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tentials. It follows from (34) and (19) (lower
sign) that solutions exist only for

O;I & —uP. (36)

Both branches of the curves up ——const. begin
with the value n~ ———up at the value $p= 8 and
with vertical tangent. They form together a loop
which contracts around the point G on Fig. 1

(ny =0, Pp =4/3) as up decreases from up = 1 to
Np =0, and for Np =0 there remains only the
branch I. In Fig. 1 the curves for up ———,

' and
Np =0 have been added.

It is now easy to discuss the behavior of the
.solution. Three intervals have to be distinguished:

(a) 0 & $p &4/3. The solution starts, with
Up

——0, on branch I I until, with decreasing po-
tentials, the value $p

——8 is reached. Then the
solution changes to branch I (no minimum) and
ends on the curve Up=0. The current has the
saturation value throughout.

(b) 4/3&gp(1. 886. The upper limit of this
interval is set by the maximum of 6 which occurs
for 0.&

———0.5. The solution begins, with Up=0,
on branch II, changes to branch I when the 8

curve is intersected for the first time, changes

back to branch I I when the 8 curve is met for the
second time, and finally becomes space-charge
limited.

(c) 1.886& Pp&3.771. In this interval the solu-
tion is on branch II throughout. The current is
saturated at first and becomes space-charge
limited as soon as the critical value (26) is
reached. All space-charge limited solutions Lin

cases (b) and (c)) end at the point G of Fig. 1,
i.e. , at gp=4/3 or j=EpP.

In Fig. 5 we have represented the potential
distribution in the case of a negative potential
Up. We have taken the value Np = 2 corresponding
to Up ———(3/4)Ep, and have chosen &p on the 8

curve; i.e. , (p=(4/3)21=1.886. Whenever, in the
intervals (a) and (b), the limiting case Pp=8 is
realized, the solution of branch I coincides with
the (stable) solution of branch II. This case,
therefore, corresponds to the case (dq/d$) p

=0 for
positive potentials, but the horizontal tangent is
now at the receiver plate.

The two solutions on. branch I I correspond to
the values 0.1= ——,

' and n& = —0.025, respectively.
Both potential distributions are represented in

Fig. 5, the unstable one by a broken line.
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The vector wave equation in prolate spheroidal coordinates &, g, @ is set up, the variables are
separated, and the characteristic values (eigenvalues) and characteristic functions (eigenfunc-
tions) of the resulting ordinary differential equations are obtained in series which converge
rapidly in the neighborhood of resonance for spheroids of eccentricity near to unity. The
coefficients of the two independent primitives in the linear combinations representing diverging
and converging waves at infinity are calculated. The zeros of certain of the characteristic values
are investigated.

' 'N a previous paper' both the free oscillations of a perfectly conducting prolate spheroid and the
~ ~ oscillations forced by a plane wave with the electric field parallel to the long axis of the spheroid
were discussed. The forced oscillations were treated by an approximate method valid only for very
eccentric spheroids. For the exact investigation of these oscillations the complete solutions of the
vector wave equation in prolate spheroidal coordinates are needed. The object of the present paper is

' L. Page and N. I.Adams, Jr. , Phys. Rev. 53, 819 (1938).This paper will be referred to as I and the present paper as I I.
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to obtain these solutions in the form of series which converge rapidly in the neighborhood of resonance.
In a following paper these so1utions will be applied to the problem of the antenna.

t. FIELD EQUATIONS

If the time factor is taken as e '"', where 7. is the time, the field equations for simple harmonic waves
of angular frequency & in a medium of permittivity K and permeability p, are

(II-1)

in Heaviside-Lorentz symmetrica1 units, leading to the wave equations

GJ KP (d KP
v X~XE= E, v Xv XH= H.

G2 G2
(II-2)

In the right-handed orthogonal prolate spheroidal coordinates P, i», p defined in I, either of these
vector wave equations yields the three scalar equations

8 1 —P BF„B i»' —1 BF» 82F) 1 8 2'+ =~2F),
~2 P2 gP g~ ~2 P2 g~ (1 gi) (~2 1) g@2 r»2 1»ling

82Fp O'F„B 1 —P»lF„B q' 1—"+—
1 —P ~n~4 (1—5')(n' —1) ~4'

8 1 BF) 1 82Fp 1 82Fp 8'+-
~i (1 —5')(~' —1) ~4 n' —1 ~P 1 5' ~n' —~n (1 —P)(&' —1)

~here

F»= i (n'- F)(1-5') t'*

H(

, Be
F,—= f(n' —8')(n' —1) f'*

H„

F» = ((1—P) (~—' —1)}'
Zip

(df 2'»=—(a»i)l =
c

f being the semi-interfocal distance, and X the wave-length.
Evidently the solutions are of the form

sin m@ sin mp cos mQ
F„=G„

cos ps/ cos 81/ —Sin 5$$

(II-3)

(II-4)

8 1 —P BG„B i»' —1 BG» PE2 BGp
G]— = e2G], (II-6)

Bi» r»' POP Bq q—' @Bi» (1 ——t2) (i»' —1) r»' 18$—
m BGp m' 8 1 —P BG„B i»' —1 BG»+ G —— +— = a2G„,

1 —5' ~s (1 —P)(n' —1)

8 mG» 1»»'G», 1»»'Gg 8 mG„ i»' P—
+ ~2 G4, . (I1-8)

8& (1—P) (r»' —1) i»' —1 Bg' 1 —g' »li»' »»i» (1—P') (r»' —1) (1 —$') (r»' —1)

(II-7)

where m is a positive integer, and G», G„, G& are functions of $ and r» only, satisfying the equations
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If we differentiate (II-6) with respect to $, (II-7) with respect to g, and combine the two equations so
obtained with (II-8), we get

(JG( BG„m m
+ = +

8$ Brl 1 —p g' —1

which is just the solenoidal condition.
Eliminating G~ from (II-6) and (II-7), we find

1 2& BG» BG„2q BG» BG„+ { SG»+1VG»] — + + + =0,
1 —P g' —1 1 —$' 8$ Bg v)' —1 Bq BP

2& BG„BG] 2g BG„BG(+ [SG„+KG„]— + + + =0,
1 —P g' —1 1 —P 8$ Bg g' —1 Bg Bf

where S and X are the operators

(I I-10)

(II-11)

8 m~= („2 1) — +,2(„~-1).
ag' n' —1

(II-12)

So, if we put G=u($)v(q), we are left with the two ordinary differential equations

Equations (I I-10) and (I I-11) admit two pairs of solutions in which the variables are separable. The
first pair is obtained by putting G~ ——&G, G„= —qG and the second pair by putting G~

——qG, Cx„= —$G.
In both cases G satisfies the equation

8 BG m' BG m'
(1 —$2)—— G —»~f~G+ (g~ ——1)—— G+»~q~G = 0.

8$ BP 1 —$' ~'g z

dQ m'—(1—$')—— u+nu+»'(1 —P)u=0, —1()&1, (II-13)

dv m—(q' —1)—— v —Q.v+»'(g' —1)v=0, 1&g& ~,—1
(II-14)

which differ only in the range of the independent variable.
Finally, after G» and G„have been obtained, G& may be determined from (II-9).
Evidently the method fails when m=O. In this case, however, F~, F„, F~ are not functions of

P, and (II-5) reduces to an equation in Fq alone in which the variables are separable. If we put
Fq= I(1—P)(g' ——1)}&u(()v(q), the differential equations satisfied by u and v are found to be just
(II-13) and (II-14) with m= 1.The functions F» and F„corresponding to this solution for Fq are both
zero since the field component proportional to F& is itself solenoidal. A second solution for the case
where m=0 is obtained by taking the curl of the field intensity corresponding to the first solution.

For a given m, solutions of (II-13) and (I I-14) exist only for a discrete set of values of the constant
of separation cx, corresponding to the various harmonics possible. In fact, we conclude from the
similarity of these differential equations to that for the associated Legendrian functions that 0. is a
function of two positive integral indices l and m such that m ~&l. The solutions of (II-13) and (II-14)
foragiven n&„we shall designate byu& ($) and v& (g). Evidentlyeachgroupoffunctionscorresponding
to a specified m constitutes an orthogonal set. If, then, we put

E~ sin mQ
-=="(k, n)

H~ cos mQ

jV sin m$ B~ cos mQ—= H(k, n) =c'(5, n)H„cos mQ II& —sin mQ
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with omission of the time factor, we have the following pairs of solutions, distinguished by single and
double accents: For m =0,

I-I&p =— (II-15)

C Ep
—0 )

(II-16)

for m&0

(II-17)

~f1
pii-(k) &i. (n)

] P ~2 P

(II-18)

2. SOLUTION OF THE EQUATION FOR u) {g)

The form of Eq. (II-13) for N~„(g) suggests a solution in the associated Legendrian functions Pi ($).
Hence we put

substitute in the differential equation, ' and equate to zero the coefficient of each separate power of e'
after getting rid of the factor 1 —t2 in the last term by means of the recurrence formula

where I'(x) —= (x+m)/(2x+1).
In this way we find the following formulas for the first four terms following l(l+1) in the series

for the characteristic value (eigenvalue) a~

I(3+1)+)n' —1

(2l —1)(2l+ 3)

H(/ —1)H(l) H(I+1)H(l+2)
2{2l—1) 2(2l+3)

' This is a much simpler and easier method of solution than that given in I.

(I I-19)

(I I-2D)



102 I. F. I G H I' A G I':

TABLF. I. Characteristic valtles (eigenvalues).

4 4 8 124
aII = 2 ——c ~ + c c'+ . = 2 —0.800,000'' —0.004, 571&4+0.000, 122c"—0.000,002c +

5 53.7 3 5'7 5'73 11

4 4 8 5420
n21= 6——e — ~'+ c'+ ~'+ ~ ~ = 6—0.571,429c' —0 003&887m'+0.000.014~'+0.000&001&'+ ~

7 3 7' 3 7' 11 34 7'11 ~ 13

8 152 115&568 34,094,936
0,31= 12——e'+ e' — c'+ e + . = 1 —0,533&333''+0 001&365''

3.5 34. 53. 11 37.55. 11.13 31o.5s. 113.13 —0.000, 118eo+0.000 002 as+
40 7064 462, 736

+41=20 — ~'+ e' — ~'+ ~ ~ =20 —0,519&481m'+0.001&190''—0.000,013c'+
7 ii 7'11' 13 7'11'13
20 1108 301,160

~51=30— e'+ e' — c'+ =30—0.512&821c'+0 000&889~' —0.000 003' + ~ ~ .
3 13 34 7 13' 3' 7 13'17

6 2 20 5554
0.22 =6——e — c'+ c' — c'+ ~ ~ ~ = 6—0.857, 143e' —0.001&944~'+0.000&036&'—0.000,001&'1 ~ ~ ~

7 3 ~ 7 3 ~ 7 11 34 77 11 13

2 2 4 62
A3 12 6 E + & + p + 12 0 666&667& 0 00 &245& +0 000&013& +0 000&000& +

3 3' 11 3" 11 13 3" 11'13

4m' —1 H (/ —1)II(l) II (l+ 1)II(/+2)

(2/ —1)(2l+3) (2/ —5) (2/ —1) ' (2l+3) '(2l+7)

&v EI(l —1)II(l) 4(4m' —1)' H(/ —3)«I(l —2)+
2(2/ —1) (2l —5)'(2l —1)4(2l+3)' 2(2/ —1) 2 4(2l —1)(2l—3)

II(l+1)H(l+2) 4(4m' —1)' a&„H(/+3) II(/+4)
+ +, (II-22)

2(2l+3) (2l —1)'(2l+3)4(2l+7)' 2(2/+3) 2 4(2l+3)(2l+5)

(I1-21)

k, =—(l+s) (l+s+1)—e LI'( l s —2) I'( ——l ——s —1)+I'(l+s —1)I'(/+s) ]—n

H(l+s) H(l+s+1)
Xs—

kg /kg+]

this equation, involving two continued fractions, is

where H(x) =—I'(x) I'( —x) = (x' —m')/(4x' —1).
» fact, we can obtain by this method an equation for the entire characteristic value n& . Putting

6 X 1

E X1—
1 —e'x &/1—

6 Xl
+

6 X31—
1 —e'x&/1—

(II-23)

However, the first five terms of 0.& are sufficient for most pur'poses, and they are more easily calcu-
lated from (II-19) to (II-22) than from (I I-23), the apparently simple form of which is deceptive.

We list in Table I characteristic values for m = 1 and l = 1, 2, 3, 4, 5, and for m = 2 and l = 2, 3.
When the characteristic functions in»&„(P) are expanded as a series in the associated Legendrian

functions J'& ($), the coe/Iicients are found to be much more complicated than when they are ex-

panded in a simple power series in s—= (1—P)I. So the latter expansion has been adopted. We have

to consider separately the cases l —nz even and l —m odd. In both cases it is found convenient to put

n& —l(l+1)
$2
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TABLE II. Characteristic functions (eigenfunctions).

where

00 p
+11($) 3! Q f'(p 1)A pg'p

p-1 (2p+1)!
CO p

p»(~) =3! 3 (—1)p ~2(p—1)A ]2p—1 ~

p-1 (2p+1)!

12 00 p
f„(g)= ——(1+]&)& Q (—1)p-1———g2(p —1)Bppp —3 ~

(2P+1)!

A1=—1,
5 2 677

A 2= P77, A3=1+ g4+ 0 ~ ~

4 32 52 3254 7211
Ag=—1+ c + ~ ~ A~—=1+ ~

5'11

B1—= 1,
747481 1858

B2=—1+ — ~' — &4+ B3=—1+ — e'+ ~ B4=—1+
5'7 34 54. 7 34 5~

where

" P(P+1)
u21($) =—(1—s2)& Z — e2(p 7)Aps2p 1

2! p=' (2p+3)!

P(P+1)
P21(n) =—(1+~)' ~ (—1)" ' ~'(p ')Apt'p ',

2! (2P+3)!

12
- » 5! - p(p+1)

f (.) =--——-+ ,'(p-7)B t2p —1

o'.1 3!] 2 2! p=' (2p+3)!

7 6
A1=—1, A2—= —-P27, A3=1+

4 7~. 11
e2+ ~ . . A4=1+ ~ ~

B1=1— 5 125 517
2+ &'+ . ~ B~—= 1 ——- &2+, B3=—1+

2 3 7 2 33 73 22 33 72

5 7! - P(P+1)(P+2)
N37(g) =S— ~2(p-1)A g2p+1

22. 3!p=l (2P+5) I

5 ~ 7! - P(p+1) (P+2)
P37(q) =t+ Z (—1)p-'— P(p-7)A p'p+7

(2p+5)!

where

f»(9) =
1 1 5 7! ~ p(p+1)(p+2)——-(1+~2)» —-+- ~ (—1)P-'-— ~2(p—1)BpQ p-7

QI37 3! f 22 3!p"1 (2p+5)!

1
A1=1+—e'P37,

2 5

166 1172
A2—= 1— f2+ e'+ ~ ~ A3=1—

3'5'11 3'5'13
98

e'+ ~ ~ A g =1+ ~ ~

3'52 13

41 4109 767
B1—= 1 — &2+- &4+ ~ ~ ~ B2=—1— e'+ ~ . B3—=1+3'5' 3'5'11 2 3'5'11

For l meven we put u4„($)—=s"s, getting

d's 2ns+1 dk dk'

(1 —s') + ——2(m+1)s—+(l—m)(i+m+1)s+4'(P4-+s')s=0
ds2 s ds ds

Assuming a solution s= P„c„s",the recurrence formula for the coefficients is

p(p j2m)c„{(p—l+m ——2)(p+l+m 1) —4'p4 }c„2+—4'c„4=0,

giving a series that starts with cp.

(II-24)
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TABLE II.—Continued.

where

7 9! " P(P+1)(P+2)(P+3)
(g=(1—s')& s— .2(p-1)A ps2y+1

2&.4I p 1 (2p+7) I

P(P+1)(P+2) (P+3)
P41(g) =(1+t')& t+ = Z (-1)y-'— ,2(p-1)A t2p+1

2'4! y ' (2p+7)!

12 1 1 95 35 9! " p(p+1)(p+2)(p+3)
f (~)=-——-+—B't + ~ (-1)" '- ~2(p—1)B t2p+1

A4$ 3! t 2.3 2'3.4! y= (2p+7) '

1 1446
A1=—1+—e'P41, A g

—= 1 —— e'+ ~ ~ ~ A- —= 1+ ~

2 7 7'11'13
241 253B'=1- c+''') BI=1 e + ~ ~ ~ 82=1+ ~

5 7 11 19 237~11

7 21 11! - p(p+1). (p+4)
us1($) = s —-A's3+- (y ')A, s'p+'

23.5I y 1 (2p+9) I

7 21 ~ 11! p(p+1) ~ ~ ~ (p+4)
p»(~) =t+-A't3+ — Z (—1)y-1 ,a(p-1)A t2p+3

2 2'5 I (2P+9)!

12 1
f. (.) = -—(1+t2)»—

, 31 (2P+9)!

1 105 105 ~ 11! p(p+1) ~ ~ (p+4)-+—B't + — 5 (—i)y-1 2(p-1)B t2p+1
22 24. 5'! y 1

where
1

A'—=1+ c2Pg1, A1—= 1—
2~ 7

47,321
e'+ &4+ A 2=—1—

3'13 3'7~ 133

142
62+' ' ~ A3=1+

33 13~

268 19

where

B'=—1— e'+ ~ -.
) B1—= 1 — — (2+ ~ ~

) B»—=1+
3'5 ~ 7 13 33 13

5 I p(p+1)
u 2(()=—2

2! p=' (2p+3)!

p(p+1)
p (~)=—& (—1)p ' 2(p-1)A yt2 p

2 I y 1 (2p+3) I

1 1 5! P(p+1)
f ( )=4(1+t')' —B'—— & (—1)" 1-

3! P 22-2! p=1 (2P+3)!

A1 =—1,
7

A2—= ——P22,
6

A3—=1+ ~ ~ ~ .

204 1 65 55
B'=—1+—~'+ - - e4+ ~ ~, B1—=1+—e' —— — - c4+ ~ ~ ~ Bg =—1+— g2+ y ~ ~

3 7 3'7' 3 7 32 7' 2-3'72
B =1+

For l —m odd we put u' (&) =&s"'Z, getting

d Z 2m+1 dZ dZ
(I —s') + ——2(m+2)s—+(l—m —1)(i+m+2)Z+e'(P'-+s')Z=0,

dS S dS ds

which gives, when we put Z=g„c„s",the recurrence formula

p(p+2m)c~ I(p l+—m 1)—(p+l+—m) —e'p'„Ic~ ~+a'c~ 4
——0,

representing a series that starts with co.
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TABLE II.—Conc/Need.

where

" p(p+1)(p+2)
m32(() =—(1—S')& Z ~2{@—&)g s&n

3! & ' (2p+5)!

p(p+1) (p+2)
p ( ) =—(1+t')' & (—1)" '- ~2 (y-l)g t21&

3! ~-& (2p+5)!

5 5 7! - p(p+1)(p+2)
f»(~) =- —B'---B" — — Z (—1)~-I— ,2(p-I)B Pp

3! t2 2 22 ~ 3!n=& (2p+ 5) !

28

AI =—1,

B' =—1+——~'+ e4+ ~ ~ ~

32, 5 35, P

A2= —-'p-2 A3—=1+ ~ ~ ~ .

1 103
B =1+—— — -e'- —&4+ ~ ~ ~

3'5 3~ ~ 5~ 11

1 3'T

B1—=1— + e e ~ B2—
233 2~365 ~ 11

$~+ 0 4 4 Bg 1+ ~ 0 ~

2~-3'11

The characteristic functions ni„($) obtained from (II-24) and (II-25) are listed in Table I I together
with the functions vi„(g), the arbitrary coefficient co in the tabulated functions ui (t) being taken as
unity.

3. SOLUTION OF THE EQUATION FOR v, (q)

Since we are interested primarily in conducting spheroids of eccentricity very close to unity
(antenna), the objective in solving Eq. (II-14) for vi (i1) is to obtain series solutions representing
diverging waves at g = ~ which converge rapidly in the neighborhood of resonance for q nearly equal
to unity.

By changing the independent variable from q to p = ~q the differential equation can be thrown into
such a form that the zero-order terms are satisfied by the wave functions

1 d
Si= ( 1)'P' ———&'".

pd

Therefore, a solution can be constructed in the form of a series of these functions„which meets the
first requirement stated above. Unfortunately, this series converges so slowly in the neighborhood of
resonance for q nearly equal to unity as to be quite useless for the antenna problem.

Another possibility is to construct two independent solutions in series of associated Legendrian
functions of the first and second kinds, respectively. The coeScients, however, turn out to be com-
plicated, and dificult to calculate in the second case, and there remains the problem of ending what
linear combination of the two independent primitives represents a diverging wave at infinity.

Finally, it was concluded that the most satisfactory method was that employed in I. First, we
obtain two independent primitives in the independent variable' t = (g' —1)& which goes —to zero as g
goes to unity, and then determine the coefficients of the desired linear combination by comparison
with the solution in p = ~t which represents a diverging wave at infinity. As in the case of the equation
for ui, ($) we have to consider separately the cases I —m even and I —m odd.

For I—m even we put vi (g}=1"y, getting,
2m+ 1 dg

(I ye) + —+ 2(m+1)~——(I—m) {I+my 1)y—.2(P,„—P)y=0.
dt' t dt df

The first primitive for small /, is the power series yi ——P„a„t"where

P(fr+2~)&.+ I (P I+m 2)(f +I+—rl I) —~'Pi }ri, 2+—~'~p —4=0.
' Note that t used in this paper is the square root of the t in I.

{II-26)
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A second primitive is obtained by putting

(1+F2)'*+1
p2=gp(!Og +(1+$ )~Ã

(1+l2)'*—1

where x satisfies the equation

d x 2'+ j. dx dx
(1+ l2) + —+2(m+2) l——(l —m —1)(i+m+ 2)x —~'(P„„—t') x = 2 — +—y, . (I I-27)

dt~ t Ct dt

For l m—odd we put v/, „(q)=r/t V, getting

d'V 2m+1 d Y dI'
(1+9) + +2(m+2)t —(l —m —1)(i+m+2) V—,&(P,„;—/2) V=o

dt2 t dt

The power series V}= P„(/,„/," supplies the erst primitive for small l, where

f(f'+2 ).+{V l+ —1)V'—+I+ ) 'O,-—»., +', =O,

and the second primitive is

V =-'V I
(1+/')r —1 (1+l2)"*

where X satls6es the equation

d2X 2m+7 dX dX
(1+l') + +2(m+1) l —(l —m) (i+m+1)X—"(P,.—/2)X

dt2 t dt
1) dV} ( m&

=2
{ l+—

» +{m+1+—»V . (II 29)
l j dl & l'j

To obtain the solution for large t for the case 1—m even we change the independent variable in

(II-26) to p=—cl and put
y

—
p
—(m+1}@(p)pip

getting
d'4 d% d'4 /' 1) d4 ( 1 m' —1)+»' —~-+=" +{ 2 ——

»

—+{ 1——
ds' ds ds' & sj ds ( s s' j

where 2'=—ip. The solution is of the form

(II-30)

4'= g c„s-}'
@=0

2P~P= {(P+l)(P—l —1)—"(P/-+1)»~n-~+~'(2P —3)(n-.—"{(0—2)' —m-'»~ 3.

After calculating the coe%cients c„we write the solution in the form

] even 06ci

( &2)n/2g l ts+n 1+f—P —
( &2)(m—1}/2g / m+n l——

for comparison with the primitives for t small, where

1 c(

n! (n+1)! (m+2)!
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For l m—odd we make the same change in independent variable in (II-28) and put

getting

y' —
p
—(m+zi +(p) eip

dz%' der d Q ( 3(dli ( 3 m —4(s' +2s'- ——u/„, 4=»' + I
2 ——

} =+} 1 ———
ds' ds ds' E s] ds & & s"-

(I I-31)

The recurrence formula for the coeAicients in the solution

1s
p=o

2Pcy I (P+l)(P / 1)»(P(&&+1)}cy i +»(2p 1)cy»» t (p1)m}cp
and Y may be written in the form

f even odd

Ir — p (»2) n/2( t—fll+n —2+z p ( z) (/ —()/zC t
—~/+~ —0

n

where C„has the same significance as before.
In calculating the coeScients ap of y~ or Y~ the manner in which successive coe%cients become of

higher and higher order in ~' provides a perfect check on the arithmetic as well as on the previous
calculation of 0;g . The same is true of the calculation of the coefficients cp in the solution for large t;
although here we have an additional check in the vanishing of those C„'s corresponding to negative
powers of t in yj. In every case at least one such vanishing coeScient was calculated as an arithmetical
check. The arbitrary coefficient in the solution for large t was chosen in each instance so as to make
v/„(z/) equal to (1/p) e'& at infinity, whereas that in the solution for sms. ll t was determined by making
ao equal to unity.

We shall designate by p(„(z/) and (j(~(z/) the two independent solutions of the equation for vi (r/) for
small t corresponding, in the case l —I even, to y& and y2, respectively, and, in the case l —m odd, to
F( and Yz, respectively. The function p/, „(z/) remains finite at t =0, while (/(, (z/) becomes infinite. For
all values of the indices the latter has the form

(I+t')&+1
(// ("/) 2P(. ( /) !og, +f(-(e)(1+t')i —1

Hence, in tabulating these functions it is sufficient to give p/, (r/) and f( (z/) In Table .II the three
functions zz/„(g), /t/( (r/), and f/~(z/) are given for those values of the indices for which the characteristic
values are listed in Table I. They are expressed in such a form that the first term in each of the
series A p or B„which has been calculated is unity.

Finally we designate the function vb„(z/) representing the diverging wave (1/p)e" at infinity by
r(,„(z/) and write

(z) i+1 (/+m)!»'
«-(~) = «-f (. (n)

2 4 6 2m (2l+1)I1'3'5' (2/ —1)'}
(2l+1)I1'3'5' (2l —1)'}+ ( —1)'"+'z b(„,(/(„, (r/) . (I I-32)

(l —m)!»'+'

The coefficients u& and 0& are listed in Table I I I. Evidently the function representing the converging
wave (1/p)e '& at infinity is just the complex conjugate of r. (z/).

It will be observed that, for m= 1, the equation

(zllb(1»»/i//(/+ 1)



i08 LE I GH PAGE

holds for all five cases. This relation provides a valuable check on the arithmetical computations.
Also, for m =2, we have a check in the relation

a(pbip = 1/8',

although here each coefficient was calculated by two independent methods to preclude the possibility
of arithmetical error.

4. ZEROS OF CERTAIN CHARACTERISTIC VALUES (EIGENVALUES)

The zeros of the coefficients b&& are very important in the applications of the theory to the antenna
problem. The series for b~~ and for the characteristic value a~~ have been carried far enough to show
that they have a common zero p = pr/2 accurate to five significant figures. To a lesser degree of accuracy
the given series indicates that b2~ and o.2I have a common zero &=m and b3~ and 0.3~ a common zero
p =3pr/2. We shall now prove rigorously that b&& and n&& have a common zero and shall find its exact
value.

If we make nz = 1 in Eq. (II-14) for s and put v =s/(q' —1)~, the resulting equation for s is

d28
(q' —1) +p's ns = 0. —

dn'

If pp is a zero of n, then, the complete solution of (II-14) for this value of the parameter is

A 8
v = exp (ppprt)+ exp (—ppprt),(n'-1)' (n' —1)'*

(II-33)

and the solution representing a diverging wave of amplitude 1/p at infinity, where p =—p(ptp —1)&, is

v(i(g) = exp (ippg),
t(«)

(II-34)

exact for all values of pt This fu. nction, therefore, must be identical with the function rii(rt) given by
(I I-32) for p = pp, for all values of the index l. Consequently the coefficient of the logarithmic term in

g&i(pt) must vanish for p=pp, that is,

bii(«) =0,

proving that 0.~~ and b~~ have a common zero.
Furthermore, if we replace it by (1+t')& in (II-34) and use the power series expansion for the

exponential factor, we find, on separating real and imaginary parts,

V[i(it) = COS pp —pt Sin pp+ pt {Sill Pp Pp COS «}+
cot

, 1 . it i t3
+i(1+t')l —sin Pp ———{slil Pp Pp cos Pp} 1— {(3 Pp') sin Pp 3Pp cos Pp}+ . (II-35)

cot 2 eo 8 eo

Now the function p~i(pt) contains no term in negative powers of t. Therefore, comparing with (II-32),
we find that when l is odd, cos pp ——0 and consequently pp is equal to (n+-', )pr, whereas, when l is even,
sin t p =0 and consequently 6p = 6Ã. The value of the integer n is easily ascertained from the series for
the characteristic values given in Table I. We find, for l odd or even, that pp= 1pr/2.

When l is odd the part of r~i(it) containing p~i(pt) is real, and the first term in the power series for
this function is t Hence, compa. ring (II-32) with (II-35), we find that

(2l+1){1'3'5'~ (2l —1)'}
«i(pp) =

(l+1)!pp'
(II-36)
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TABLE III. Coefficients of diverging vrave functions.

1 187 26 021
c1&= 1— c'+ — ~' — E'+ ~ ~ ~ = 1 —0+020 0006'+0.000' 763~' —0.000)0266'+ ~ ~ ~

2 5' 23 ~ 54 ~ 7' 2'3'56 ~ 7'

19 2609 32,593
~4+— ~'+ ~ ~ = 1 —0.380,000c~—0.010,649&4+0.000, 164~6+ ~

2 5' 23 54 7' 24 3'5~. 7-'

3 389
a21 = 1 — — &2+— ~4+ ~ ~ ~ = 1 —0.030,612~2+0.000,750&4+

2 7' 2'3'74

19 1751
b21=1— — -e —— — e'+ ~ =1—0 064 626~ —0 003 376' + ~ ~ ~ .

2 3 7' 2'3'7'
23 113,549

Cgi = 1— c4+ ~ ~ ~ = 1 —0.017 037&'—0.000 257e4+ ~ ~-
2 ~ 3' 52 23 ~ 3' 5"11~

37 42,233
1~31 =1— ~2 g4+ o ~ ~ 1 0 Q27 4Q7q2 0 QQQ 096g4+ o ~ ~ ~

2 3'52 2'-36 54 11~

127 181
a4I = 1— (~+ ~ ~ = 1 —0.010 710~2+ - - ~ b41 = 1— (21 - = 1 —0.015,264(2+ ~

2 72 ~ 118 2 72 ~ 11~

Cgi = 1 —— Q 007 34262+ &21 . ~ ~ = 1 —0.009 752m~+ ~ ~ ~

2 33 132 2 33-132

n22 = 1 — — @2+ e41~ ~ ~ = 1 —0.010,204m'+ 0.000,233&41 ~ ~ ~

2 7' 2'3~ ~ 74

53 14,381
b2. = 1 — 2+- &4+ ~ ~ ~ = 1—0.180,272&~+0.027, 730~'+ ~ ~ - .

2 ~ 3 7' 2'3'74

1 223
a32= 1 — 8+ =- &4+ ~ ~ ~ = 1—0.018,5198+0.000,316e41 ~ ~

2 3 2 3 ~ 11

bag = 1— e'+ -e4+ ~ ~ ~ = 1-0.070,370~i+0.001,673&4+ ~ ~ .
2 33 ~ 5 2'36 5 11~

When l is even, the part of rii(g) containing pii(q) is imaginary, and the first term in the series for this
function is (1+i ) ~t. Therefore, comparing again with (II-35), we find that (II-36) holds for I even as
well as l odd.

When I is odd, it is evident from Table II that the first term in fii(q) is —{2(1+5')&}/ {cxiit }.Hence

(II-37)

On the other hand, when I is even, the first term in fir(g) is —2/{n&qt}. Therefore, (II-37) holds for I
even as well as for l odd.

Similarly we can find exact values of the other coefficients in pii(g) and fir(s) for e = eo. Thus we have
a criterion of the rapidity with which the series given in the tables converge in the neighborhood of ~0.

This is illustrated in Table IV, where the exact values and the series values of some of the coefficients
are given for &=co. The figures in parentheses indicate the number of terms used in the series. Of
course the agreement becomes worse the larger I, partly because eo becomes larger and partly because
fewer terms of the series have been calculated, In fact, the functions for /&1 were not computed
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TABLE IV, Coefficients at zero of n/1.

ep

m/2

Coef5cient

+ll

b 11/~11
B2
B~

Exact value

0 95493
1.013212
0.5236 ' ~ ~

026 I p ~

3.06 ~ ~

Series value

0.95491 (4)
1.013210 (4)
0.5241 (4)
2.014 (3)
3 26 (2)

3m-/2

&21

b 21/21
B1

+31
A1

b31/a;I
B1

0.76 ~ ~

1.0639
0.219 ' ~ ~

0

0 63o ~ ~

—0.200
0.133—0.07

0.77
1.0637
0.220
0.5

0.71—0.195
0.137
0.05

(3)
(4)
(3)
(3)

(4)
(4)
(3)
(3)

primarily for evaluation at the zeros of their characteristic values, but rather as correction terms in
the neighborhood of the important first resonance (p = pr/2) for t )0. Here the convergence is entirely
satisfactory. Therefore, the coefficients for which it is important that the series should give accurate
values in the neighborhood of eo are those for which /=1. In judging these, it must be remembered
that the terms in fii(q) involving Bp and Bp, as compared with that in BI, have nunierical coe/IIcients
1/10 a.nd 1/280, respectively. Hence, for small l, the accuracy is not less than that of the series for
b»/aii, the first four terms of which show an error of only one part in one thousand

Turning now to Eq. (I I-13) for u for the case m = 1, we note that, if we put u = s/(1 —&') &, we get for
s the equation

d s
(1 —P) +p's +us = 0,

d(2

which yields a solution, when n =0, of the same form as that previously obtained in g. Hence we con-
clude, when l is odd, that

2(2l+1){1'3' 5' (2/ —1)'I cos ppf
{III(k)l = o=(—1)" ""

(/+1)!pp'+'a I I(pp) (1—&') '*

and, when / is even, that

2(2l+1) {1'3' 5' (2/ —1)'} sin ppf
La (&)3 = o=(—1)" ""

(/+1)!ppI+IaII(pp) (1—P)'

Using the value of aII(pp) specified by (II-36) these reduce to

for l odd, and

2 cos pp$
L&II(t) 3 = o = (—1)" ""—

po (1 —5')'

2 SII1 pp$

L«I(k)] =.p=( —1)" ""—
pp (1 —P)l

(I I-38)

(I1-39)

for l even.
The method followed in this section does not succeed when m) 1.


