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tentials. It follows from (34) and (19) (lower
sign) that solutions exist only for

alz —Up.

(36)

Both branches of the curves uo=const. begin
with the value a;= —u, at the value £ =4 and
with vertical tangent. They form together a loop
which contracts around the point G on Fig. 1
(a1=0, £=4/3) as u, decreases from %=1 to
#o=0, and for #,=0 there remains only the
branch I. In Fig. 1 the curves for #,=% and
1#o=0 have been added.

It is now easy to discuss the behavior of the
solution. Threeintervals have to be distinguished :

(a) 0<#<4/3. The solution starts, with
Vo=0, on branch II until, with decreasing po-
tentials, the value £ =24 is reached. Then the
solution changes to branch I (no minimum) and
ends on the curve uo=0. The current has the
saturation value throughout.

(b) 4/3<%,<1.886. The upper limit of this
interval is set by the maximum of § which occurs
for ;= —0.5. The solution begins, with V=0,
on branch II, changes to branch I when the &
curve is intersected for the first time, changes

back to branch II when the é curve is met for the
second time, and finally becomes space-charge
limited.

(c) 1.886<¢0<3.771. In this interval the solu-
tion is on branch II throughout. The current is
saturated at first and becomes space-charge
limited as soon as the critical value (26) is
reached. All space-charge limited solutions [in
cases (b) and (c)] end at the point G of Fig. 1,
i.e., at Eo=4/3 OI‘].=E0%‘.

In Fig. 5 we have represented the potential
distribution in the case of a negative potential
Vo. We have taken the value #o=1% corresponding
to Vo= —(3/4)E,, and have chosen &, on the &
curve;i.e., {6=(4/3)2t=1.886. Whenever, in the
intervals (a) and (b), the limiting case £ =324 is
realized, the solution of branch I coincides with
the (stable) solution of branch II. This case,
therefore, corresponds to the case (dn/d£),=0 for
positive potentials, but the horizontal tangent is
now at the receiver plate.

The two solutions on branch II correspond to
the values a1 = — % and a;= —0.025, respectively.
Both potential distributions are represented in
Fig. 5, the unstable one by a broken line.
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The vector wave equation in prolate spheroidal coordinates £, 7, ¢ is set up, the variables are
separated, and the characteristic values (eigenvalues) and characteristic functions (eigenfunc-
tions) of the resulting ordinary differential equations are obtained in series which converge
rapidly in the neighborhood of resonance for spheroids of eccentricity near to unity. The
coefficients of the two independent primitives in the linear combinations representing diverging
and converging waves at infinity are calculated. The zeros of certain of the characteristic values
are investigated.

N a previous paper! both the free oscillations of a perfectly conducting prolate spheroid and the
oscillations forced by a plane wave with the electric field parallel to the long axis of the spheroid
were discussed. The forced oscillations were treated by an approximate method valid only for very
eccentric spheroids. For the exact investigation of these oscillations the complete solutions of the
vector wave equation in prolate spheroidal coordinates are needed. The object of the present paper is

1L. Pageand N. I. Adams, Jr., Phys. Rev. 53, 819 (1938). This paper will be referred to as I and the present paper as I1.
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to obtain these solutions in the form of series which converge rapidly in the neighborhood of resonance.
In a following paper these solutions will be applied to the problem of the antenna.
1. FIELD EQUATIONS

If the time factor is taken as e~7, where 7 is the time, the field equations for simple harmonic waves
of angular frequency w in a medium of permittivity « and permeability u are

VXE=i-"H, VXH=—i—E, (11-1)
[ c

in Heaviside-Lorentz symmetrical units, leading to the wave equations

wkpy

c?

w

2
VXVXE="""E, VXVXH="—H. (11-2)
¢
In the right-handed orthogonal prolate spheroidal coordinates &, 7, ¢ defined in I, either of these

vector wave equations yields the three scalar equations

3[1—5295]__‘9_["2"”_@]_ L PR, 1 P g, (11-3)
onln?—g2 95 | onlnt—g2 on | (1-8)(n~1) 69 w*—10509
L S (114
1—£2090¢ (1—E)(n*—1) 99> O&n>—¢* 9t 1 9&ln®—§* 9y
2. &2
_a_[ 1 @]_ 1 oF, 1 am%a[ 1 fﬂ]:a nt—§ P, (I15)
(- (m2—1) ool m—1 08 1-g a2 ald-g)n—1) d¢1  (A—)x—1)
where
Fssun?—zle—e?)}%{E‘},
H;
qun?——s?)(nLl)}%{E”}
" '
Fq,s{(l—ez)(nﬁ—l)}*{E“’},
o,
and 2nf
eEw—f(mu)*=l,
Cc

f being the semi-interfocal distance, and \ the wave-length.
Evidently the solutions are of the form

sin m¢ sin m¢ cos me
F‘é:GE ) F,,'—‘G ’ F¢=G¢ ’
n .
Cos m¢ Cos ¢ —sin me

where m is a positive integer, and G, G,, G4 are functions of ¢ and 5 only, satisfying the equations

af1—£a °—19 2
v[ Eﬁ']__a_[n I_C_;f]_*_ m GE_' m a_G_f=e2GE, (11_6)
onln?—£2 98 1 omln®—£20n 1 (1—£)(n2—1) n*—1 9¢

_m G, om Gﬂ__a[1—52§§,]= "f”z"lff]:ezgm (11-7)
1—82 an  (1—£)(n—1) ' otln*—g ot | otln>—g on

Gy (I1-8)

a[ mG ] 1 3G, 1 9%, a[ mG, ]2 n?—§*
=€ e
(1=8(*—1)

- —1) ;=108 1-8 a2 ol(1—g)m—1)
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If we differentiate (I1-6) with respect to &, (11-7) with respect to 7, and combine the two equations so
obtained with (I1-8), we get

JaGy aG m m
it —~1=[ + ]1,,, (11-9)
At an 1—§ 92—1
which is just the solenoidal condition.
Eliminating G4 from (II-6) and (I1-7), we find
1 2¢ [0G: oG 2y [0G: 0G
[ ][SGE—i—NGg]— £ [0 ——1’] L ek —”]:0, (11-10)
1—g g2 t—glog  anl m—1lan " og
1 1 25 e aGf 2 [8G, oG,
[ ][SG +NG,]— —4—1=0, (I1-11)
S’ n*— 1—¢foe n*—1L dy  of
where S and N are the operators
2
S=(1- 2(1—£?),
- (1-£),
a? m?
NE(nz—na—n?— L Hee=1).

Equations (I1I-10) and (II-11) admit two pairs of solutions in which the variables are separable. The
first pair is obtained by putting G;= ¢G, G,= —»G and the second pair by putting Gy=2G, G,= — G.
In both cases G satisfies the equation

a[u 52)6G] " G- erGt [( 1)6(;] m Gen'G=0 (11-12)
— (1 —&)—|— G—e n2—1)—|[— € =0. -
9t gl 1-¢ 7t —
So, if we put G=u(£)v(n), we are left with the two ordinary differential equations
d du m?
—[(1—»;2)—]—1 52u+au+e2(1—-£2)u=0, —1<£<1, (11-13)
m?
[(n —-1)— ] v—av+e(n?—1)v=0, 1<9<x, (I1-14)
dn 72—1

which differ only in the range of the independent variable.

Finally, after G¢ and G, have been obtained, G4 may be determined from (11-9).

Evidently the method fails when m=0. In this case, however, F;, F,, F, are not functions of
¢, and (II-5) reduces to an equation in F4 alone in which the variables are separable. If we put
Fy={(1—£)(n2—1)}u(¢)v(n), the differential equations satisfied by # and v are found to be just
(II-13) and (11-14) with m=1. The functions F; and F, corresponding to this solution for F, are both
zero since the field component proportional to F, is itself solenoidal. A second solution for the case
where m =0 is obtained by taking the curl of the field intensity corresponding to the first solution.

For a given m, solutions of (I1I-13) and (I1-14) exist only for a discrete set of values of the constant
of separation «, corresponding to the various harmonics possible. In fact, we conclude from the
similarity of these differential equations to that for the associated Legendrian functions that e is a
function of two positive integral indices 7 and m such that m <I. The solutions of (II-13) and (11-14)
for a given a;, we shall designate by %.,(£) and v,.(n). Evidently each group of functions corresponding
to a specified m constitutes an orthogonal set. If, then, we put

Lat==eo el el b Ll =sen 500
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with omission of the time factor, we have the following pairs of solutions, distinguished by single and
double accents: For m=0,

1
Elo= uu(E) [(17 —1)u(n) ],

(n*— gDt
) L = () Tontn) (AL19)
w= - - — £ un vi1(n),
(n*— £)} d¢ !
‘I);o—_—()?
E10=0,
Hyo=0, (11-16)
for m >0 E B =un(E)on(n);
»’—'dm={(1_‘52)(7]2_52)}%ulm(g)vlm(n)y
’ n
Him=— Uim m s q I1-17
(=D =gy O e
, A== duwm @]
m = m('r]2—-£2) LC df ‘)lm("’) nulm(f) (Z‘l] ’J
7" = ? Uim m ) ‘
ST T
n g
Hyp=— Uim m(1), S I1-18
=D gy ) (18
7 {(I_EZ)(W2_1>}%I_ Atin @'2]
Cim= m(.,,z_gz) L" dt "lm(n) Eulm(g)

2. SOLUTION OF THE EQUATION FOR up(f)
The form of Eq. (11-13) for u:.(£) suggests a solution in the associated Legendrian functions P, (£).
Hence we put
ain=1(141) +€in+eainteain+- -+,
WUim=Pim() +€ Zk: ai Prm(£) +¢* %: @' Pim () + €8 Zk ai'" Pim(£)+- - -,

substitute in the differential equation,? and equate to zero the coefficient of each separate power of €?
after getting rid of the factor 1 — £2 in the last term by means of the recurrence formula

1=)Pu=T(=1-2)T(=I—1)[Pin—Priom ]+ T8 —=DTO[Pin—Pi_2,m],
where T'(x) = (x+m)/(2x+1).

In this way we find the following formulas for the first four terms following I(I+1) in the series
for the characteristic value (eigenvalue) am:

ARG o (11-19)
(21—1)(21+3)’
v _HO=DBQ) _H(+DH(+2) (11-20)
" a-1) 202043)

2 This is a much simpler and easier method of solution than that given in I.
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TasLr L. Characteristic values (eigenvalues).

8 124
au=2—ge2——e“+ et —

S50 3.55.7 56711
6——e B ey M0 60,571,420~ 0.003,887€14-0.000,014 040,000,001 8
an=6—-¢— S+ =6—-0.571, —0.003, .000, .000, BN
BT T T s 30711113 ¢ ‘ “F ot

8 152 115,568 34,094,936
a3 =12——e+ 4 84 84 ..+ =12-0.533,333¢24-0.001,365¢*

3.5 345511  37.5.11-13  39.56.113.13
—0.000,118¢54+0.000,002€8 4+ - -,
4. =20—-0.519,481e24-0.001,190¢! — 0.000,013+ - - -,

S+ o =2—0.800,000e2—0.004,571 & ++0.000,122¢5 —0.000,002¢8+ - - -,

40 7064 462,736
_E2 64_ 66
71 P13 7115413
20 1108 301,160
e+ et — €
3135 307135 37.7-135-17
6=Sam Py B0 6 0.857143¢—0.001,044€140.000,036¢5—0.000,001 ¢
e =0——e——— €’ — e =0—V. ) — V. » . f) V. ) M)
T Ty Tt 31113 ) ‘ ) o
2 4 62

35 3 11"+37 11 13654—310 0 “=B+--.=12—0.666,6673—0.002,24564+0.000,01366+0.000,00068+---

64 ... =30-0.512,821¢240.000,889¢*—0.000,003€4+ - - -,

4m’—1 [ HO-1H(@) H+HDHE+2)
A= — — ] (11-21)
2—1)(2+3)L(2I=5)Q2I—1)2  (20+3)2(21+7)
aw=H(l—1)H(l)[ 4(4m2—1)2 _ aim | H(l——3)H(l—2)J
"TT@—1) L(2I=5)2(2—1)'(21+3)* 2(2i—1) ' 2-4(2i—1)(2i—3)
_HO+DHE)[ 4(4m>—1)? ‘ m B H(H—3)I-I(l+4)] 1L22)
20204+3)  L@2I—1)22043)52+7)2  2(21+3) ' 2-4(21+3)(2+5) T (-

where H(x) =T (x)I'(—x) = (x2—m?) /(4x2—1).
In fact, we can obtain by this method an equation for the entire characteristic value a;m. Putting

be=(1+5) (I4s+1) — e[ T(—l—s—2)T(—I—s— 1) + T (l4s— )T (I +5) ]~ tim,

and

_ H(I+s)H(I+s+1)
U hedken

this equation, involving two continued fractions, is

€2x_1 €Xxy
+ =1, (11-23)
€2x_3 €2x3
1—ex_s/1—  1—exg/1—

However, the first five terms of o, are sufficient for most purposes, and they are more easily calcu-
lated from (I1-19) to (11-22) than from (11-23), the apparently simple form of which is deceptive.
We list in Table I characteristic values for m=1 and I=1, 2, 3, 4, 5, and for m=2 and =2, 3.
When the characteristic functions in #;,(£) are expanded as a series in the associated Legendrian
functions P.(£), the coefficients are found to be much more complicated than when they are ex-
panded in a simple power series in s=(1—£?)}. So the latter expansion has been adopted. We have
to consider separately the cases I—m even and I —m odd. In both cases it is found convenient to put

am—I1+1)

2

BlmE

€
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TaBLE II. Characteristic functions (eigenfunctions).

(14, s2r=1)

® p
un(§) =32 —
=1 (2p+1)!

2(r—1 /4 1)121)—1,\

) =31 2 (1)
= @+ 1)!

12 b
Jula) = ==} 2 ()70,

ai 2p+1)!
where
S 2 677 3
A1=1, Ay=——By, Ads=ld——d——t .o, Ay=ld——et e, dy=1+4---;
4 32.52 32.54.72.11 52.11
81 7474 1858
By=1, B;=1+ €2 — — &4+, By=1+ &4 .-, By=1+---
527 34.54.7 34.52
s! © plp+
uzl(:f)—---(l-a2 LD GZ(P‘I)APSZP—l’
71 (2p+-3)!
5! ° pp+1)
pauln) =—1+2) 2 (—1)r? &4 o1
20 (2p+3)!
12ri1 5! = p(p+1)
foltp) = ——| ——4—— 2 (=1)r1 2D gt |
anl 3!t 2-21p7t (2p+3)!
where
7 6
Ar=1, Ady=—-Bn, As=1+——e+t -+, Ay=1+-.;
4 7211
125 517
Bi=1- e+ 4o, Ba=1—— &4, By=ld---,
2.3.7  2.38.78 223072
570 = p(p+1)(H+2)
usi(§) =s— z 24 52t
2.3t (2p+5)!
57 = PO+ DE+2)
pa(n) =t+—— 2 (—1)Pl @21 4 pp2p 1,
223171 (26+9)!
12 11 570 = PR+
faln)=——-(QQ+)Y — —+—ro — )P e 2-1) B g2p1 |
an 31t 2231971 (2p+5)!
where
1 166 1172 98
=lt——efy, dy=1-— e+ e, Ag=1— RN PE I
2.5 33.52.11  36.5%.13 38.52.13
41 4109 767
P tee, By=14--e,

et Bp=l—m—edt o,
2.38.52.11

e+ —

350 36.50.11

For I—m even we put u;,(§) = s™z, getting

d’z 2m+1dz
(1—52)— d——2(m+1)s————l—(l m)(l+m+1)z+e2(Bin—+s2)z=0.

Assuming a solution z= ¢,s?, the recurrence formula for the coefficients is
» YD ’

{(p—14+m—2)(p+I+m—1) —Bim} cp2te*cp_a=0,

(11-24)

p(p42m)c,—

giving a series that starts with co.
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TABLE II.—Continued.
79! = p(p+1)(p+2)(p+3)
ua(8) =1 —s2)9[s—- Z p &(r b4 psz"“}
22.41 771 2p+1)!
79! = p(d+1)(p+2) (p+3)
() =A4+2)Y t4+—— Z (~1)77 @14 ot |
22.41 271 2p+7)!
1211 95 359! = p(p+1) (p+2) (p+3)
fam)=——| —{-—+—Bt+ 2 (—=1)r1 @D B 2ot |
anl 3!t 2-3 22.3.41 771 @2p+MN!
where
1 1446
A151+——ezﬂu, AzEl'—— € y A.;El—}- )
2.7 72-112-13
241 253
B'=l———— @4 .ss, Bi=l—o—— @4 .., By=1+.--.
5-7-11-19 2-3-72-11
2111 2 p(p+1) - (p+4)
us1(§) =s—-A4's3+ 2 e~ 4 s2p+3,
2 28.51 »=1 2p+9)!
7 2111 p(p+1)--- (p+4)
parln) =t4-A'Bt——— I (= 1) DA 3,
2 28.51 »=1 2p+9)!
12 (1 105 105-11! = pp+1)- - (p+4)
Fo1(n) = ——(1+2)Y — —+——B’l}+ 2 (=)@ D B 211 |
a1 31t 22 24.51 »=1 2p+9)!
where
1 22 47,321 142
A'=14—€B5, A1=1———é+ e, Ay=1-— & , Azy=14-.-;
22.7 38.13  36.72.138 33.132
268 19
B'=l——————¢&+4--., By=1- @4+, Ba=1+---
38.5.7-13 38.13
U2 pp+D)
un(f)=— 2 (P4 45?7,
D 21271 (2p4-3)!
5t oe pp+1)
pum)=—Z (—1)» @4 ptte,
21971 (2p+3)!
1 1§t = p(p+1)
Foaln) =4(14-2)Y —B'—~ > (=1)r- &@-B 92
30 2021971 2p+3)!
where

7
A1=1, AzE—gﬂzz, Ag=1+--+;

4 20 1 65 55
ét-o., By=1+ @4+, By=1+4---

B'=14—=¢e+ e+, Bi=14+—e—
3.7 3P 3.7 37 2.33.72

For [—m odd we put #;.,(§) = £&s™Z, getting

&Z m+1dZ iz
(=)= 20m+2)s——+A=m—D)(+m+2)Z+é@m+s)Z=0,  (11-25)
S )

Is

which gives, when we put Z=3_, ¢,s?, the recurrence formula

p(o+2m)cs— [ (p—1+m—1) (p+1-+m) —Bin}Cpatecps=0,

representing a series that starts with co.
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TaBLE 11.—Concluded.

7! = p(p+1)(p+2)
s (E) =;(1 —s ?..p____p___ez(p—l)Apszp'

=l (2p45)!

7! s p(p+1)(p+2)
P“(n) =——(1+ﬂ)§ > (—1)1’"1_____.__62(1)~1)A P£22,
3! pm1 (2p+5)!

4[1{ 1S ] 5-7! = pip+1)(p+2) ]
Sa2(n) =-| — B'=—-B" (—1)p 11— —eDR 2 |
5 2231271 @p+3)!

di=1, Ae=—3Bs, As=1+--+;

4 28 1 103
B'=1+4——ef——elt -, B'=1+
32.5 35.52 32.5 35.52.11

1 37
Bi=l———g@——————¢f ..., By=1-—
2.3 22.36.5.11 22.33.11

where

€2 —

e

’

&4+, By=1+4-.-

The characteristic functions #;.(£) obtained from (11-24) and (I1-25) are listed in Table II together
with the functions v:.(n), the arbitrary coefficient ¢, in the tabulated functions #;.(£) being taken as
unity.

3. SOLUTION OF THE EQUATION FOR wvu(n)

Since we are interested primarily in conducting spheroids of eccentricity very close to unity
(antenna), the objective in solving Eq. (I1I-14) for v;.(n) is to obtain series solutions representing
diverging waves at n= « which converge rapidly in the neighborhood of resonance for 5 nearly equal
to unity.

By changing the independent variable from 5 to p =en the differential equation can be thrown into
such a form that the zero-order terms are satisfied by the wave functions

S [0S
pap
Therefore, a solution can be constructed in the form of a series of these functions, which meets the
first requirement stated above. Unfortunately, this series converges so slowly in the neighborhood of
resonance for n nearly equal to unity as to be quite useless for the antenna problem.

Another possibility is to construct two independent solutions in series of associated Legendrian
functions of the first and second kinds, respectively. The coefficients, however, turn out to be com-
plicated, and difficult to calculate in the second case, and there remains the problem of finding what
linear combination of the two independent primitives represents a diverging wave at infinity.

Finally, it was concluded that the most satisfactory method was that employed in I. First, we
obtain two independent primitives in the independent variable? t=(»2—1)* which goes to zero as 7
goes to unity, and then determine the coefficients of the desired linear combination by comparison
with the solution in p =€t which represents a diverging wave at infinity. As in the case of the equation
for #1,(£) we have to consider separately the cases I—m even and [ —m odd.

For l—m even we put vi,(n) =™y, getting

d*y 2m—+1dy
14— —
1+ )dt2+ i dt

d
+2(m+1>t~d—j’~(z—m>(z+m+1>y—e2<mm—ﬁ)y=o. (11-26)

The first primitive for small ¢ is the power series y1=7_, a,t? where

p(p+2m)a,+{(p—I4+m—2)(p+I+m—1) —eBim}ap—2+ea,4=0.

# Note that ¢ used in this paper is the square root of the in I.
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A second primitive is obtained by putting
(121
=3y log —————+ (1 +¢2)}
Ye=3)1 g(l—f—t?)% +(1+)k
where x satisfies the equation
d*x 2m+41dx

(H_?)Et; . —~+2(m+2)tw—(l m=1) (l+m+2)x— (B —t)x = 2[1—~+ yl] (11-27)

For [—m odd we put v;,(9) =nt"Y, getting
d“"Y 2m—+41

1 t2 J—

(1+) p t2 .

The power series Y1=73_, a,¢? supplies the first primitive for small ¢, where

3%
——+ (m+2)t———-—(l m—1)(+m~+2)Y —e(Br—t) V=0.  (11-28)

p(p+2m)a,+{(p—I+m—1)(p+I+m) —€Bim}apotea, 1=0,

and the second primitive is
14241 1
Y2=%Y110g( )‘ -+ X,
(1+)i—=1 " (14}

where X satisfies the equation

a@>X 2m+1dX
(1) = 2 +1>t——<l m)(I+m+1)X =B~ 1)X

v
=2[ (t+;)~§t—-+ (m+1+;;—) Yl]. (11-29)

To obtain the solution for large ¢ for the case [—m even we change the independent variable in
(I1-26) to p=et and put

y=p 0¥ (p)e,

getting
axv 2d\If ) av 1 m?—1
—(‘Z;;‘*‘ZZ —d‘z‘—mm = "‘“‘f—( —= ( ——= )‘I’], (11-30)
where z2=1p. The solution is of the form
V=3 ¢z P
p=0

where

2pc,={(p+D)(p—1—1) —(Bimt+1) Yep1F-€2(2p —3)cp—a—€2{ (p—2)2—m2}cp_s.

After calculating the coefficients ¢, we write the solution in the form

even odd
y=- Z (__ e2) nIZC"t-—m+n——l+i Z (_ 62) (n-1)/2cnt—m+n—~l
€ g n

for comparison with the primitives for ¢ small, where

C 1 C1 ()
EEETANCEE AR T
cn+Cn+1 5n+2+ .

2!
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For I—m odd we make the same change in independent variable in (II-28) and put
V= p=m+D¥(p)et,

AL S 2[—d2\1!+(2 3)dq’+ 3 m2"4)\1] (11-31)
B Br———a W= —= )y - /| -
dz? dz * € dz? 3/ dz 3z 22

getting

The recurrence formula for the coefficients in the solution

«©
W= 3 cpz?

p=0

2pe,={(p+D(p—=1=1) =€@m+1Dlcr+e(2p—D)epa—e{(p—1)* —m*|cps,

is

and ¥ may be written in the form

even odd
Y= — Z ( —_ e2) n/2cnt—m+n—-—2+i z ( _— 62) (n—-I)IZCnt~m+'n—2,
€ n

where C, has the same significance as before.

In calculating the coefficients @, of y; or ¥; the manner in which successive coefficients become of
higher and higher order in € provides a perfect check on the arithmetic as well as on the previous
calculation of a;,. The same is true of the calculation of the coefficients ¢, in the solution for large £,
although here we have an additional check in the vanishing of those C,’s corresponding to negative
powers of ¢in y;. In every case at least one such vanishing coefficient was calculated as an arithmetical
check. The arbitrary coefficient in the solution for large ¢ was chosen in each instance so as to make
vim(n) equal to (1/p)e* at infinity, whereas that in the solution for small ¢ was determined by making
@9 equal to unity. ‘

We shall designate by pu.(9) and ¢u.(n) the two independent solutions of the equation for v;,(y) for
small ¢ corresponding, in the case I —m even, to y; and y,, respectively, and, in the case —m odd, to
Y, and Y, respectively. The function p;.(1) remains finite at =0, while g;.(1) becomes infinite. For
all values of the indices the latter has the form

. (1+2)+1
01n(1) =11 (1) Tog (= ).
Hence, in tabulating these functions it is sufficient to give pi.(n) and fin(n). In Table II the three
functions %, (£), pin(n), and fi.(n) are given for those values of the indices for which the characteristic
values are listed in Table I. They are expressed in such a form that the first term in each of the
series A, or B, which has been calculated is unity.

Finally we designate the function v;.(9) representing the diverging wave (1/p)e® at infinity by

7m(n) and write

ORIl (1-+m) el
2:4-6---2ml (2141){12-32.52. . . (21— 1)?}

¥im (n) = almp im (77)

e 1)m+li(2z+1){12-32-52- S (21—1)2) bmgm(n)]_ (11-32)

(I—m)let+?

The coefficients ¢, and b, are listed in Table 111. Evidently the function representing the converging
wave (1/p)e~% at infinity is just the complex conjugate of 7,.(n).
It will be observed that, for m=1, the equation

anbn= Otn/l(l'f‘ 1)
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holds for all five cases. This relation provides a valuable check on the arithmetical computations.
Also, for m=2, we have a check in the relation

@2bip= 1/B/,
although here each coefficient was calculated by two independent methods to preclude the possibility

of arithmetical error.

4. ZEROS OF CERTAIN CHARACTERISTIC VALUES (EIGENVALUES)

The zeros of the coefficients b;; are very important in the applications of the theory to the antenna
problem. The series for b;; and for the characteristic value a1 have been carried far enough to show
that they have a common zero e= /2 accurate to five significant figures. To a lesser degree of accuracy
the given series indicates that bs; and as; have a common zero e= and bs; and a3 a common zero
e=3wr/2. We shall now prove rigorously that b;; and a;; have a common zero and shall find its exact
value.

If we make m=1 in Eq. (II-14) for v and put v=2/(n2— 1)}, the resulting equation for z is

S T, I
—1)| —+e2|—az=0.

Ul o

If € is a zero of «, then, the complete solution of (II-14) for this value of the parameter is

A . B .
? =(72"——i'5'% exp ('teo‘r)) +m exp (—16011), (II-33)

and the solution representing a diverging wave of amplitude 1/p at infinity, where p=e(n2—1)}, is

vu(y) = exp (zeon), (11-34)

p(€o)
exact for all values of 4. This function, therefore, must be identical with the function 7;1(n) given by
(I1-32) for e=¢y, for all values of the index I. Consequently the coefficient of the logarithmic term in
¢i1(n) must vanish for e=e¢, that is,

bu(eo) =0,

proving that a;; and b;; have a common zero.
Furthermore, if we replace 7 by (1+¢%)*% in (II-34) and use the power series expansion for the
exponential factor, we find, on'separating real and imaginary parts,

vu(n) =—; COS €9— 5t sin eo+ 5£3{sin ep— € COS €} + - - -
€

1 1t 1
+’L(1+t2)§|:—‘ sin € —— -—{sin €9 — €9 COS 60} +'— ——{ (3 '—602) sin 60—360 COs éo} + .. ] (11-35)
60t 2 €0 8 €0

Now the function p1(n) contains no term in negative powers of ¢. Therefore, comparing with (I1-32),
we find that when / is odd, cos eo=0 and consequently ¢, is equal to (n+3%)w, whereas, when [ is even,
sin ¢p=0 and consequently eo=#nw. The value of the integer 7 is easily ascertained from the series for
the characteristic values given in Table I. We find, for ! odd or even, that eo=1I7/2.

When [ is odd the part of 7;1(y) containing p;1(9) is real, and the first term in the power series for
this function is £. Hence, comparing (I1-32) with (II-35), we find that

(214+1){12.32-52. . . (21—1)?}

anle) = (1) e . (I11-36)
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TasLE III. Coefficients of diverging wave functions.

187 26,021
4

an=1———e-+4 GE €84+ .+ =1—0.020,000¢2-+0.000,763¢*— 0.000,026€8+ - - -,
2.52  28.5%.7r  24.34.56.72
19 2609 32,593
bu=1- &— Gy e84+« =1-0.380,000¢2—0.010,649¢'+0.000,164 ¢+« - - ;
2.52 23.54.72 24.34.56.72
389
an=1——e+— e oo =1-0.030,6122+0.000,750¢!+ - - -,
2.72 28.38.74
19 1751
boy=1— &— e+ - =1-0.064,6262—0.003,376¢+ - - - ;
2.3.7¢  23.33.74
23 113,549
an=1-— &— et =1-0.017,037¢—0.000,257¢' - - - -,
2.33.52 23.36.54.112
37 42,233
byy=1— e&— et .-+ =1-0.027,407¢2—0.000,096¢*+ - - - ;
2.33.52 28.36.54.112
127 181
ay=1— &4+ =1-0.010,710e4 -+, by=1— &4+ =1-0.015,264e+ - -;
2.72.112 2.72.112
67 89
as1=1—— &4+ .. =1-0.007,342&4 -+, by=1— &4+ =1-0.009,752¢+ -« +;
233132 2.33.132
1 121
@p=1-— e+ et =1-0.010,204624+0.000,233€*+ - - -,
2.72 23.33.74
53 14,381
boa=1— & et =1-0.180,272240.027,730€t+ - - - ;
2372 23.33.74
1 223
az=1——4——¢++-=1-0.018,519¢-+0.000,316€*+ - - -,
2.33 23.36.112
19 5903
bae=1— &4 et =1-0.070,370¢240.001,673¢* 4+ - -

2.33.5  23.36.5.112

When [ is even, the part of 7;,() containing p:1(n) is imaginary, and the first term in the series for this
function is (14¢2)%. Therefore, comparing again with (II-35), we find that (II-36) holds for / even as
well as / odd.

When /is odd, it is evident from Table II that the first term in fi1(n) is — {2(1+£2)}} /{ant}. Hence

b11(eo) _ (I—1)legt
an(e)) (20+1){12-32.52. .. (21—1)2}

On the other hand, when / is even, the first term in f;1(n) is —2/{aut}. Therefore, (11-37) holds for I
even as well as for 7 odd. _

Similarly we can find exact values of the other coefficients in p:1(n) and f11(n) for e=¢o. Thus we have
a criterion of the rapidity with which the series given in the tables converge in the neighborhood of e,.
This is illustrated in Table IV, where the exact values and the series values of some of the coefficients
are given for e=¢,. The figures in parentheses indicate the number of terms used in the series. Of
course the agreement becomes worse the larger /, partly because ey becomes larger and partly because
fewer terms of the series have been calculated. In fact, the functions for I>1 were not computed

(11-37)
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TaBLE IV. Coefficients at zero of au.

i € Coefficient Exact value Series value
1 /2 an 0.95493. - - 0.95491  (4)
A. 1.013212. .. 1.013210 (4)
bufan 0.5236- - - 05241  (4)
B, 2.026-: - 2.014 (3)
B, 3.06- - - 3.26 2)
2 7r [« 23] 076' L 077 (3)
A, 1.0639- - - 1.0637 (4)
bar/an 0.219- .. 0.220 (3)
B, 0 0.5 (3)
3 3r/2 as 0.63- - 0.71 4)
A,y —0.200 —0.195 (4)
bs1/as 0.133-- - 0.137 (3)
B, —0.07.-. 0.05 3)

primarily for evaluation at the zeros of their characteristic values, but rather as correction terms in
the neighborhood of the important first resonance (e=/2) for ¢>0. Here the convergence is entirely
satisfactory. Therefore, the coefficients for which it is important that the series should give accurate
values in the neighborhood of ¢ are those for which /=1. In judging these, it must be remembered
that the terms in f1:1() involving By and Bs, as compared with that in By, have numerical coefficients
1/10 and 1/280, respectively. Hence, for small ¢, the accuracy is not less than that of the series for
b11/ a1y, the first four terms of which show an error of only one part in one thousand.

Turning now to Eq. (11-13) for « for the case m = 1, we note that, if we put =z/(1— £?)}, we get for
2 the equation
d%*s

i +e2z]+az =0,

(1—22)[

which yields a solution, when a=0, of the same form as that previously obtained in 5. Hence we con-
clude, when [ is odd, that

[1(8) Jemeo = ( 1)“_1”22(2l+1){.12.32.52...(21_1)2} COS €of
11 e=e¢g=(—

(I+41) lee™ a1 (eo) (1_52)§’

and, when [ is even, that

. :(_1)([4),22(2“1)i12'32'52'"<2’—1)2} sin eof

(I+1) leg* (o) (1—g)¥
Using the value of a@;1(eo) specified by (11-36) these reduce to

Eun(f)]e=q,=(—1)“"”2E cos ek (11-38)
for 1 odd, and o (16
or [ odd, and .
[oe1(8) Je=- =(—1)“—2>/2—2~ S eof (11-39)
1 0 . (1—"22)""

for I even.
The method followed in this section does not succeed when m>1.



