment
(50) can easily be calculated from the expression
(33a) for the magnetic charge density; we have

M=
I

gr'dr'

I
r' Ho r'dr'dp

(a2 —r") &

(a2 A/2) $

2= ——Hoa'. (5 l)
3r

It will be remembered that the solution in
Section 4a was actually obtained by assuming a
distribution of magnetic dipoles in a flat ellipsoid.
As is well known from electrostatics, the inner
6eld produced by such a distribution is propor-
tional to the polarization per unit volume (for
any given shape of the ellipsoid); the total
moment is therefore proportional to Hp times the
volume which in turn is proportional to a'.
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Dimensional considerations, in combination with
the fact that the relation between M and Hp is a
purely magnetostatic problem, also show that
the moment 3EI must be proportional to Hpa3.

The different factor (1 instead of 2) in the
electric moment (50a) is no doubt owing to the
fact that the electric moment is in the direction
of the small axis of the ellipsoid while the mag-
netic moment is in the direction of one of the
long axes.

The order of magnitude of 3f and I' is in
general the same although there are cases for
which one of them vanishes. This is frequently
the case for the electric moment I': It is only
necessary to assume incident plane waves with
the electric field perpendicular to the plane of
incidence. Then the electric field Ep will have no
component perpendicular to the screen, and only
IXp will be different from zero. The radiation
intensity is then proportional to sin' x where x is
the angle between the direction of Hp and the
direction of propagation of the diffracted waves ~.
This radiation is large in the normal direction,
and also on the screen in the direction per-
pendicular to Hp, i.e., in the direction of the
electric vector of the incident wave.

To make Hp vanish and Zp/0, it is necessary
to assume standing waves on the "left-hand
side" of the screen. For example, in a rectangular
cavity with the sides L~L2L3, the relevant com-
ponents of the electric and magnetic fields are
given by

(np and np integers), we have Hp„Hp,——0a——nd
Ep WO. Then the radiated intensity [cf. (46)] is
proportional to sin' 8 where 8 is the angle between.
the normal to the screen (direction of Ep) and
the direction of propagation. This intensity is a
maximum on the screen and zero in the normal
direction, quite different from the previous case.

c. Di6raction of a Plane Vfave

It is of some interest to discuss the case of an
incident plane wave. Let H;, E;, I~,, be, respec-
tively, the magnetic field, the electric field, and
a unit vector in the direction of propagation for
the incident wave. Analogously to (44), (44a)
we have

(53)H, =~,XE,,

Z, = —~;XH;, (53a)

and the Poynting vector is

C

S;=~,—B'=~-H'
4m 4~

(54)

We shall denote by 0 the angle of incidence,
i.e., between ~; and n (the vector m is in the x
direction); then 0&8&m./2. We have to distin-
guish two cases.

a. Electric Field of Incident Wave Perpendicular
to Ptane of Incidence

Ãm3sxm yx m'may
B,=A, cos sin sin

L2 L3Lg
Hs gag =Hg cos 8'.

For this case we have 8; perpendicular to the
plane of ~; and n. Then E; has no normal com-

(52) ponent, and the tangential component of H; is

Hy =By cos
7l m]X

. sin
xm.„y em3S

cos
I3

~may
— sin

7l m]X
H, =B,cos cos

Li L2

(52a)

(52b)

This tangential component is doubled upon re-
Rection so that Hp=2H g, , it lies in the plane
of incidence. If, then, p is the angle between the
plane of a and n and the plane of ~; and n, we
have for the diffracted radiation intensity per
unit solid angle

where A „B„,and B,are constants and m~, m~, m3

integers. Then if we place the hole on the wall
x=0 at a point where

4c
r'

~

S
~

= tp'a'H ' cos' 6(1—sin' 8 cos' P)
9x3

msy =sg+ g and
m3S

=n p+ -,'(52c)
Ls

16
tp'a'S; cos' 8(1—sin' 0 cos' P). (56)

9m'



The "diffraction cross section" of the hole for
this polarization is then

~S)r' sin 8d8dP
64

k'a' cos' 8. (57)
27Ã

Eo ———2E„(sin 8, 0, 0),

Ho 2E,(0, 0, 1),—— (57a)

and [cf. (45)j
(2~ XHo —i~ X ~ XEO)'

=4 (K XIzo) + (K XEo) +4& ' (Ho XEo)
=4E,2[4(1—sin' 8 sin' P) +sin' 8 sin' 8

—4 sin 8 sin 8 cos Pj. (57b)

Inserting into (45) we find for the differential

cross section

dA r']Si

sin 8d8dP 5,

16
k4a'[cos' 8+sin' 8(cos' P

9x2

+ g sin 8) slil 8 sin 8 cos g (58)

and for the total cross section

64
A)( = k4a'(1+-', sin' 8).

27m
(59)

The most remarkable feature of the angular
distribution (58) is the dependence on the azi-

muth P: For a given 0, the radiation is smaller
for P=O (i.e. , in the direction closest to that of
the incident wave), than in the "reflected"

P. E/ectric Field in F/ane of Incidence

If we choose the plane of incidence as XV
plane, then i~; has the components (cos 8, sin 8, 0)
and E;has the components E;(—sin 8, +cos 8, 0).
According to (53), H, has then the components

E;(0, 0, 1). The components of i~ are (cos 8,
sin 8 cos P, sin 8 sin P). Taking into account the
reHection and the fact that only the normal

component of E; is effective, we get

direction P= ir. We suspected an error in sign to
be the cause of this result, but we have found
none. Perhaps the most convincing check on the
sign is provided by Eqs. (48) to (50a). The result
mentioned is of course exactly the opposite of
that expected from any elementary considera-
tions based on the Huygens principle. For any
value of 0, the radiation is a minimum in the
azimuth given by

cos Po ———,
' sin 8/sin 8.

In the plane of the screen, the radiation is zero
for P =Pa, which in this case lies between 60' and
900

The total cross section (59) is greater than
that for the e-direction of polarization, (57),
except for normal incidence when the two ex-
pressions are equal. For unpolarized light„

64
k4a'(1 —

gS
3sin' 8).

27Ã

All cross sections are proportional to X 4 as in
Rayleigh's theory of the scattering by small
objects. Also the proportionality with a' is the
same as in the scattering theory. The cross
section is of the same order as the scattering
cross section of a dielectric sphere or disk of
radius c and dielectric constant of the order of 2.

d.. Comparison with Sommerfeld. 's Solution

One characteristic feature of our solution is
that the current and charge distribution E, 7' de-
termine the field only in the half-space on the
right of the screen. The perturbation of the
field on the left, Hi and Ei [cf. (7), (8)$ would be
obtained by a current and charge distribution
—X, —q. This reversal of sign is unusual in
electrodynamic theory. But a somewhat similar
procedure had to be used by Sommerfeld in the
wedge problem. In order to take into account
that the field is entirely different on the two
sides of the screen, Sommerfeld put a "branch
plane" in the screen and obtained the solution of
the problem in a Riemann space. This is the
mathematical expression for the fact that the
field is not given by the same integral representa-
tion on the two sides of the screen.
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Htan= 2Hp tang (60)

7. FIELD IN AND NEAR THE HOLE

a. Inside the Hole

From the conditions (10), (10a), (7), (9a),
(9c), we see immediately that in the hole

The second term is in general negligible com-
pared with the first since Hp and Bp are usually
of the same order of magnitude. The first term
is again of the same order as Eo, [cf. (60b)j and
is singular near the edge of the hole. The tan-
gential electric field is directed radially outwards
from the center of the hole.

-E& = o&p, &. (60a)

H&, and E„are thus haH'way between their
values in the "unperturbed" fields on the right
and on the left side of the screen. On the other
hand, those field components which would be
zero if the hole were absent, i.e., the normal com-
ponent of H and the tangential component of E,
are determined directly by q and E. Since 4xp
measures the discontinuity' of H„, we have, at a
point just to the right of the hole,

2 Hpr
H, (r) =2s.p = ——

s (a' r')&— (60b)

In the hole, therefore, the normal component of
H is of the same order of magnitude as the
tangential component. This does not in any way
invalidate our calculations because we have not
used a perturbation method in which H was
considered small compared with H~, , but we
have satisfied the boundary conditions exactly.

In contrast to H~ which was assumed to be
constant, H .varies rapidly over the surface of
the hole. Near the boundary r=a, H, becomes
infinite as 1/(a r)' An i—ntegr. able infinity of
this type occurs frequently at edges. It occurs,
e.g. , in Summerfeld's solution of the diAraction
by a half-plane, in the neighborhood of the
diffracting edge.

The tangential component of the electric field
is given by [cf. Stratton, p. 467, Eq. (23)j

Eg, =2mnXX,

where n is in the positive x direction (Stratton's
n is in our negative x direction). Inserting (33)
and remembering that in the hole r n=0, we
have

P = g VD JI Hg@~tSA, (62)

where v=s&/27r is the frequency,

2s.(0 v) l
(62a)

is the thickness of the current carrying sheath in
the conductor, a. is the conductivity in electro-
magnetic units (=10 ' times conductivity in
mho), and the magnetic permeability has been
assumed to be 1. The integral in (62) goes over
the whole surface of the conductor. Since H~,„
behaves as 1/(r' —a')& near the edge of the hole,
(62) diverges logarithmically; it must be cut off
at a value of r —a of the order of D. The power
dissipation on the right-hand surface of the
screen becomes then of the order

b. E„„and H& near the Hole

Outside the hole, Z~, and H„are of course
zero. The other field components have singu-
larities near the edge, behaving as 1/(r' — a)&.

At larger distance from the hole, H~,„and E„
behave as Hoa'/r', up to distances of the order X.
For still larger distances, the solutions of Sec-
tion 5 hold. The field in the neighborhood of the
hole has not yet been calculated, in detail. It is
clear, however, that H~, and E are very far
from zero on the screen in contrast to the
assumption made in Kirchhoff's theory.

The tangential component of H is especially
important because it determines the dissipation
of energy (joule heat) in the screen if the latter
has finite conductivity. The energy dissipation
per unit time is

P Ho'vDa' In (a/D). (62b)

An accurate calculation of this quantity would
be useful for the theory of cavities with s~all
holes.

r 2.
Z,.„=— Eo,+ N(a' r') 'n XHo (61—a)—

s (a' —r')'
4 The discontinuity of II at x=0 is, of course, only

mathematical. As explained in Section 6d, the current
distribution X, q determines the field only for x&0. The
physical field II„is continuous at x=0, according to (9b).
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8. POSSIBLE EXTENSIONS OF THE THEORY

In its present form, the theory is only appli-
cable to holes small compared with the wave-
length. However, it seems possible to extend it
to holes comparable in size with the wave-length.
In this case, the given fields IIO and ED will
contain factors of the type e'~'"'. Similarly, the
variation of the factor e'~~" "'~ in the Green's
function y must be considered. From an approxi-
mate consideration, it seems that the correction
terms will be of relative order (ka)' rather
than ka.

It seems certainly possible to obtain solutions
in terms of power series in y' and z'. The integral
(20), for instance, can be evaluated if g is any,
odd power of (a' —r")», giving 'for Ho„a power
series in r'. From this type of solution, others
can be obtained by differentiation with respect
to y and z. We believe that in this way a solution
for an arbitrary function Ho„(y, s) can be ob-
tained. However, a more elegant solution may
perhaps be found in terms of the electric oscilla-
tions of an ellipsoid.

A second question is the dependence on the
shape of the hole. From the way in which our
solution was obtained in Section 4a, it is clear
that a solution can also be found for an elliptical
hole. The solution for an ellipse'of arbitrary
eccentricity should give a sufficient idea about
the dependence of the diffraction on the shape of
the hole. However, the case of a rectangle may
also be solvable.

A more difhcult question is the extension to
screens and holes which are not plane. The case.
of a small hole in a curved surface will probably
still give a result very similar to ours, as long as
the surface may be considered plane over a
region large compared with the hole. This is
usually the case since the radius of curvature of
cavities is ordinarily of the order of the wave-
lengths. If this condition is fulfilled, the boundary
condition on the surface will be violated only in

the wave zone where the diffracted field is no
longer very large. Perhaps a method of suc-
cessive approximations will be applicable to this
case.

However, a different situation arises when the
hole'itself is essentially curved. A simple example
is a gap in a cylindrical wave guide; in this case,

the gap itself is the surface of a short cylinder.
Such a problem will presumably require an
entirely new solution, but it is likely that at
least the same principle ei11 work as in our case,
and that the symmetry of the cylinder will be
helpful for obtaining the solution.

d p co dp 4gI f+— +(o 'p„= ii A„ds, (64)
dt' Q dt U ~

where co is the frequency of the mth normal
mode, Q is. the dissipation constant, V is the
volume of the cavity, and the integral is taken
along the conductor- carrying the current I. The
current is measured in electromagnetic units.

Since our solution is obtained in terms of
magnetic currents and charges, it is convenient
to expand the field in a slightly different way,
by using a magnetic vector potential F as defined
in (14), (14a). The scalar potential P will be
unimportant because the magnetic field is trans-
verse. We expand:

(65)
and have

(65a)

with

F.=Q q k A (r) (65b)

A =curl F /k„.

The I" form an orthonormal set:

(65c)

J~F) F„dU= V8&, (65d)

where V is the volume of the cavity. Our q and

6 E. V. Condon, J. App. Phys. 12, 129 (1941).

9. APPLICATION TO THE THEORY OF CAVITIES

Condon' has given a most convenient theory
of the excitation of cavities by electric current
loops. In this theory, the vector potential A is
developed in terms of normal modes A, thus:

(63)

By inserting this expression into Maxwell's equa-
tions, a differential equation is obtained for p in
terms of the current I exciting the cavity, viz. :
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div F =0.

Moreover, the F satisfy the wave equation

(66)

Condon's p stand in the relation of coordinate
and momentum.

The solution ('65) satisfies automatically the
first Maxwell equation (15), (15a) (cf. Section 4).

The F 's are determined in such a way that
also

Now the normal modes of the cavity all have
transverse magnetic fields. Therefore to deter-
mine their excitation we need only the magnetic
current distribution E, not q. Moreover, our ex-
pansion in transverse modes will give us the
complete field because the longitudinal field pro-
duced by X is canceled by the effect of q.

We may now evaluate (87a) in terms of H«»
and Zp, . Inserting (33), we find

with

V~F +k2F =0

k =pp„/c.

(66a)
ik

(66b) J ~p
EH F d&r= Hp ~ F—(0) (a' —r"):2~r'dr'

Because of (15), (66), (66a) the second Maxwell

equation

1 BH
curl B=——

c Bt
(66c)

B F
curl curl F+— = —4~J*.

c2 Bt2

is also fulfilled by the particular solutions F .
Now assume a distribution of magnetic cur-

rents of current density J*per unit volume. Then
the Maxwell equation (66c) is replaced by (11a).
Inserting Eqs. (14), (14a) we obtain

2i
ka'Hp —F (0),3' (68)

BFmy BFmy
F-.= F-.(o)+ y'+

By' Bs'
(68R)

The constant term in (68a) gives no contribution,
and we obtain i.

where F (0) is the value of the "eigenfunction"
F at the center of the hole. To evaluate the
contribution of Xs, Eq. (33), we must expand F„
in powers of r' and keep the linear term:

Using the expansion (65), the condition (66), and
the wave equation (66a), and expanding the J
right-hand side of (66d) in terms of eigen-
functions F, we obtain

d'q pi dq„4~c'
+— +pi 'iI = — ~d VJ* F (67).

dt' Q„dt V

The second term has been added to take into
account the energy dissipation in the walls of the
cavity. If we have magnetic surface currents X
instead of volume currents J*, the right-hand
side of (67) is replaced by

)2x tIa

dP
2pr'&p "o (a' —r") p

(plFmp pl Fmp
y'+

E ay' gz' j
(BF„, 8F,

y'+ z' y'
( By' c7z'

1
= ——a3EO, curl F

3'

4zc' p
dcrK F

U J
(67a)

Equations (67), (67a) are obviously the exact
analog of Condon's Eq. (64).

It will be noted that (67a) depends only on X,
not on q. Indeed, as we have shown in Section Sb,
the magnetic charge g serves only to eliminate the
longitudinal component of the magnetic field and
does not affect the transverse component at all.

= ——k aPEp& .(0).3' (69)

In the last transformation, we have used relation
(65c). Inserting (68), (69) into (67) we obtain

d g COm de+ +~m gm
dt' Q dt

4 c'a'
[k Ep& (0) —2$kHp ' F (0)]. (70)

3 U
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We must now determine Hp and Ep. rhe
simplest case, perhaps, is that of a cavity com-
municating with outside space through a small
hole. If radiation comes from the outside and if
there is no radiation in the cavity, then Hp, 8p are
simply the incident magnetic and electric field at
the hole. If there is also a field in the cavity, it is

easy to see that in order to satisfy the boundary
conditions in the hole, we must choose HD and Ep
equal to the Chgerence between the outside and

the inside field.
A case of some interest is that of a cavity with

a field inside, radiating into space through a
small hole. Then IIp, Ep must be replaced by the
inside field at the hole, with negative sign. Some
caution is necessary since it has been assumed in

the derivation in Section 4 that the 6elds depend
on time as e '"'. Therefore, if the inside field H is

to be obtained from (65a), we must put'

the excitation of the mth mode will be given by

4 a' GOy

q =—A—sin+&t
3 V cv

' —~g'

&(L2,F .(0) F„(0)—„A,(0)A, (0)j. (73a)

Thus quite similar to the perturbation theory of
wave mechanics, the other modes m will be
"mixed in" with the main mode on account of the
"perturbation" by the small hole. However, it is
in general not necessary to use the coeKcients q
because the 6eld distribution near the hole is
given more directly by the integrals (17), (18)
and is only very little modified by the presence of
the rest of the cavity (for given Ho, Zo).

The most interesting result is obtained by
applying Eq. (72) to the main mode m= 1 which

gives

(1/c) (cq„/ct) = —ikg . (70a)

Epg Qik'iA ]~) (71)

Now let us suppose that the frequency is close to
the natural frequency co& of a certain mode, 1, of
the cavity. . Then we may put in sufficient
approximation

d gy 0)y dory+-— +col g&=2+& g'g
ct' Qg ch

where the emission coefficient y is

2G
7 = L2Fi'(0) —A i*(0)j.

V
(74a)

and obtain

1 dpi
Ii i ——zk gag J'"g

c dt
My =My(1 r). (75)

The right-hand side of (74) will cause a shift of

(71a) frequency from &a& to

dg e dg
+— +m Q'm

ct' Q„ct
4c'=-—&iQiL2(uF~(0) F (0)
3 V

—„A„(0)A „,(0)], (72)

where the argument 0 denotes the value of the
respective function at the center of the hole.

Equation (72) describes the excitation of all

normal modes rn by one normal mode, 1, through
the action of the hole. In the stationary state,
i.e. , when

pi=A sin m~t

It can be easily verified that the correct final result is
obtained by this method even if q ~sin ~t or cos cot. It is
only' necessary to go through the derivations from the
beginning with a different time dependence.

The amount and sign of this shift depends on the
value of.Ji ~ and A ~, at the hole. If A ~, is small, the
frequency will be decreased; if F&((A &„ there will

be an increase of frequency.
Both alternatives may occur in practice: E.g. ,

in a rectangular cavity with electric 6eld in the
x direction, the field will be given by (52) with
m~ ——0. Then the electric field will be zero on the
XV and the XZ plane; a hole in either of these
planes will therefore lower the natural frequency.
On the YZ plane, at the points determined by
(52c), F~ ——0 and A ~, is a maximum; therefore a
hole at these positions will increase the frequency.
If m2= m3 ——1, this is the case in the middle of the
VZ plane (y=-', I2, s=-,'L,s). For the same mode,
a hole at y = ~L&, s= ~L3 will leave the frequency
unchanged.

At least the 6rst of these results can be
understood qualitatively from the pattern of
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electric field lines. If the hole is in a plane parallel
to the undisturbed electric field (XY or XZ
plane), then in the hole the boundary condition
E =0 is relaxed. This is equivalent to a slight ex-
tension of the cavity, and therefore the charac-
teristic frequency will be lowered. The electric
field near the hole will behave about as indicated
in Fig. 3 (exaggerated).

The case of a hole in the FZ plane is not quite
so clear. A possible interpretation is that the hole
reduces the value of E to one-half and that
therefore the cavity behaves as if it were smaller,
giving a higher frequency. However, a closer in-

vestigation of the fields near the hole seems
necessary to understand the effects properly.

It will be noted that p is purely real. This
means that only the frequency is changed but not
the energy dissipation. This is in agreement with
the result in Section Sc that the intensity of the
emitted radiation is of order a' rather than a'.
The radiation would therefore contribute a dissi-
pative term of order p2 only. However, it must be
remembered that our theory does not properly
take into account the finite conductivity of the
cavity walls. The dissipation in the walls will be
increased by the presence of the hole (cf. end of
Section 7), the increase being of order u'

LEq (62b)3

10. COUPLED CAVITIES

two cavities will be denoted by subscripts 0. and

P, respectively. E.g. , g will be the amplitude of
the mth normal mode of cavity n. Cavity n shall
be on the "left" of the boundary @=0, while P
extends to positive x. We shall assume that mode
1 of 0., and mode 1 of P have nearly equal fre-
quencies, and that the cavities are excited with a
frequency

0) =Ma 1=0)P1. (76)

Considering the excitation of cavity P, we have to
insert for IIO and Ep, the difference between the
fields in cavities a and P. We need only take into
account the first mode of each cavity so that,
similar to (71):

+pg =~algal~ ale ~pl'apl~ plat (77)

HD = —ik,q,F i+ikpigpiFpi. (77a)

d g aopdg 4 a
+— +co g = co o (c— rt ——c pgp),

dt2 Q. dt 3 U.

d2qp O dip
+— +coP gP = Mo (—CNgp——c~pg0),

dt' Qp dt 3 Up

(78)

with

Ke may drop the subscript 1 and refer in the
following only to the first mode. Moreover, be-
cause of (76), we may put k~i ——ksi in Bo, and H0.
Then we obtain the differential equations

Let us assume two cavities with one common
wall with a hole in it (Fig. 1). The fields in the 2 2

4aa 2~a ~ax ~pp 2~p ~px)

Cap =Cpa =2Fa ' Fp A agA p~o

(78a)

The values of I'", etc. , have to be taken in the
hole. In all small terms in (78), ay and cos have
been replaced by coo. Equation (78) has exactly
the same form as for two conventional coupled
circuits and can be treated in the same way.

Let us consider the case of two nearly equal
cavities, and let. us choose the eigenfunctions so
that the normalized magnetic fields F and rip are
identical at the common boundary. Then, ac-
cording to (65c) we have also A, =As, and
therefore

FiG. 3. Electric field lines in a cavity with a small hole
in one of the sides parallel to'+~the field. The density of
the lines is not proportional to the field strength, the
bulge near the hole is exaggerated.

Ke put
~aa ~pp ~ap.

4a' 2

v =-—(2~-'(0) -A-(o))
3 V

(79)

(79a)



then y is R dimensionless quantity which meas-
ures the coupling between the two cavities. Then
(78) becomes

d g copdg
+ +&a gn=ooo 7(gn gp)i

dho Q Ch

d gp Gag dgp
+— +~p gp = ~o'V(gp —go)

dho Q Ch

In the last term on the left hand we have kept (o

and sop to allow for a possible lack of tuning. In
the other (correction) terms we have put
cu =~p=~o. Neglecting the damping, we find the
frequencies of the coupled cavities are given by C.

If,the two cavities are considerably out of tune,
i.e., if

i(u —copi&)ooy, (81a)

Thus we get one mode whose frequency is the
same Rs for the Uncoupled CRV1t1cs,

they will oscillate almost independently, i.e.,
there will be one proper frequency close to ~ at
which mostly the 6rst cavity is excited while the
second has very little excitation, another proper
frequency close to cop for which the reverse is the
case (cf. Section 11).

The CRvit1cs Rrc well tuned 1f

i a —
oop i ((a)y. (81b)

The tun1ng requ1rement 1s thus determined by
the size of the hole, cf. (79). If ~ =a&p ——coo, (81)
giVCS

F16. 4. Field distribution in the erst mode coi of two
coupled tuned cavitiek (a) Cross section of cavities.
(b) Electric field E„, as a function of x' (same curve for
any value of y). (c) Magnetic field H,.

the 6eld at all and the two cavities oscillate as if
there were no coupling. This explains immedi-

ately why the f'requency is not disturbed. Never-
theless, the coupling is important because it
determines the phase relations between the two
cavities. For the simple case of two rectangular
cavities oscillating in their lowest mode wc have
plotted the electric and magnetic field in Fig. 4.
The electric 6eld is assumed to be parallel to the
common boundary; it is zero inside the hole just
as on the conducting wall.

The second mode has

and another mode of frequency

ooo =ooo(1 —p)

when we neglect terms of order y~.

In the 6rst mode we have tcf. (80)]

(83)

This means that the tangential magnetic 6eld at
the common boundary is continuous, H =Hp,
and the same holds for the normal component of
the electric 6eld. The holi, then, does not perturb

Then, the magnetic field changes its sign when

the boundary between the cavities is crossed (cf.
Fig. 5). In the hole, the tangential component of
the magnetic 6eld is zero. Around the hole, there
is a large perturbation of the field. The tangential
electric 6eld has R maximum in the hole. In Fig. 5
we have plotted the electric and magnetic 6eld
for the same cavity as Fig. 4, but this time for the
second mode, a&o ——ooo(1 —y). Since in our case the
unperturbed electric field has no component
normal to the common boundary, y is positive,
a,nd the frequency is reduced by the coupling.
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zero on the common boundary (x=0) is II,. If we

do not restrict our attention to the lowest mode,
we have for the normalized field:

E at Y,

)&2 cos (84)
L3

7I m JX 7l m38
— sin

at Y,
2

C.
where m~ and m3 are positive integers not zero
and I ~L2L3 are the lengths of the three edges of a
single cavity. Then we have for the coupling
coefficient t cf. (79)]

8 u3
7=

3 LrLRL3

E at Y
(mi/Li) ' trttt ps

X 4 sin' . (84a)
(rni/Li) '+ (ms/L3) ' l.l

at Y
2

FIG. 5. Field distribution in the second mode co2 of the
cavitr'es of Fig. 4. (a) Cross section )identical with 4(a) j.
(b) Electric field E„along a line not going through the
hole (y=y&). (c) Magnetic field along the same line.
(d) Electric field B„along a line y=y2 going through the
hole. (e) Magnetic field along the same line.

This corresponds to the fact that now, so to
speak, the two cavities oscillate as a whole; the
electric field E„no longer goes to zero in the hole
but has a secondary maximum there, thus be-
ginning to develop towards the field correspond-
ing to the lowest mode in the larger cavity n+P
with the central boundary absent (Fig. 6). This
mode is entirely different from that of the sepa-
rate cavities (Fig. 4); therefore in mode 2 (which
is the lowest harmonic for the larger cavity of
Fig. 6), a large perturbation field exists around
the hole which varies rapidly in space. The
energy dissipation is likely to be considerably
greater than for mode I (cf. Section 7, end).

The coupling coefficient p depends sensitively
on the position of the hole, and may be zero for
certain positions. For example, in our case of two
rectangular cavities with an electric field in the

y direction, the only field component which is not

I he last factor possesses nodes on the common

boundary, x =0, for any value of m3 greater than
one. In general, large coupling is desired; then the
hole should be put at or near the maximum of y.

If definite phase relations between the oscilla-
tions of the two cavities are required, the correct
frequency must be selected. It seems possible to
predict, in many cases at least, whether the
desired phase relation corresponds to the higher

or the lower frequency. In any case, two coupled

a.

C.

F&G. 6. (a) The cavity of Figs. 4 and 5 without the wall
in the rniddle. (b) Electric field distribution B„ in the
lowest mode of the cavity&a. (c) Magnetic field in the
same mode.
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cavities which are exactly tuned mill give two
modes with a relative frequency difference of the
order y a'/V, the phase relations between the
fields in the two cavities being opposite for the
two modes.

11. STEP-UP COUPLING

It is often desirable to couple two circuits in
such a way that the fi'eld in P is stronger than in n.
This can be achieved for two exactly tuned
cavities if they are coupled asymmetrically, vis. ,
by a hole which is in a position corresponding to a
high value of the normalized field F and to a low
one of Fp (Fig. 7). Then the excitation may be
expected to adjust itself so that the magnetic
field is continuous in the hole, vis. :

FIG. 7. Asymmetrical coupling of the two tuned cavities.

which has the two solutions

II.=g F (hole) =Hp=qpFp (hole), {85)

where F, Fp are the normalized fields. Then,
since Fp is made small compared with F, we get
qp&&g as desired.

We shall show in this section that (85) is
actually fulfilled for one of the two modes, vis. ,

that having the same frequency as the uncoupled
cavities. There is, however, another mode in
which the field in P is smaller than in n. Further-
more, we are going to show that two slightly mis-
tuned cavities coupled symmetrically will give
the same results as two exactly tuned cavities
coupled asymmetricall.

The problem of cavities coupled asymmetrically
in the way indicated in Fig. 7 can be easily treated
by Eqs. (78) to (78c). It is convenient to de6ne
the "displaced frequencies. "

co "=o) ' —(4/3)so'c (a'/V),

Mp = Np —(4/3) do happ(G / U),

and the coupling coefficient

& [-', (co,"—cop")'+o)o'y'] '*. (87a)

The ratio of the exritation amplitudes q„, qp is:

(88)

the upper sign corresponding to the higher fre-
quency ~i, the lower sign to ~2. X is given by

f20)p Mo COp GJO

2yeo

'yahoo

{88a)

with

&ee =&app)

~pp=~ p/w

(89)

(89a)

We shall Ilow make the simplifying assump-
tions [cf. (78a), (78b)] that A is zero in the hole,
and that F and Fp have the same direction.
These assumptions are fulfilled by the cavities
treated in Section 10 where A =Ayand F is in the
z direction everywhere on the common boundary
of the cavities. Then we may write [cf. (78a),
(78b) J

v = (4/3) ~0'&-p(&'/ U) (86a)
~=~-/Fp

Then (86) reduced to
the volumes of the two cavities having been
assumed equal. Then, if cv denotes the actual fre-
quency, (78) becomes

&p =~p —'r~o /p~

(9o)

(Co~ —N )/~+No 'rgp=0,

~o'~C-+ (~p"—~')e=0

and (88a) becomes
(87)

& = (~' —&)/&~.
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If we now assume that the cavities were originally
tuned, i.e., co =cop =coo, we obtain, by inserting
(90), (90a) into (87a) and (88)

MP =0)0 ) (9&)

(92)

(92a)

We find thus one mode co& of frequency equal to
the unperturbed frequencies, and another mode
~2 of lower frequency. In the first mode the ratio
of the amplitudes of excitation gp/g is such that
the magnetic fields in the hole are matched, in
agreement with Eq. (85). This mode, then, gives
the desired stepping up of the amplitude from 0.
to P. However, in the second mode, the ratio of
the g's is reversed (in addition, the phase relation
is opposite). Caution is therefore necessary to
excite the coupled cavities with the correct fre-

GAP GP~

+Mp
(93)

In either case, the more strongly excited cavity is
the one whose ~' is closer to the actual frequency.

quency in order to obtain the desired results.
(For frequencies other than &v& and co2, beats will
occur. )

Moreover, we see that it is not at all necessary
to couple the cavities unsymmetrically in order
to step up the excitation from n to P. It is only

'

im'portant [cf. (88)]that X be different from zero,
i.e. [cf. (88a) j, that co

' and a&p' bs dg"erent Thi. s
can be achieved either by making eo =cop but
c W cd, then we have two tuned but unsym-
metrically coupled cavities as treated in (89) to
(92a). But it can equally well be achieved by two
slightly mistuned and symmetrically (or also
unsymmetrically) coupled cavities; then ar &ass
and c„=cd so that


