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The binding energy of deuteron and scattering cross section of proton by fast neutron are
calculated by using new forms of nuclear potential suggested by Wang. The results obtained
are found to be in good agreement with the experimental values, when "zero cut-off" of the
potential is employed.

' "T is pointed out by Wang' that the force
& - between two nuclear particles may be related
to the gravitational force. He takes two alter-
native forms of the nuclear potential,

For the ground state l = 0, we have

d'up M
+—(E—V) up = 0.

dr'
(3)

U= —Ae l'"

V= —(B/r) ew.

Z =k/mc = 3.84)& 10 "cm,

and

with
(a) zero cut-off:

U=O, for r(a; V= U(r), for r)a.
(b) straight cut-off:

V= V(a), for r (n; V= V(r), for r) a.

(a) Zero Cut-Off

For r(a, V=O; Eq. (3) takes the form,

where the constants A and 8, as determined by
the gravitational constant, are 4.78&10 " and
1.84&&10 ", respectively.

The purpose of the present work is to deter-
mine whether the potential (1a) and (1b) can
give correct results about the binding energy of
a deuteron and the scattering cross section of the
neutron by the proton. The calculations follow
closely those of Bethe and Bacher. '

d'up M~
up=0,

df

To solve Eq. (3), two ways of cut-off of the
potential given by (1a) and (1b) are employed;

(1b) vis. ,

I. THE BINDING ENERGY OF
THE DEUTERON

where e= —L&, the binding energy of the deu-
teron. Its solution is

The wave equation for the relative motion of
the two nuclear particles is where

hP+ (M/h') (2—U) P =0. (2) and

~&1

The potential is spherically symmetric; (2) can
thus be separated in polar coordinates r, 8, p, by
putting

u~=D(e~~ —e ~~)

p= (Me/h')i

duo/dr =DP(ee "+e e"). —

dup)
=p coth pu.

u, dr)„=.
(4)

P(r, 8, y) =(1/r)uIP) (8)e*"~,

where g~ is a spherical harmonic. The wave
equation for u& is then

For r) a, V= V(r); the asymptotic solution of

(3) is
up=c8

0' pd'u& l(l+1)
ui i+(F V)ui ——0. —

3E & dr' r'

Now we treat c as a slowly varying quantity
whose second derivative with respect to r may
be set equal to zero. In so doing, we have

' K. C. Wang and H. L. Tsao, Phys. Rev. 66, 155 (1944).
2 H. A. Bethe and R. E. Bacher, Rev. Mod. Phys. 8, 82

(1936).
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duo/dr=c'e e' Pce e', —
d'uo/dr'= 2Pc'e ~'+—P'ce e"
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e, in 10 erg coth [1.24 X10"a(Vo—«)']

Vo——1
2«

3.50
3.60
3.70

1.33
1.32
1.31

1.38
1.32
1.26

TABLE I. Numerical values for Eq. (7) when V= —Ae
for r)a and V=O for r &a. )1 duos = y cot ya.

&up dr &„.
For r) a, (1/up) (duo/dr) is same as given by

(5). Therefore, instead of (6), we have

TABLE II. Numerical values for Eq. (7) when
V= —(B/r)e~~" for r)a and V=0 for r&a.

M
I v(a) I —p=y cot ya.
2Ph'

(6a)

3.50
3.60
3.70
3.80

1.29
1.29
1.27
1.26+

e, in 10 " erg coth [1.24 X 10 "a( Vp —«) ']
Vo——1

2«

1.38
1.32
1.26
1.19

Equations (6) and (6a) serve to determine the
binding energy of the deuteron e if we use the
experimental value of —V(a) = Vo, the depth of
the potential well, and calculate a, the range of
the nuclear force, from (1a) or (1b). Conversely,
if we use the experimental value of e, we can
calculate the value of Vp, and a by the aid of
Eq. (1a) or (lb).

the solution of which is

Thus

and

I MV
c=F exp

I

—'I dr I.
~ 2pa' j

I- 1UIV
uo ——F exp

I
Pr —

I

—dr I,
2@i'

f 1 du, q mf V(n) I

&uo dr j,=. 2Pk'

In order that the wave function up could be
joined at r =a smoothly, the expressions (4) and
(5) must be equal; i.e. ,

Substituting this last expression in (3), we get
the differential equation for c,

dc/dr = c' = —M Uc/2P k'

(c) Numerical Calculations

(1) V=O, for r&a; V= —Aex'", for r)a. We
take the recent experimental value Vp = 10.5
Mev; then a calculated from (la) is equal to
4.21)(10 " cm. Equation (6) becomes numeri-

cally,

coth I
1.24&(10"a(U,—&)&j= Uo/2e —1. (7)

From Table I we see that the root of (7), the
binding energy of deuteron, is 3.60&10 ' erg
or 2.26 Mev.

(2) V=O, for r&a; V= —(B/r)e ~", for r)a.
Also take Vp=10.5 Mev; then a is equal to 4.42
X 10 " cm from (1b).

TABLE III. Numerical values for Eq. (7) when V= V(a)
for r&a and V= —Ae l'" for r&a.

mf v(~) f —P=P coth pu.
2PA'

(6)
e, in10 serg cot [1.24X10'oa(Vo —«) ]

Vo/2 Qe —Qe

(Vp —e)&

(b) Straight Cut-Off

For r&a, V= U(a); Eq. (3) takes the form

7.80
8.00
8.20

0.018
0.038
0.061

0.067
0.037
0.027

d'Np M
+—(I U(a)

I

—«)uo=O.
dr' k2

TABLE IV. Numerical values for Eq. (7) when V= V(a)
for r &a and V= —(B/r)e ~" for r )a.

Its solution is

with
Np

——G sin yr,
8.20
8.30
8.40

—0.020—0.013—0.004

0.206
0.005—0.083

Vo/2 Qe —Qe

«, in 10 ' erg cot [1.24 X10'5a(Vo e)~] (Vp e)&
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The binding energy of deuteron from Table II
is 3.66&(10 ' erg or 2.30 Mev. The results given
by (1) and (2) are in good agreement with the
experimental value 2.17 Mev.

(3) V= V(a), for r(a; V= —Aex'" for r)a.
Also take Vp = 10.5 Mev, then a is 4.21)&10 "cm
from (1a). Equation (6a) turns out numerically
to be

cot L1.24 X 10"a(Vo —p) ']
= t.(Up/2+p) —Qp]/(Up —p) .

(4) U= U(a), for r (a; -V= —(B/r)e ', for
r)a.

From Tables III and IV, the binding energy of
the deuteron is 8.0)&10 ' and 8.3X10 ' erg, re-
spectively. These values are too large in com-
parison with the experimental value. The correct
value will be obtained if we take Vp=5. 93 Mev.

II. THE SCATTERING OF NEUTRON
BY PROTON

Let us denote 2 the kinetic energy of a proton
and a neutron in a coordinate system in which
the center of gravity of the two particles is at
rest, which is equal to one-half of the kinetic
energy of the incident neutron in a system at
rest. The wave function u~ will satisfy the
equation,

A.' t d'u~ l(l+1)
ui I+(2—V)ui ——0. (8)M(dr' r' )

Asymptotically for large r, the solution of (8)
1S

u( ——c sin (Kr ,'l7r+8)), ——
with

K = (3IIE/k') '.
Then the cross section do-, the number of the

neutrons scattered per unit time through an
angle 0 and 0+de, if there is one neutron crossing
unit area per unit time in the incident beam, is
given by the well-known formula,

d p = (or/2K')

X ) gg(21+1)Pg(0) Lexp (2i6~) —1]('sin Od|t. (10)

TABLE V. Comparison of values of aX 10".

P-, Mev

2.15
1.05

0.85
1.03

1.43
1.86

a.p(B)

1.2
1.6

e(B)

1.8
2.4

0 (obs.)

(0.5-0.8)
(1.1-1.5)

and

0 = '

dfT =4x'Z 2 sin~ 6p.

For the ground state of deuteron, we have
already shown that

p 1 dup i (MVp
=A

in, dr —),=. i 2pa' i (12)

qaM(Z+ p) —=A,
jv-

(13)

where up+ and up are the up functions for r &u
corresponding to the positive and negative values
of B, respectively; i.e. ,

up+=B sin Kr, up =D(ee' ee");—
therefore

1 a

Ip+Qp d1'
uo+(a)u, —(a) Jp

P coth Pa —K cot Ka
(14)

P'+K'
For large r,

( 1 dup+q
=K cot (Ka+ do).

(up+ dr 3, . (15)

In order to join the wave function at r=a
smoothly, the expressions given by (13) and (15)
must be equal, thus

K cot (Ka+ 8o) =A. (16)
Under the assumption that Ee is small, we

have

Now, in the present case B is positive; we should
have'

( 1 duo+) ~(~+p)
=n ' —

( upup dr
&up+ dr l „=, h'up+(a)up (a) ~p

It has been shown' that if 1/K))a, a being the
range of the force, all phases b~ will be small
except bp. Then

d0. =27rE ' sin' 8p sin ede,
' Cf. reference 2, p. 115.

co't 5p =A/K,
and by (11),

o =4n/K'+A'. .

If g is small A =n, and we have

p o 4pr/K'+ ——n'

(17)
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The, numerical results are given in Table V
in taking U= —Ae '", and the values of o. are
obtained from Table I at the point r=a. Cor-
responding to (18) and (19), Bethe and Bacher
have derived' the formulae: oo(B) =4+k'/e+2,
o(B) =3o.o/2, and the values calculated from
these are given for comparison in the fourth and
fifth columns of Table V.

It is seen that the present results are in better
agreement with the experimental results than
those given by Bethe and Bacher. If we take
V= —(B/r)e~', the results do not dilfer appre-
ciably from that given above.

In conclusion, the author wishes to express his
thariks to Dr. K. C. Wang for suggesting the
calculation and for helpful discussiens.
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The conservation of momentum and energy between an emitted photon and an electron in
the Cerenkov radiation gives an equation for the direction of emission. This equation differs
from the one which Franl- and Tamm derived from electromagnetic theory only by a negligible
term involving the ratio of the wave-length of the electron to that of the photon.

'T has been observed by Cerenkov' that fast
- - electrons traversing a transparent medium
emit a radiation, continuous through the visible
spectrum and beyond, which differs in respect to
its polarization and angular distribution from
radiation previously found with similar sources.
Frank and Tamm' have given an electrodynamic
theory of this radiation similar to the dynamic
theory of the bow wave of a ship or the conical
wave around the path of a bullet moving through
the air at a speed greater than the speed of
sound. According to this theory the emitted
radiation has a component of every wave-length
of which the speed in the medium is less than the
speed of the electron. The energy per unit
length of path radiated by the electron in the
frequency range dv is (2se/c)'(1 —1/P'n') vdv,

where e is the electronic charge, c the speed of
light in vacuum, p the ratio to this speed of the
speed of the electron, and n the index of refrac-
tion of the medium for light of frequency v. The
emitted rays make an angle 0 with the electron
velocity given by cos 8=1/np, and they are

' P. A. Cerenkov, Comptes rendus Acad. Sci. U.S.S,R. 8,
451 (1934); 12, 413 (1936); 14, 102 (1937); 14, 105 (1937);
Phys. Rev. 52, 378 (1937).

2 I. Frank and Ig. Tamm, Comptes rendus Acad. Sci.
U.S.S.R. 14, 109 (1937).The subject has also been treated
by Fermi, Phys. Rev. 57, 485 (1940), in the development of
a, classical theory of the retardation of charged particles in
gaseous and condensed media.

polarized with the electric vector in the plane of
this angle. The theory accords with the ob-
servations of Cerenkov, and it has been con-
firmed by observations under more favorable
experimental conditions made by Collins and
Reiling' and, over a considerable range of
electron speeds, by Wyckoff and Henderson. 4

Although the phenomenon has thus an ade-
quate classical explanation, it is interesting also
to treat it by considering the conservation of
momentum and energy between the electron and
an emitted photon of the radiation. Let it be
supposed that the electron, traversing the
medium with a speed u, emits a photon of energy
hv in a direction making an angle 0 with the
initial velocity of the electron. After the emission,
let the speed of the electron be v and let the angle
between its final and initial velocities be p. By
the conservation of momentum, the angles 0 and

p will be coplanar and on opposite sides of the
initial direction of the velocity of the electron.

Also, by the conservation of momentum,

mv(1 —v'/c') 'cos 4+(k/X) cos 0

=mu(1 —u'/c') i,

mv(1 —v'/c')-'* sin p —(h/X) sin 8=0.
'G. B. Collins and V. G. Reiling, Phys. Rev. 54, 499

(1938).
4 H. O. Wyckoff and J. E. Henderson, Phys. Rev. 64, 1

(1943).


