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Free Vibrations of Anisotropic Bodies
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Approximate solutions for free vibrations of a finite anisotropic body are derived by a per-
turbation method. As an example, some extensional modes of thin crystal plates are calculated.
Calculated frequencies and deformation patterns are compared with observations.

1. SKETCH OF THE METHOD

~~NLY very few problems of elastic vibration
are susceptible of rigorous solution by the

methods of the general theory of elasticity.
During the last years stationary vibrations of
crystalline bodies have become of practical im-

portance because of the discovery of piezo-
electric excitation of vibrations. Rigorous solu-
tions for free vibrations of a crystalline body are
known only for an infinitely extended plane
parallel plate and an infinitely thin rod. It has
become desirable to obtain even rough approxi-
mations, as rigorous solutions for most problems
are inaccessible. Some attempts in this direction
have been made by Mason' and Bechmann. '

It is attempted here to give a more systematic
method of approach. The perturbation method
has been used for a long time especially in quan-
tum mechanics. To our knowledge, adaptation
of this powerful method to the theory of elasticity
has not been made.

We first make a resume of well-known equa-
tions of elastic vibrations. If U, V, S' are the
Cartesian components of the displacement and
if we have stationary vibrations of angular fre-
quency 0=2~v, they take the form'

pO' U= BX,/Bx+ BX„/By+BX,/Bs,

pQ' V= BX„/Bx+B Y„/By+ B Y,/Bs,

pQ'W= BX./Bx+ B Y,/By+ BZ,/Bs.

The strain components are defined by

x, =BU/Bx, x„=BU/By+BV/Bx,

y„=B V/By, y, = B V/Bs+ B W/By,

s, =BW/Bs, x, = B U/Bs+BW/Bx

The general linear relation between stress com-
ponents and strain components is

c11x' +c12y„+c&3~,+c&4y, +c].5+ +c16+y,
~ ~ (3)—X„=c61X,+c6gyy+ c638,+c64y, +c65X,+c66xy,

with
cia = cai",

and the inversion of (3) is

—x~ =$11Xg+$1' Py+ ' +s16Xy,
(4)—x„=s61X,+s62 F„+ .+s66X„.

If we eliminate the strain and stress components
from these equations, we obtain three equations
of the form

pQ'U+X(U, V, W) =0,
pQ'V+L(U, V, W) =0,

pQ'W+M(U, V, W)=0,
with

(BX.
Z(U, V, W)= —

i

*+"

.where X, L, 3f are linear operators of second
order which act on three components U, V, 8'.

The boundary conditions for the free body
take the form:

X, cos (n, x) +X„cos (n, y) +X, cos (n, s) = 0,
X„cos (n, x)+ Y„cos (n, y) + Y.cos (n, s) = 0, (6)
X, cos (n, x)+ Y. cos (n, y)+Z. cos (n, s) =0,
where n signifies the normal to the surface,
directed inwardly to the body.

The fact is remembered that any two rigorous
solutions of (5) and (6) are orthogonal to each
other:4

"(Ug U2+ Vg V2+ WgW2)dv= 0,
' W. P. Mason, Bell Sys. Tech. J. 13, 405 (1934).

. 2 R. Bechmann, Zeits. f. Physik 11'7, 180 (1941); 118,
515 (1941); 120, 107 (1942).

'W. Voigt, Lehrbuch der Kristallphysik (B.G. Teubner,
Leipzig, 1910).

where the integration is extended over the body.

'A. E. H. Love, The Mathematical Theory of E/asticity'
(Cambridge University Press, 1934).
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We shall try to represent the solution ( U, V, W)
approximately as a sum of zero-order functions
(u;, v, , w;) which are chosen so that they are
rough approximations of the actual solution. We
write:

U=QA, u;, V=+A,v, , W=PA;w, . (8)

However, this expansion is possible only if the
functions (u;, v, , w;) satisfy the boundary con-
ditions (6). In the following, we shall not suppose
this to be true, so that (8) does not hold in

general. We will construct a set of auxiliary
functions (u, v, w, ') so that they are equal to
the functions (u;, v;, w;) everywhere but in a
small domain close to the boundary. In this
domain, (u, ', v, w, ') will behave so as to satisfy
the conditions (6).'We will write:

U=QA, u, ', V=+A,v, ', W=QA, w, '. (9)

We now define strain and stress functions:

x;= Bu;/Bx ~ ~ x„;=Bu,/By+ Bv;/Bx, (10)
—X i=CgIX i+. ~ +Cg6Xy, .

The functions (u;, v;, w;) will not satisfy Eq.
(5), but will satisfy equations of the form:

—X(u;, v;, w, ) = BX„/Bx+BXy,./By

+BX„/Bs= f, —
—I.(u;, v, , w~) = BX„; /Bx+ BY„; /By

(12)
+BY„/Bs= —g, ,

—M(u;, v, , w, ) = BX„/Bx+B Y.;/By

+BZ.,/Bs = —Ii,.

Instead of the boundary conditions (6), the
functions (u, , v, , w, ) will satisfy equations of the
form:

X„cos (n, x)+ = q, (s),

X„;cos (n, x)+ =P,(s),

X.; cos (n, x)+ =x;(s).

Similarly, the corresponding functions derived
from the auxiliary functions (u, ', v, ', w, ') will be
denoted by

1' |'BX.;
}dn= fx„eos (n, x)+ f.:p.j

If we use (12) and (13) we obtain

IX„cos (n, x)+X„,cos (n, y)

+X„cos (n, s) I „=,= q, (s) —~ f;dn,
~ p (15)

where the dots stand for the two analogous
equations.

The same calculation for the functions u
yields similarly:

{X„cos (n, x) +X„;cos (n, y)

+X., cos (n, s) }„,= q, '(s) —
) f,'dn, (16)

volume force of components f—,/p, —g~/p, and
—Ii,/p, respectively, and surface tractions of
components y;, P;, g;, respectively, the equi-
librium deformations of the body are to be
determined. From Eqs. (12) and (13) it ean be
seen that the requirements for the solution of
this problem are met by u, , v;, and m;.

Let 5' be a surface internal to the surface 5 of
the body and parallel to 5, having a small
distance ~ from 5 so that to each point s on 5
there corresponds a point s' on 5'. The cor-
responding points are joined by the normal n
which is directed toward the interior. Let the
domain included between 5 and 5' be called D,
while the rest of the body volume is V. The
tractions across 5' which have the form of the
first members of (13) will be found by integrating
the functions f;, ——g;, —h; along the normal n:

r (BX, BX„; BX„)
+ + dn

( Bx By Bs )
=

~
X„cos (n, x) +X„,cos (n, y)

+X„cos (n, s) i „=0, (14)
I' (BX„; & n=e

}dn= ~X„;cos (n, x)+
g Bx

Returning to the definition of the auxiliary
Ji ) gi ) 1zi and pi ~ pi y gi ~

functions I -, we remember that they should

It will be noticed that zc, can be considered be equal to u; ~ within U. Therefore, they
as solution of the following problem: Given a must be solutions of a problem involving the



ii0 H. E KSTEI N

same forces f—~/p within Vand the tractions second integral of (20) the term:
across S' given by (15). Thus, the first members
of (15) and (16) are equal: tLug(u, , )+v„l.(u, , )Pw~g(u, , . . .)]dv.

f e

q, (s) —
I f,dn = q, '(s) — f,'dn .(17)

Jo 0

By definition of the u, the tractions
y must vanish:

f dn= f,dn y, , —
~o ~o

f s

g dn= ~' g;dn —tt„,
~o ~o

h, 'dm = h,dn —g, .
~o ~o

The contribution. of D to this integral is

tLu)'K(u, )+ ]dv= (ui,'f +. )dv
D

I ds ui,
I

f~'dn+ ~, (23)
~s ~o

where u~' is put equal to uI, and considered as a
constant along the normal n Su.bstituting (18)
into (23) we find

f e

~t Lu~'K(u, )+jdv= ds ui I f;dn —p;
&s ~o

We substitute (9) into (5):

pQ' QA, u, '++A,K(u, ', v, w, ') =0,
pQ' QA,v, '+QAg, (u, v, w, ') =0, (19)

pQ' PA;w +PA ~M(u, ', v, ', w ) = 0.

+vq I g,dn 0; +—wi

When e tends toward zero, the integrals
Jo'f,dn' vanish and we have

We multiply these equations by u&', vl, ', mI, ',
respectively, add them, and integrate over the
crystal:

P

gA; pQ
J

(u, uq +v' va +w; wi )dv

+J"(ui, 'K(u, )+v,'I.(u, )

+»'cV(u, ', ) Idv =0. (20)

lds(uk (pi+ vlf, +wkx;) .
~s

Equation (20) now takes the form:

QA, p&'Na, +JI }ui,K(u;, )+vi,L(v;, . )

+w&M(u;, ) }dv

—Jt(p;ui, +P,vi+x, wii)ds =0

As u ~ tends toward u;, the first integral
in (20) becomes: where

P, A;(pQ'N, i —H,i) =0, (24)

JI (u,ug+v, vi+w;wit)dv = N i. (21) H g, J"(f,ui, +—g,vi—,—+k,wi)dv

"(,+., +;)d =1=N, , (22)

In view of (7) the non-orthogonality integrals
N, i, would vanish for iWk if the functions (u," )
were exact solutions of the problem.

The integrals ¹;will be determined arbitrarily
by normalization:

+Jt(v ui+4*vi+x, wi)ds. (25)

If we consider, as above, two sets of functions
I;, v;, w; and uI„vI„mI, as solutions of two dif-
ferent equilibrium problems involving the given
volume forces and surface tractions,

The volume V inside of S' contributes to the
and

f'lp, g'lp, ——&'/p; —~', 0', x'

f~/p —g~/p —&i/p' v'i 6 x~—
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respectively, then a theorem due to Betti' states we obtain
that: —x~ =S11Xg+S12Fy+ S16Xy,

f
(fiud+ g pa+ ligula) d&

+ (p~ui+4'a&i+x'usa)ds

(fiua+gisi+4ui')d&

—
yy =S1qX~+S22 7y+ S26Xy,

xy —s16Xg+s26 I y +s66Xy

And if we solve (30) for the stresses:

+11xx+ Y12yy++16xy&

—Yy
=+12xx+ r22$y+ 726xy i

—X,=pic.+sly, +vssx, .

(30)

(31)

+)I (yiu, +/au, +xisii, )ds, (26)

or, according to Eq. (25):

II;I =IIA-.; ~ (2&)

pQ —H11 pQ'N1g —H12

In other words, the matrix II;I, is symmetric.
If the Eqs. (24) are to be compatible, the

determinant

In this equation, X„Py, Xy mean the average
value of the stresses taken over the thickness of
the plate. Equation (31) is the equation given by
W. Voigt. ' Explicit formulas for the yiI, are given
in the same book.

As explained by Voigt, Eq. (31) applies really
only to points of the plane s=o. For these
points, W=O in the case of extensional vibra-
tions, and the strains (more exactly, the average
values of the strains) are given similarly to Eq.
(2):

~ pQ N12 ~12 pQ —H2g = 0 (28)
BU BV BU BV

x,=—,y„=, x„= + . (32)
Bx By By Bx

The dynamical equation (1) reduces to:
must vanish. This will be possible only when Q'

assumes certain characteristic values which cor-
respond to the approximate characteristic fre-
quencies of the free vibrations. With a particular
value 0,2 we can solve Eqs. (24) for the coef-
ficients A; and by substitution into (9) we can
obtain the approximate solutions U, V, 8'. For
all practical purposes, the functions u; can
then be substituted for the I; in other words,
Eq. (8) can be used instead of (9).

X,= V, =Z, =O. (29)

For a thin crystal, we may assume that the
variation of the stress is linear, in a hrst approxi-
mation. As (29) is true for both surfaces, it must
then hold everywhere. Substituting (29) into (4),

2. APPLICATION: EXTENSIONAL VIBRATIONS OF
THIN CRYSTAL PLATES

Let a crystal plate have its two parallel larger
surfaces normal to the Z axis of the reference
system. The origin is situated in a plane midway
between the layer surfaces. On the boundaries,
for a free crystal

+11X*'++12yy '+ +16Xy '

~yi +12Xxi++22yyi+ f26Xyis

Xy ' +16x '++26y„+V66x

(11a)

BXgi BXyi BXyi B yyi+ = f, , + —= —g;, (12a)
Bx By Bx By

X„cos (n, x)+X„;cos (n, y) = y;(s),
(13a)

X„;cos (n, x) + I'„,cos (n, y) =P,(s),
~ V. Petrzilka, Zeits. f. Physik O'7, 436 (1935).

BX, BXy BXy B Yy
pQ'P= +, pQ'V—=—+ . (33)

Bx By Bx By

This problem has been solved for the special
case of a circular isotropic plate by Love. 4 For a
rectangular plate, no general solution is known.
V. Petrzilka' has given an exact solution for a
mode of an isotropic rectangular plate, but the
solution exists only for certain dimensions of the
rectangle.

For this two-dimensional case, Eqs. (10)—(13),
(21), (22), and (25) are simplified:

BQ, Bvi BQ; Bvi
x.;=, y„;=—,x„,= +—, (10a)

Bx By By Bx
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)t (u;u3+v~v2)dxdy = I3 v„
These three modes are degenerate, i.e. , they2ia

have the same frequency:

)"(u +v,')dxdy =1, (22a)

EI,&
— I (f——,u6+ g;v&) dxdy

+)"(y,u3+ P;v3) ds. (25a)

(a) Low Frequency Longitudinal Modes

A group of extensional modes has been called
longitudinal because the strain components x
and y„are large in comparison to the shear x„.

These vibrations have been studied experimen-
tally and theoretically by several authors. ' ' '
Their analysis is, however, unsatisfactory in
several respects, mainly because it fails to
account for the fact that three low frequency
longitudinal modes are observed, usually with
nearby frequencies.

We shall obtain the zero-order solutions from
consideration of a simplified problem. In (31),
we put

where

Ql=. Cl cos klx sin k2y,

vl ———Cl sin klx cos k2y,

u2 = C2 cos klx~ v2 = 0)

u3 ——0, v3 ——C3 cos k2y,

kl ——2r/a, k2 2r/b——

(39)

(40)

(41)

The normalization (22a) requires that:

Cl' ——C2' = C3 ——2/ab. (42)

The non-orthogonality integrals N, & are, ac- .
cording to (21a):

Xgl ——2/2r, %13———2/2r, Xg3 ——0. (43)

(38)

We now abandon the simplifying assumptions
(34). We then will find the familiar phenomenon
of splitting of a degenerate eigenvalue by a per-
turbation.

For the more general case, we let two unequal
edges of lengths a and b be parallel to X and F,
respectively. The zero-order functions can be
written:

+11 +22 y

1
/66 ggll y

712 +16 +26
The equations (10a), (11a), (12a), (13a), and

(25a) yield after some elementary calculations:

These are the equations for an isotropic plate
with vanishing Poisson's ratio. Furthermore, we
suppose that the plate is square, the edge having
the length a. The directions X and V shall be
parallel to the edges, and the origin is in one
corner of the plate. One exact solution is the
one given by Petrzilka:

I'll = 2 Pl'711+ k '2722 —2klk2712+ (k2 —kl) '766],

H12 ——H21 ——(2/2r) Lkl'711 —klk2712],

II22 k1 +11

H13 —H31 (2/2r) Lklk2712 —k2 722])

II33——k2'y22,
H23 —H32 —(8/2r') k1k 2712.

(44)

ul=C1 COs kx sin ky,

vl= —Cl sin kx cos ky,
where k =2r/o. (35)

and
u2= C2 cos kx, v2=0,

u3 ——0, v3 ——C3 cos ky.

(36)

(3&)

A. Lissiitin, Zeits. f. Physik 59, 265 (1930).
~ V. Petrzilka, reference 5, and Hoch: tech, u. Flek: glqus,

50, 1 (1937).

The constant Cl is arbitrary, but will later be
defined by the normalization (22a).

Two other solutions are the longitudinal plane
waves in the directions X and Y, respectively:

These are the elements of the secular deter-
minant (28).

We first discuss the case where the major face
is normal to a crystallographic threefold axis. In
this case, according to Voigt, the plate behaves
as if it were isotropic, i.e. ,

711 722 j 716 Y26 i 766 2 (711 712) ' (45)

If the plate is also square (kl ——kl=k) the ex-

pressions (44) reduce to:

Hl, 1=k (711 712) y H12 (2/2r)k (711 Y12) t

II22 ——k2y II13= —(2/2r) k'(711 —712), (46)

JI33= k2&11, H23 ——k2(8/2r2) 712.
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The secular determinant (28) has the form:

pQ k (711 r12)
2 2 2 2—pQ k (yll yl2) pQ + k (rll Y12)

2 2-pQ' —-k'h» —v») p Q2 k 2''ll
8—k'—y12

7r2
=0 (47)

2 2
pQ + k (rll r12)

8
+12

7r2
PQ —k y11

One root of (47) is obvious from inspection:

p Ql k (711 712) ~

The two equations (51) refer to the roots Q22

nd Q', p tivly. Th ol tio U, V
and U3, Va are then:

g (» g2(» g (»=1:0:0. (49)
and

The first solution is, according to (8) and (39):

With this value, the ratio of the coeKcients A;
in (24) is: U2 ——C(Sin ky —(2r/4)) COS kX,

V, = C( —sin kx+ (2r/4) ) cos ky

U3 = C cos kx, V3 = C cos kp.

(52)

U1= C1 cos kx sin ky,

t/'1. ———C& sin kx cos ky;

i.e. , the result is the unchanged function (39).
This was to be expected, for (39) is known to be
a rigorous solution for the isotropic case with
u=b.

To find the two other roots of (48), only a
quadratic equation has to be solved. The result
1s:

PQ2 k 'rlly pQ3 k (711+(8/& )r12) y (50)

and with these values
'r 7r

(2) ~ ~2(2) -g (2) 1:——:+—,

R. Bechmann' has observed some resonant
frequencies of square quartz plates of the Z-cut
type. He finds three frequencies for longitudinal
modes and expresses them in terms of the fre-
quency constant X, i.e. , the frequency (in kilo-
cycles) of a plate with c= 1 mm so that
%=10 2'. Table I gives a comparison between
these measurements and the constants N as
computed by Eqs. (48) and (50).

In this case, the parameters y;~ are given by:

$11 S12

S11 —$12 S11 —S]2

For s11 and s12 the values

TABLE I. Frequencies of square Z-cut quartz plates with
edge a =1 mm (in kilocycles). alld

S11

12.948 X10-»

12.79X10-13

—1.690X10 "
—1,535X10 "

Mode &obs.

2 537X10'
2.564 X 10'

2.721 X 10'
2.734 X 10'

2 861X10'
2 863X10'

2,551 X 10'

2.724 X 10'

2.8962 X 10'

Mode Calc.

218
253
278

Obs.

215.1
247.6
291.0

TABLE II. Frequencies of a square Z-cut tourmaline plate
with edge c= 1.836 cm (in kilocycles).

are given by Bechmann' (according to Voigt's
measurements) and W. P. Mason, ' respectively.

The calculated values have been obtained with
these two sets of elastic constants of Voigt (upper
figure) and by W. P. Mason (lower figure),
respectively. Two of the observed frequencies
agree numerically with the formulas given by
Bechmann although the expression in terms of
the $,1, is quite different.

V. Petrzilka' has measured the frequencies of
a square tourmaline plate of edge a=1.836 cm

' R. Bechmann, Zeits. f. Physik 118, 515 (1941).
'W. P. Mason, Bell Sys. Tech. J. 22, 178 (1943).
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'FrG. 1. Longitudinal vibration of a thin square plate.
MOde 1: U1= CCOS (7r/a)X Sin (7r/a)y, V1= CSin (m/C)
xcos (m/a)y. Dotted lines —crystal at rest. Full lines—
crystal vibrating.

is the rigorous value and is, of course, in agree-
ment with our value.

The vibrational modes calculated by Eqs. (39)
and (52) are represented by Figs. 1—3. It can be
seen that none of them has nodal lines, but only
nodal points. Petrzilka attributed to the fre-
quency (2) a mode equa. l to our zero-approxima-
tion modes (40) or (41), but did not find the
expected nodal line by lycopodium powder ob-
servations.

The calculated mode (3), Fig. 3, involves a
nearly radial motion. It can clearly be identified
with the picture of the lycopodium powder
pattern published by Petrzilka. In this mode,
according to the author, the powder is displaced
radially and stays at rest only at the center. This
is also what the theoretical picture predicts.

We now apply Eqs. (44) to a square Y-cut
quartz plate, i.e. , a plate whose large face is
normal to the crystallographic Y axis, while the
edges are parallel to the optic and electric axis,
respectively. Using Voigt's values for the elastic
moduli, we obtain:

pj's

——78.67 X 10

10~ 08 X ip

The frequencies calculated by Eqs. (48) and (50)
with Voigt's values for the elastic moduli of
tourmaline are shown in Table II.

A)2 = 12.180X 10Two of these calculated frequencies are equal
to those given by Petrzilka. The first frequency The secular equation takes the form:

2 2 2 2
pQ' —~k'[yn+yq2 —2yu] —pQ' ——k'[yll 712] ——pQ'+ —k'[y22 —7u]

7r 7r T' 7r

2 2—pQ' ——k'[ping —yg2]
7r 7r

2 2——pQ'+ —k'[yg2 —yn]

pg2 —k2ysi

8—k'—yI2
7r2

8—k'—yI2
7r2

pg2 k 2+22

=0 (54)

The three eigenvalues of (55) are: pQ'=k'
X73.9X1P» k2X89.6X10»; k2X1P6.8X10Io

The corresponding frequencies expressed in
terms of the frequency constant %=10 2&a are
showri in Table III. As a comparison the values
observed by Bechmann' and Wright and
Stuart" are given. The second calculated fre-
quency was not observed by these authors.

Wright and Stuart studied the mode No. 1

R. B. Wright and D. M. Stuart, Bur. Stand. J',
Research 7', 519 (1931).

Mode &care.

2.64 X 103
2.90X 10'
3.17X 103

Bechmann

2.68 X 10'

3.19X 10'

Wright and
Stuart

2.675 X 10'

(N = 2 67 X 10') by means of powder patterns.
While the experiments with powder on the
crystal surface are difficult to interpret, the pat-
tern created by the air currents from the periph-

+ABLE I II. Frequencies of square Y-cut quartz plates
edge = 1 mm, in kilocycles.
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u„y ——C cos pk2y,

V„y= 0,
p=1 2 3 . (55)

t ry of the crystal should give a simple idea of
the motion of the boundary.

In attempting to calculate the ratio A ~. A 2'. A3
corresponding to the mode No. i, one meets a
difficulty. While the discrepancy between the
observed and calculated values of the frequency
(2.64 and 2.68) is as small as can be expected
from the uncertainty of the elastic moduli, the
ratio A &.A2. A3 is very sensitive to small varia-
tions of the root, so that the mode cannot be
described definitely. As a first approximation,
we can expect it to be similar to the mode No. 2
described for the Z-cut plate (I'ig. 2). In this
mode, the corners of the plate move in a tan-
gential direction and create thereby a wind such
as is shown in Wright and Stuart's Fig. i3a.
The agreement between this picture and the air
currents to be expected from the theoretical
figure is quite satisfactory.

(b) Shear Modes

A type of modes where the shearing strain x„
predominates is usually called "shear mode. "

The zero-order modes will be found by con-
sidering two extreme cases: If the plate is in-

finitely extended along the x direction (a—+~)
standing shear waves are exact solutions:

l

I

I

I

I

I I

L
l

I

I

I I

I I

I I

I I

I I

I

t

I

l

I

I

I

I

If the dimension 0 is very long, standing shear
waves along the y direction are solutions:

u„,=O,

vp~ = C cos pkyx)
p=1, 2, 3 . , (56)

where again

ki ——s /a, k2 m /b. ——

The modes (55) and (56) will be taken as zero-
order modes for the study of almost square plates.

The normalization (22a) requires that

FIG. 3. Longitudinal vibration of a thin square plate.
Mode 3: U3= Ccos kx, V8= Ccos ky. Dotted lines—
crystal at rest. Full lines —crystal vibrating.

C'= 2/ab (5&)

for all these modes.
The definition (25a) yields, after elementary

calculations, the elements of the matrix H:

~~pa ev=~n*, e*=o~ (p&V)

JISM@, py +66P ~2

IIyz pg Y66p kl 1

Oif por g iseven
I~u~ au=

(8/ab)y66 if p and g are odd,

N;& ——0 for any two different modes.

(58)

FIG. 2. Longitudinal vibration of a thin square plate.

Mode 2: U2 = CLsin (m./a)y —(~/4) ) cos (~/a)x,
V2 = CL —sin (~/a) x+ (~/4) g cos (~/a) y.

Dotted lines —crystal at rest. Full lines —crystal vibrating.

There is no interaction between the modes
with p or q even and the odd modes. Therefore,
the even modes can be dropped, and in the fol-
lowing, p and g will be only odd integers.
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The secular determinant reads:

pQ /66k]

P~' —9&66&I'

pQ' —9y66k '

As kI—k2, each diagonal element of 11 is
quasi-degenerate with one neighboring diagonal
element. The erst step in the solution of (59) is
to 6nd new linear combinations of the zero-
order functlons so that this dcgcncI acY' is
removed. Considering the case of the square
plate (k~ ——ks) and disregarding the coupling
bctwccn non-degenerate functions, wc 6nd Eq.
(24) to be:

~n*(&f1' Ys«P'k') ~ (Hvss/&') = 0
(60)—A„.(8y„/a )+A„„(pn —y„p k ) =O.

These two equations are compatible if

ConsequentlY, the sought linear combinations
are:

I„+= C cos pksy, u, = —C cos pksy,

where p=1 3 5 (62)

sty+ = C cos pkyx, sty —= C cos pkyx.

Kith these new zero-order functions the
matrix elements of II and X are found to be:

X,s =0 for any two functions (62),

ky~+k2~ 8 )
~n+«+ Vss ,I p

2 O,b)

8
IIn+, «+= ~ss (P&9)

G5

(p&a)
IIy+, g—=~,&x' —4'

2
assp'

, (p =a).

(63)

where e is a small number, we 6nd that the
matrix elements referring to the modes p+
become

II.+..+= (1/&') (1+s) (p'~'+8) Vss

If...+=(1/ ')(1+ )Sy (p«).

The interaction between the modes p+ and
p — is so small for our case that it can be
neglected.

Putting

/66
pQ« ——(1+s)(«r'+8)

C-

8——ass(1+ s)
g2

8
vss(1+ s)

Q

8——ass(1+ s)c'
+66

pQ' ——(1+s) (9«r'+8)
g

8——vss(1+ «)
Q 2

8——ass(1+ s)
Q 2

+66
pQ« ——(1+s) (25«r'+8)

Q2
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If we put
r = pQ'a'/8y66(1+ 6)

and divide each row of (66) by 8y66(1+6)/42, the determinant is simplified:

t'

8)
9-i1+ 8)

=0
( 25m'l-(1+

(67)

(68)

p'm' 8 " 1
r„=1+

~2 g2 P2
(69)

~16 ~26 y16 y26 0 I y66 I/~66

The roots of (68) are approximated by the by Hight and Willard. " They studied quartz
Schrodinger perturbation formula: plates whose edge was parallel to the crystal-

lographic X axis. In this case

00 1

=6 (2m+1) 2 —(226+1) 21,( 1 1

gm —n m+n+1)4(222+ 1)

where m takes all integer values except m=n.
Inspection of this expression shows that the sum
has the value

1 1
X-

4(242+ 1) 222+ 1

Thus, (69) yields:

p"' 2
rm=1+

8 ~'p'

In view of (67), the frequencies are:

(1+6) *' (y66't ' t' 8
v„= — —r„

242 E p) (x2") '

or, in view of (64):

fy66'l '*
/ 8

I

—
I
lp'+-

a+b E p ) E 2r2 2r4p2)

(70)

(71)

Systematic observations were made on the
lowest shear mode of nearly square quartz plates

The sum in this expression can be readily
calculated. As p and q are odd numbers, the sub-
stitutions p = 2n+ 1 and q = 2m+1 give:

8 uq+
U„=24„+—g

~2 g Q2 P2

&&+,=,+—Q
&2 e&uQ P

(72)

The lowest mode is

8 " cos gk2y
U2 ——cos k2y+ —Q

7i

@gal

Q
—1

(73)
8 cos Qkyx

V& = cos k&x+—Q
qw] Q

—1

"S.. C. Hight and G. W, Willard, Proc, I,R,E, 25, 549
(&937).

Equation (71) gives, for p = 1,

(1 i~
vl=

I I
x1.28,

42+ b E&66p)

while Hight and Willard's observations give

1 (1
( X1.23,

a+b Es66p)

so that the diRerence between theory and experi-
ment is . 2.5 percent. Later observations of
Bechmann' agree within 1 percent with those of
Hight and Willard.

For the resultant modes, the Rayleigh-
Schrodinger perturbation formula yields from
Eq. (68):
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FIG. 4. Shear vibration of a thin square plate. Observa-
tions by R. A. Sykes. Full and dotted lines represent the
contour deformation in two opposite phases.

This result can be compared with observations
on the mode of a square quartz plate vibrating in

the lowest shear mode. Figure 4 shows the dis-

torted edges in opposite phases, one a solid curve
and the other a dotted curve, according to
microscopic observations by Sykes. '~ Figure 5

shows one phase (full line) of the motion cal-

culated by (73). Only the first terms of (73) have
been used for the drawing because the supple-

mentary terms are small. The agreement between
observation and theory is satisfactory.

Theoretical considerations of the shear mode

by Mason' and Bechmann" led to a mode in

which the corners of the plate should be at rest.

"R.A. Sykes, Bell Sys. Tech. J. 23, 52 (1944).
"R.Bechmann, Zeits. f. Physik 117 and 118 (1941).

FIG. 5. Shear vibration of a thin square plate (calculated).
U=cos (~/a)y, V=cos (m/u)x. Dotted line —crystal at
rest. Full line —crystal vibrating.

Their solution apparently bears no resemblance
to the experimental picture.

All comparisons with experiment for the longi-
tudinal as well as shear modes were made in
cases where the parameters y16 and y26 vanish.
Where these parameters are not negligibly small,
the longitudinal and shear modes would be
coupled and could not be treated separately as is

done here.
The author is indebted to Dr. F. Beer for

advice and help. He wishes to thank Mr. A. H.
Schlesinger for his help in numerical calculation.
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The propagation of @-m waves is investigated: (1) in a rectangular metal tube half-filled

longitudinally with a dielectric; (2) in a cylindrical dielectric guide of radius a, surrounded by

a coaxial metal tube of radius b. In (1) the waves are of the longitudinal-section type; for high

frequencies they are confined to the medium of higher dielectric constant. The problem is

discussed also with the model of the criss-cross component waves. In (2) the waves are linear

combinations of 8 and H waves. The case of axial symmetry is considered, in which there are

simple 8 and H waves. For Zp a critical wave-length exists, depending only on the dimensions

of the inner dielectric, and on the dielectric constants, below which the system behaves more

or less as a dielectric guide in free space, and above which as an ordinary hollow tube. For Hp

this critical wave-length depends also on the ratio b/a. The case in which the external medium

has a higher dielectric constant is also briefly investigated.

propagation of electromagnetic waves in hollow

'HE purpose of this note is to investigate metal tubes, the interior of which is filled with

from a purely theoretical point of view the two different dielectrics, the distribution in all


