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Equilibrium conditions between elementary particles and nuclei at temperatures 7°,10°
degrees are studied. Three temperature intervals below the upper limit ~102 degrees
[RT~108 ev] are considered. It is found that because of the behavior of some high energy par-
ticles, known experimentally from observations on cosmic rays and nuclei, some limitations
arise to the validity of the laws of quantum statistics, in accordance with the idea of the
existence of a supplementary indeterminacy for high energy particles and a lower limit for
measurable lengths. Some astrophysical aspects of the phenomena of pair production and of
the gravitational effect of light particles are discussed. The results concerning pair production
at temperatures ~10° degrees are summarized in Table I. General formulae for thermal equi-
librium between nuclei and light particles are given.

1

N some previous papers! the statistical phe-
nomena taking place at extremely high
temperatures were considered. The purpose of
the present research is to give a fuller account of
some of the results obtained. Although the idea
of the supplementary indeterminacy in the high
energy regions served as a guiding principle in
all this research, we tried to base our conclusions
mainly on the known experiments on cosmic rays
and nuclei, and on the obvious irreversibility of
some of the processes in which particles are
created.

We shall distinguish three temperature inter-

vals below the upper limit T, ~k™1 137 mc?.

1. Temperatures well below the critical tem-
perature To=k"'mc?, e.g., T <k 'mc/10, for
which the usual quantum statistical laws hold.

2. Temperatures tk~'mc*>THT,, character-
ized by the appearance of positrons and electrons
produced by thermal photons, at which an
approximate treatment of the assembly, by
means of elementary statistical formulae, is still
possible. In this temperature interval it is
possible to neglect, as a first approximation, the
production of few high energy particles with
E>108ev. However, the increase of density,
thermal capacity, and pressure owing to the
created electron pairs must be taken into
account.

3. Temperatures Ty<T <137 T, which can be

1 G. Wataghin, Phil. Mag. 17, 910 (1934); Comptes

rendus 203, 909 (1935); Phys. Rev. 63, 137 (1943); 64,
248 (1943); 65, 205 (1944).

introduced only for assemblages of heavy par-
ticles, e.g., for nuclei.

4. Conditions [kT>10%ev] at which the
average amount of energy per particle is so
great that the majority of the processes become
irreversible and no equilibrium is possible. The
lack of the equilibrium is due to the simultaneous
or successive creation of many particles (espe-
cially of unstable mesotrons) and to the processes
involving emission of neutrinos, in which an
appreciable fraction of the energy and mo-
mentum escapes all observation.

We shall not discuss here the problem of
relativistic invariance examined briefly in a
preceding paper.?

2

Let us consider the equilibrium between
photons, electrons, positrons, neutrons, protons,
and nuclei at TS To. Let N, #es, Bps, Bnsy, Boas,

A
nzs be the numbers (per cm®) of photons, elec-
trons, positrons, neutrons, protons, and nuclei of
charge Z, and atomic weight 4, which belong
to the momentum-interval p; ps+dps. We assume
the validity of the laws of conservation of charge:

A
S mae Y Znze Y fpe— Y e=n=const. (1)
conservation of energy:
Zs[Nsh.Vs+nesEes+npsEps+anEHs
A _A
+nz:Ez, ] +8=E=const. (2)

[where & indicates the interaction energy,
E..=mc*(1—p*)~% is the total energy of an

2 G. Wataghin, Phys. Rev. 65, 205 (1944).
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electron, etc.], and of conservation of the total
number of neutrons and protons:

Zs[nNs—{—an—!—An;s:]=N=cons‘c. 3)

We assume also that it is possible to specify
the states of weakly interacting particles in the
usual way, namely, by means of eigenstates
having appropriate symmetry. Then, indicating
with

go =81 Vh=3p2dp, =87 Vi—c—3(E 2 —m) EdE,

the number of quantum states or eigenvalues of
the energy belonging to the sth momentum-
interval, we obtain, in the usual way, the fol-
lowing expression for the number of different
complexions:
gs+N '_1 ! s!
W= 1 )¢ @)
(gs—1)!Ny! ”PS'(gs_neS)|
Neglecting the interaction &, and calculating
the maximum of

log W—an—BE—vN,

we have, in the usual way:

d lOg w gs— Nes
=log fa—BE.=0, etc.,
671,93 Nes
and
- & - &
exp (Bhvy) —1 exp (—a+BE.)+1
—_— gs
exp (a+BE,,) +1"
gs
NHs = ' (5)
exp (a+v+BEus) +1
—_ gs
exp (y+BEw.)+1’
A s

- exp (Za—l—Av—i—BEf;s)il )

The constant 8 is =1/kT, at least within the
limits of applicability of the usual concept of
thermodynamical temperature; the other con-
stants «, v can be determined when we introduce
(5) in (1) and (3). In order to take approxi-
mately into account the existence of a supple-
mentary indeterminacy in the region of high
energy and momenta, the author suggested a
more general statistics in which the number g,
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of quantum states is: g,=8wVA3G(ps)pidps,
where G(ps) is a cut-off factor, which decreases
more rapidly than p,=% for values of p;>p,
=137 me [e.g., G(ps) ~exp (—p.*/p.) ]

For temperatures T <k~ 'mc?, the following
approximation is valid : We can treat the protons,
neutrons, and nuclei by the usual statistical
methods, neglect the B-ray processes and the
concentration of the mesotrons, put G(p,) =1
and V=1, and, denoting by #*, »~ the numbers
of positrons and electrons per cm?, assume:

Z Nes—

> Hps=n—"—nt

1
=Nt~——~3X10%8p,,
2 mg

(1)

where N* is the total number of protons per cm?®
and p, is the density of the nuclear matter (in
g cm™®) calculated with exclusion of the masses
of the electron pairs.

Indicating with xo=mc?/kT, x=E,/kT, where
E.=c(p2+m2?)? is the total energy of the
electron, and putting in (5)

2:=8mh 3¢ 3(kT)3(x?— x¢%) txdx,

we obtain easily the following formulae:

____ - (%2 — x0?) Yedx

) f R
T (xz—x()?)%xdx .

—E—S(k )f a+:c+1 T atea ] (6)

Substituting (6), (6’), and (1’) and remember-
ing that:

(e—a+x+ 1)—1 — (ea+x__+_ 1)——1 —_

we can calculate « from:

sinh «

S
cosh x+cosh «

) mc\ 3 .
n-—nt=8r (7) x0 % sinh
f“" (22— x02) bxdx

b
o cosh x—+cosh «

(7)

or from:

. © (x2—x?)dxdx
sinh « f —_—

=1.712X10""pxe%. (7’
0 cosh x4+ cosh « pusea®. (T')

For values of x¢<1 and a<k1, Eq. (7') be-
comes: '

3.29a40.3303+ - - - =1.7X 10 7puxs*  (8)

or
a~5.2X 108 p,o.
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TaBLE I. Compilation of value calculated for various temperatures.

Thermal Thermal Radiation Density of
capacity of capacity of density and energy of
electrons radxatxon pressure electrons pairs
per cm? r cm?d U =3pr Eet+Ee”
T xo(mc2/RT)  pn(g/cmd) @ pp~[n~+n*tlm [C7] pair aU/aT 4aT3 (erg/cm3) (erg/cm3)
1.2X108 5000 10-¢ 4983.0
1.2 X107 500 10-¢ 479.8
1.2 X107 500 102 498.2
1.2 X107 500 104 506.8*
1.2 X108 50 10-¢ 23.0
1.2 X108 50 102 44.6
1.2X108 50 107 93.0*
5.9X108 10 10-¢ 4.8X1078 5.8X1073 5.0 1010 6.2 X102 9.3 X102 7.2X1018
5.9X108 10 102 2.3 5.8X1073 5.0 10 6.2X10 9.3 X102 7.2X10
1.2X10° 5 10-¢ 8.7%x10™1 3.1 1.3X101 5.0 101 1.5 102 3.7x10n
1.2X10° 5 1 8.7X107® 3.1 1.3X10 5.0X10w 1.5 102 3.7x10%
1.2X10° 5 102 8.7X1073 3.1 1.3 X101 5.0 101 1.5 102 3.7%x10%
3.0 10° 2 10-¢ 6.2 1071 550.0 8.0 X 10 8.0 10 5.8X10% 5.9 10%
3.0X10° 2 102 6.2X107® 550.0 8.0 101 8.0 101 5.8X10% 5.9%10%
3.0X10° 2 108 6.2X107? 550.0 8.0 101 8.0 101 5.8X10% 5.9 10%
1.2 X101 0.5 10—¢ 6.5 10716 4.2%10% 9.0 1018 5.0 1018 1.5 1028 2.5% 1028
1.2 X101 0.5 102 6.5X 1077 4.2X104 9.0 108 5.0 1016 1.5 1028 2.5%102%
1.2 101 0.5 108 6.5X 10 4.2 104 9.0 101¢ 5.0 1018 1.5 1028 2.5%10%
1.2 100 0.5 3X107 1.9X107! 4.2X10% 9.0X 1018 5.0 1016 1.5 1026 2.5X 102
1.2 101 0.05 105 [6.5%X1077 [42X10"]  [9.0X1019] [5.0%X1007 [1.5X10%0] [2.6X10%]
1.2 101 005 3%107  [1.9X10—] [4.2X107] [9.0%107 [5.0X10197 [1.5%1007 [2.6X10%]
1.2X10m 0005 3X107  [1.9%10-7]  [4.2X100] [9.0X102] [50%102] [1.5%X10%] [2.6%10%]

* Degeneracy.

In Table I some values of «, for different
temperatures and densities, are given.

The numerical calculations were made on the
assumption Nt=1%p,/mpy, that is, by assuming
matter contains an equal number of protons and
neutrons. In the case when the stellar matter
contains a large fraction of hydrogen atoms, one
has Nt~p,/my and one obtains for the coef-
ficient in (7) a value 3.4 1077. The correspond-
ing values of « in (8) become nearly twice as
great.

From (6) we have:

n~—nt exr—e ¢
n—+n+_—e°‘+e*°‘
f‘” (x®—x02) txdx
z0 e°te *te*+e @
X , ;
f‘” (a2 —2x0?) xdx |’1+ e®
0 ex+e—x+e“+e—“|_ erte 9)

Observing that the factor [14(e=*/e*+e=2)]
“assumes values between 1 and 2, one has:

ex—e @

]Ne“—ke‘“.

nt

—_— ~e~2a

n-—nt

n—+nt

If a1 the total number of pairs is approxi-
mately given by

1/2(n+n*)~1/2a N*.

~tgha or (10)

In the case when a<1, x¢<10 the density of
the electron pairs pyai can assume values com-
parable to or greater than p, (see Table I). These
values can be calculated from (1’), (8), and (10):
(m=+nt)m~a Ntm~6X 103,73,

n=~nt~3X1030,3

Ppair =

(11)

The question of degeneracy can be treated in
a manner similar to that of the Fermi statistics.
We note that the graphics of the two charac-
teristic functions (e*F2+1)~! can be obtained
one from the other by means of a translation of
modulus 2« parallel to the x axis (or by changing
a in —a) and that only values of x 2x¢>0 enter
into consideration. Then from (6) follows that
no degeneracy can occur for the positron gas
because the values of x 2x, correspond always to
the quasi-maxwellian region of the distribution
curve.

In the low temperature region (large values
of x¢) the negatrons are in a degenerated state
when a>xo. Introducing into (6’) the critical
value of a: a=x¢>>1, we obtain in the non-
relativistic approximation :

ot (" e axoyn [ (1
no~ 1(7) X (xo)’xoj; gf—[—l ( )
B\
n‘( ) ~xo 4.
4nmc

(12)
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One can easily verify that this relation coincides
with the usual Fermi criterion for degeneracy.

At extremely high temperatures, xo<1, the
values of a2x, correspond to values of

pn=2Ntmy~2a(n=+n)muSxe*mulo™ > per,

where Ao=h/2mmc and per=mu/A*~2.9X107
g cm~3 is the critical value of the nuclear density.
Indeed, the approximate value, for xo—0, of
n—~nt, is:

' mec\® | © x2dx
n‘~n+~87r(-—) xo‘3f -
h 0 e’—}—l

~(Aox0)~21.803 /72 [Ao?=1.736X10%].

For such values of p, the average distances
between the nuclei (and also between the elec-
trons) become <Ay, and the assumptions of the
classical or the quantum electrodynamics, on
which the preceding calculations are based, are
no longer valid. Thus we exclude such cases from
our consideration. At xy<1 degeneracy of nega-
trons does not occur at densities p, < per.

The last columns and lines in Table I are
reproduced in order to illustrate some interesting
features of pair production and radiation proc-
esses in regions where we cannot be sure of the
validity of the preceding simple statistical cal-
culations.

3

Obviously we must expect the failure of the
preceding simple calculations at temperatures
and densities above certain limits for several
reasons. Let us examine some of them.

(1) We neglected the nuclear reactions, which
can give rise to B-ray processes connected with
the emission of neutrinos. In these processes the
laws of conservation of energy and momentum
are out of our direct experimental control as
long as we have no means to measure the energy
of the neutrinos or at least to observe them. In
some cases, when we can neglect-3-ray processes,
an approximate treatment of nuclear reactions
is possible on the basis of the formulae (5). One
can calculate the equilibrium concentration of
the protons, neutrons, and nuclei determining
the constants «, 8, v from (1), (2), (3). The
calculation of v leads to especially interesting
results, which we shall mention briefly later.
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(2) Atnuclear densities p, p.r~3X107g cm™
the average distance between the nuclei becomes
of the order of the Compton wave-length. At
TZ10" degrees [x0=0.05] the density of the
electron pairs #~-+n* becomes X2 X103~ A3,
In both cases the linear equations of Maxwell
are no longer valid. The field strengths become
of the order of or greater than |E|,,=¢/p?, where
I~e*/mc2~h/2wmc is the universal length. The
first non-linear correction terms in the La-
grangian are known to be of the form:

a1(E?—B?)%+48.(E-B)?,

where a;, 81 are constants calculated by several
authors. The representation of a field by means
of stationary waves or quantum states of the
linear field theories also becomes impossible at
least in the region of high frequencies. The writer
has suggested?® that in such conditions our pos-
sibilities to distinguish eigenvalues, e.g., measure
“observables,”’ is limited in a new way, which
depends essentially on a new kind of phenomena
appearing at high energy collisions, such as
pair production, B-ray processes, and mesotron
showers. These phenomena are unavoidable in
high energy collisions and thus appear neces-
sarily in the interaction between the measuring
devices (which are at rest in the respective refer-
ence frames) and the objects of observation. The
easiest way to obtain converging results in the
usual calculations of collision processes, problems
of self-energy, and interaction energy, is to
abandon the point source models and to use the
so-called cut-off prescriptions. In the foregoing
formulae (5) these cut-off factors are introduced
by means of the factors G(p;) appearing in g,.

(3) Recently the writer pointed out the irre-
versible character of the collision processes which
give rise to the production of several particles,
and which are accompanied by B-ray processes.
This irreversibility (due to the fact that the
inverse processes involve ternary or multiple
collisions and emission of neutrinos) is in con-
trast with the validity of laws of the type (5) at
T10" degrees, but agrees well with the
modified formulae obtained from (5) introducing
the cut-off factors G(ps).

For instance, Planck’s formula could not be

3 G. Wataghin, Nature 142, 393 (1938) ; Comptes rendus
207, 358, 421 (1938).
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valid at temperatures of the order of 10 degrees
[kT~10° ev]. At these temperatures the number
of photons of energy >10° ev should be 5X10¢
times the number of those having hv <106 ev.
From cosmic-ray observations we know that
each of the photons or electrons having EZ10%ev
gives rise to a multiplication shower in which
the initial energy is subdivided among a great
number of created particles. The rate of the
inverse processes from many low energy par-
ticles to a high energy one is negligible. Indeed,
the annihilation of an electron pair can occur
with the creation of two photons or of one
photon. In the first case the number of light
particles is not changed (besides, the cross
section for annihilation with two-photon pro-
duction is maximum at E~10% ev and decreases
rapidly with the energy). The probability of a
three-particle-collision (two electrons with a
nucleus), necessary for a one-photon anni-
hilation, is much smaller than that of a collision
of one electron with one nucleus. Only these
three-particle collisions give rise to a reduction
of the number of particles, and the rate of these
processes is necessarily very low. We conclude
that the equilibrium is impossible because the
processes of multiplication of particles cannot be
balanced by processes which reduce their
number. _

(4) Let us consider a region near the center of
a star during the contractive evolution which can
give rise to extremely high temperatures. From
Table I (last two columns) one can see that at
temperatures 7'~ 10" degrees, the density of the
radiation energy and the density of the electron
pairs are much greater than p,, so that one can
neglect the nuclear density. If such conditions
are verified for a sufficiently extensive region
[RZ10" cm], a very peculiar situation arises.
The mass of the radiation and of the electron
pairs increases ~T* The gravitational energy
of this mass varies as —2(4n/3)1BGM53p1/3, At
low densities the gravitational energy is neg-
ligible in comparison with the total relativistic
energy of the nuclei, radiation, and electrons.
But if praa+ ppair is >107 in a region of linear
dimensions ~10'° cm, the gravitational energy
becomes ~M¢? The gravitational pressure
varies as t(4w/3)13GM?3p3, whereas the pres-
sure of the relativistic electron gas and the

AT HIGH TEMPERATURES 153
radiation pressure vary ~p. Thus at sufficiently
high values of T and (praa—+ ppair) the gravita-
tional pressure becomes and remains greater than
the radiation pressure (in the outer layers of the
high density region) and determines a con-
traction of the gas. These conditions are verified
when the negative gravitational energy

—3GM?/R= = &(4n/3)1 PG M5/,

becomes comparable to the total energy of the
star Mc? The increase of the gravitational mass
of the star at expense of the potential gravita-
tional energy implies a change of the gravitational
field due to the star, and thus the variation of the
mass must be accompanied by a gravitational
wave which produces this change of the field. A
similar variation but of opposite sign is pro-
duced when energy is carried away by neutrinos
in B-disintegration processes. Obviously the con-
traction considered above cannot continue indef-
initely- and must be counterbalanced by losses
of energy (and mass) by radiation, electrons, and
neutrinos.

There exists also the effect of the gravitational
red-shift, which produces an apparent decrease
of the energy of the electrons and photons and
which becomes appreciable in the considered
case:

AV/r~(GM/R)/ct~(GM?/R)/ Mct~1.

The paradoxical aspect of the phenomenon in
which gravitational mass of electron pairs is
created by a gravitational field induces us to
admit that on the condition of such strong inter-
action between the gravitational field and other
fields some new physical process counteracts the
transformation and makes it impossible. The
most plausible assumption seems to be the one
that the neutrino emission prevents the increase
of the mass and of the gravitational contraction
by means of induced B-ray processes.

In this connection it seems noteworthy to us
that accepting Friedman’s idea of the expanding
universe, one can calculate the increase of the
gravitational energy of the receding nebulae by
means of the Newtonian potential. Assuming
that some 10° years ago the whole mass of the
observed galaxies was concentrated in a reduced
volume of linear dimensions ~1 parsec, one can
make a very rough -calculation of how much
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gravitational energy the observed galaxies have
acquired, and one finds that the average energy
per proton is ~10'7 ev. Thus, if we accept the
idea of Weizsicker, Chandrasekhar, and Henrich*
on the prestellar stage of the universe and assume
that the gravitational energy of expansion was
produced at expense of the particle-energy, we
must say that no equilibrium could possibly
exist at an earlier epoch with such an amount of
energy per particle.’

But the analysis of the abundance and dis-
tribution of the isotopes of the chemical elements
in the universe strongly suggests the idea that
nuclei were formed in the whole universe in
similar conditions. We assume that such uni-
formity of distribution could ‘be attained only
in conditions which approximate a statistical
equilibrium. In order to study this possibility,
we can apply the formulae (5) to the equilibrium
among nuclei, electrons, and photons. The cal-
culations are similar to those used in the con-
struction of Table I. Here we want to mention
only some general results.

At temperatures 7°>10', the constant v is
determined essentially by the concentration of
neutrons and protons. The concentration of
heavier nuclei is entirely negligible and only the
concentration of *He; is appreciable. The con-
centration of the heavier nuclei increases gradu-
ally in the temperature region between 3X10°
and 10° degrees (xo~2 or 5). The analysis of the
nuclear structure (mass defect as function of Z
and 4—Z) shows that the stability of the
nuclei is closely related to the probability of the
B-disintegration processes, and the formation of
stable nuclei follows closely the evolution of the
concentration of electron pairs, photons, and
neutrons. The formation of heavier nuclei by the
decrease of the temperature from 6X10° to 10°
degrees follows in the order of increasing atomic
weights from lightest to heaviest nuclei. An easy
calculation shows that at temperatures of a few
billion degrees the nuclear photo-effect becomes
of great importance and gives rise to the emission
of many neutrons, so that equilibrium is possible

4 Weizsiacker, Chandrasekhar, and Henrich, Astrophys.
J. 95, 288 (1942) ; Physik. Zeits. 39, 633 (1938).
5 G. Wataghin, Phys. Rev. 63, 137 (1943).
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with a high concentration of neutrons. At tem-
peratures below 10° degrees the neutron concen-
tration vanishes and the usual cyclical thermo-
nuclear reactions take place. All these conclu-
sions derive from the formulae (5) corrected by
the introduction of the cut-off factors G(ps).

The limits of applicability of these formulae
depend on the induced B-ray processes. In ac-
cordance with a fundamental idea of G. Gamow
and M. Schoenberg related to the so-called
“urca-processes,’’ at temperatures = 10! degrees,
we can expect the B-ray processes to acquire such
an intensity that the energy losses due to the
neutrino emission must invalidate the possibility
of equilibrium, and thus the law of conservation
of energy (2) becomes out of our control. We
think that this fast loss of energy by neutrinos
was at a certain epoch in competition with the
expansion of stellar matter in the non-equi-
librium process which increased the gravitational
energy of the universe.

Leaving the highly speculative consideration
on the prestellar stage of the universe, we want
to call attention to the fact that 8-ray processes
introduce a new limitation to the concept of
temperature in an assemblage of nuclei and light
particles because the non-applicability of the con-
servation law (2) implies the impossibility of
equilibrium and of identification of the constant
B8 with (BT)~1. Of course, one can introduce the
notion of temperature also for a nucleus as is
done usually in order to measure the average
energy per nucleon. But even in nuclear matter
the equilibrium becomes impossible when the
average energy per particle is greater than the
rest energy of the meson uc?~108 ev because at
higher temperatures irreversible collision proc-
esses take place with production of unstable
mesons. Thus the temperature 7°,~10'? degrees
must be an upper limit also for heavy particles.

In this paper we shall not discuss the problems
of compatibility of the supplementary indeter-
minacy with the relativistic invariance. Also the
production of mesotron showers by collision of
high energy nuclei and correlated phenomena
were not considered. An account of these
problems will be published elsewhere in a short
time.



