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v 2+D 12L,„
(28)

Since the mesotron momenta to be considered
in this case are very high, v can be replaced by vp.

Now, BS/v02vrD is approximately equal to 1.
Therefore

a ((n./12K, „)pl. (29)

It can be seen from (29) that 0 will still remain
smaller than 1 even for p = (12K,„/~)', that is, for
mesotron momenta as high as 1.5X10"ev/c.

It will be sufficient to remember that the fre-
quency of the mesotron momentum in the
differential mesotron spectrum d'ecreases as

p ~(y) 2) to make clear that the shower effect of
the collision electrons, when averaged adequately
over the mesotron spectrum, adds a very small
contribution only to the frequency of discharges
in the counter tube (C).

and o is smaller than a few percent. The factor 0.

increases with increasing p. For p)&1/0, ', the
integral

f
@m'

JE~ I 2

hence,

G. ALTITUDE EFFECT

Concerning v, the only terms which in (20) or
(26) depend upon the altitude, that is, upon the
density of air, are 8, 8,„,and 8;„.The variation
of 8;n, which is anyway very small, can be
neglected. The coefficient 8 is directly pro-
portional to the density of air, and 0, depends
upon this density only through the coefficient k.
Hut, as can be seen from Figs. 18 or 2, 8,„,„
depends, at least for small distances D, very
little upon k. For example, for E1=4 Mev and
D=2 m, 8,„would increase from 0.40 at sea
level (k=0.25), to 0.45 only at the top of the
atmosphere (k=0). Therefore, in first approxi-
mation, one can admit that v is proportional. to
the density of air or to the atmospheric pressure.
On the other hand, the effect of the altitude on
the frequency n of discharges [see (21)] in the
counter tube (C) follows, in the general case, the
combined eff'ects of: (a) the altitude increase of
the intensity of the mesotron radiation, (b) the
altitude dependence of the mesotron spectrum
and, (c) the decrease of v which, as has been seen

above, is roughly proportional to the atmospheric
pressure.
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The solution of both the scalar and vector wave equations in regions which are bounded by
irregular surfaces which have non-uniform physical properties has been reduced to the solution
of a secular equation. The secular determinant is Hermitian. The solution to the secular
equation has been expressed in a form suitable for obtaining its value to any approximation.
Similar results are given for the corresponding eigenfunctions. Extension of these results to
the problem of scattering and to the situation where the bounding surfaces move is indicated.
The description of a source located in such a region is also discussed.

I. INTRODUCTION

HE solution to many physical problems can
be reduced to the solution of a system of

partial differential equations with prescribed
boundary conditions. In the past, exact solutions
were limited to those cases in which the boundary
conditions were "simple" and were satisfied on
"simple" surfaces. "Simple" boundary conditions

correspond to uniform physical properties of the
surface involved. "Simple" surfaces are coordi-
nate surfaces of coordinate systems in which the
partial differential equations will separate. As a
result, a great many physical problems of interest
have not been treated theoretically.

This paper will discuss solutions of the scalar
and vector wav& equations satisfying non-simple
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boundary conditions on non-simple surfaces. The
scalar wave equation has been investigated previ-
ously by means of a perturbation technique in
which results were sought for conditions in which
the variation from simple boundaries and bound-
ary conditions were small. First-order corrections
to the unperturbed eigenvalue have been found

by Froelich, ' Brillouin, ' and Cabrera. ' First-order
corrections to the wave functions, and second-
order corrections to the eigenvalue in some cases,
have been given in I.4 Results have been given in

the latter both for the case of discrete and con-
tinuous eigenvalues. Applications of I have been
made to the acoustics of irregularly-shaped rooms
yielding good agreement with experiment. '

The methods used here are not a continuation
or extension of those used in I. Rather, a new
method based on the use of Green's functions is
employed. Formulae are given permitting the
calculation not only of improved first-order
results, but also of all the higher orders. The
problem of discrete eigenvalues is reduced to the
solution of a secular determinant.

The scalar and vector wave equations can be
used to describe phenomena occurring in the
fields of acoustics, elasticity, and electromagnetic
theory. For example, our results can be used to
treat the acoustics of irregularly-shaped rooms,
scattering from irregularly-shaped obj ects, propa-
gation down irregularly-shaped pipes. Moreover,
simple boundary conditions need not be obeyed.
For example, the walls of an irregularly-shaped
room might be absorbing.

The same technique can be applied to the
determination of source functions satisfying cer-
tain prescribed boundary conditions. These func-
tions can be used in the solution of inhomogeneous
wave equations. Application can be made, for
example, to the calculation of the sound field due
to a source placed in an irregularly-shaped room.

way although the general basic idea remains the
same. In all cases, the equation is to be satisfied
in a region R bounded by a surface S. The
boundary conditions are to be satisfied on S.

The scalar wave equation to be considered is:

V'pi 0'p = O. (2 1)

The boundary conditions satisfied by p can be
stated generally as By/Bn= Fy where F is a
function which may vary on surface S. In
acoustics, I'" is related to the acoustic impedance.
The outwardly drawn normal to the surface is
designated by n. We distinguish two cases:

B.C.I By/Bm = Fy I" small,
(2.2)

B.C.II y = (1/F) (By/Bn) F large.

Simple boundary conditions are limiting cases of
(2.2). They are:

B.C.IA

B.C.IIA

By/Bn =0,

y=O.
(2.3)

A general vector wave equation occurs in the
theory of elasticity and may be written in the
following form:

n grad div s+pV's+ K's = 0, (2.4)

where n and P are constants of the material. The
vector s can always be split into two vectors A

and 8 such that div A=O, curl B=O. In the
latter case, a scalar potential can be defined and
the vector equation reduced to a scalar one. In
the first case, the vector equation can be written

curl curl A —O'A=O (2.5)

where k2 = K'2/p. This equation is also satisfied by
the vector potential of the electromagnetic field.
The boundary conditions satisfied by A can be
stated generally as

II. STATEMENT OF PROBLEM (nXA) =(nXcurl A) g (2.6)

The equations to be discussed can be grouped
according to type of boundary condition. The
methods used in their solution vary in the same

' H. Froelich, Phys. Rev. 54, 945 (1938).' L. Brillouin, Cornptes rendus 204, 1863 (1937).
3 N. Cabrera, Coinptes rendus 207, 1175 (1938).
4 H. Feshbach and A. M. Clogston, Phys. Rev. 59, 189

(1941).This paper will be referred to as I.
~ Bolt, Feshbach, and Clogston, J. Acous. Soc. Am, g4,

65 (1942).

where g is a dyadic. Two cases can again be
distinguished

B.C.III (nXA)

=(nXcurl A) g $ small,
(2.7)

B.C.IV (nXcurl A)

=(nXA) ( ( small,
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where (=(g) ' and we have assumed that the
determinant of the dyadic g does not vanish. In
electromagnetic theory g is related to the dyadic
impedance. The simple boundary conditions are

B.C.I I IA

B.C.IVA

(11XA) =0,

(n Xcurl A) = 0.
(2 I})

Case III can be reduced to case IV and vice
versa. Since div A= 0, a vector D can be defined
satisfying the relation A = curl D. The wave
equation obeyed by D is the same as that for A.
Boundary conditions III 'become (nXcurl D)
=k'(n XD) g. This is in the form given by
boundary condition IV.

All these cases will be considered separately for
both the discrete and continuous eigenvalue
problems. The general technique to be used
consists of reducing equations (2.1) and (2.5) to
their corresponding integral equations by means
of a Green's function. This has the advantage of
introducing the boundary condition directly into
the equation to be solved rather than its usual use
as an auxiliary condition imposed on the solution.
From these integral equations approximate
formulae can be immediately derived. Solutions
of the equations will then be derived by the
method of successive approximations, and by ex-
pansion of the solution in eigenfunctions. The
latter method leads to a secular equation.

Boundary condition I will be discussed in
detail. The procedure to be used in the other
cases will be outlined. Only specific differences
from the treatment for boundary condition I will

be noted. General remarks, unless otherwise
noted, will be valid throughout.

IIL BOUNDARY CONDITION I 1}}}ij}n=F}}

The reduction of Eq. (2.1) to its equivalent
integral equation is made possible by the use of a
Green's function satisfying the inhomogeneous
equation

&}'Gg(x, $)+k'Gg(x, $) =5(x —$), (3.1)

where x represents the observation point, ] the
source point. i}(x—f) is the Dirac 6 function. The
subscript k is used to show that G~ is the Green's
function corresponding to the wave number k.

Gl-„must satisfy Eq. (3.1) throughout a region
Ro which includes the region R. Moreover, it can

satisfy any convenient boundary condition on the
surface So of Ro. Usually, So is a simple surface
and the boundary conditions simple ones.

Combining (2.1) and (3.1) we obtain:

~tt (k)—G~(x &)- dS} (3 2)

where the integration is performed over surface S.
Introducing boundary condition I we have

The result for the simple boundary condition IA
follows immediately.

An important special case occurs when S is a
simple surface. Choosing a GA, satisfying bound-
ary condition IA on S we obtain:

y(x) = —)I y(&) F(()G&(x, $)dS}. (3.4)

Equation (3.3) satisfies Eq. (3.1) as can be seen
immediately by substitution of (3.3) in (2.1).
Thus we can conclude that this integral equation
is equivalent to the original differential equa-
tion and automatically includes the boundary
condition.

Equation (3.3) states that: it is possible to pre-
dict the required wave function in the interior of
R by means of a proper distribution of sources on

the surface S. This is essentially a statement of
Huygens' principle differing from the usual
formulation in the use of a general Green's func-
tion and the direct introduction of the boundary
conditions. Huygens' principle has been previ-
ously used in discussing scattering and diffraction
problems. '

Equations (3.3) and (3.4) can be reduced to a
"true" integral equation involving only values of
the unknown function on the surface S by
noting that they can be used to predict the value

6 See, for example: H. Lamb, Hydrodynamics (Cambridge
University Press, 1932), p. 517; A. Sommerfeld, Di e
Differential und Integralgluchungen der Mechani k und
Physik (Friedr. Vieweg. und Sohn, Braunschweig, 1935),
Vol. 2, p. 853.

BGp(x, $)
v (x)= "t (f)

Bs~

F(k)Ga—(x, k) dS} (3 3)
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of y on the surface. The resulting equation has
a symmetric kernel and will involve one di-
mension less than the original integral equation.
This procedure is used in discussions of potential
theory. ' It is particularly advantageous in those
cases for which the boundary perturbation has a
simple geometry, for then the equation may often
be solved in closed form. It is also useful in two-
dimensional problems since the resulting integral
equation will be in one dimension and therefore
susceptible to numerical techniques. Finally, if
the perturbation is small compared to the wave-
length, the kernel can be replaced by the simpler
kernel of potential theory and the problem re-
duced to a potential problem. Once the value of
q on S is known, the value of q in the interior can
be immediately calculated from (3.3).

This method is complicated in the case of (3.3)
by the fact that y, being zero outside of R is
discontinuous at the surface S. (Cf. Appendix I.)
We shall, therefore, specify the value of y at a
point on the surface by approaching the point
from the interior of R. In the case of (3.4), the
solution q has a discontinuity in slope at S.These
discontinuities limit the rapidity of convergence
of an expansion of y in orthonormaI functions.

It is very useful to separate the integral in

Eq. (3.3) into two parts, one of which is known.
This is particularly true if the known part is a
good approximation to the unknown y.

Suppose the known part P is a member of an
orthonormal set of functions 0 satisfying (2.1) in
a region Rp including region R and satisfying con-
venient boundary conditions on Sp. GI, can then
be expressed by means of an expansion in set 0.
The term containing f can then be separated
from the remaining terms of the expansion and its
coefficient adjusted to one by means of a proper
choice of normalization condition. Equation (3.3)
becomes

I

q(x) =f„(x)+)~ q($)

that the term involving f„in the surface integral
is to be omitted. The normalization condition is

I yg„d v=1. (3.6)

This is stated correctly only for the case of dis-
crete eigenvalues. It can be extended to continu-
ous eigenvalues by integrating the integral in
(3.6) over a small volume element in wave
number space corresponding to the wave numbers
associated with P„.

A second method employs the fact that (3.2) is
satisfied by any solution of the wave equation
and therefore by P . We must note, however, that
(3.2) yields f„olny inside R and yields zero
outside R, Let us call this discontinuous function
O' . We now find that

BGp(x, f)
y(x) =e„(x)+ I [q(&) —p. (&)]

Bs~

~4'
O'=Z '+ ~' q f dS —I f—„yd—V. (3.8)

Bn Bn

Introducing boundary condition I we find:

—Gg(x, &) F($)y($) ——dS). (3.7)
Bs~

Forms (3.5) and (3.7) yield exactly the same
values for p within region R. However, they
behave differently outside of R leading to a
different analytical behavior at S. Expansions of

in orthonormal functions will have different
rates of convergence depending on whether (3.5)
or (3.7) is used.

Our attention, so far, has been focused on the
wave function p. However, the eigenvalue k' is of
equal importance since it is needed for the
specification of GI, . Suppose the eigenvalue asso-
ciated with P is K„.Using Green's theorem, it
can be shown that

BGI,(x, &)x —F(,$)GI,(x, f) dSt, (3.5)
8Ãg

where the prime on the integral sign indicates

7 O. D. Kellogg, Foundations of I otentia/ Theory (Fred-
erick Unger Publishing Company, New York, 1929),p. 286.

A similar formula can be derived for the case of
the continuous spectrum by performing a second
integration in wave number space as described
for formula (3.6).
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term in the summation andOur problem has now been reduced to the
solution of integral equation (3.3) which im-

plicitly contains the boundary condition to be
satisfied. Approximate formulae can be derived
at once. If &ping„, then from (3.5)

Ag„= )t fi] —Ff„)dS.
&an ) (3 14)

Expansion (3.13) can be introduced into (3.9) to
yield a second approximation for the eigenvalue:

p(x) |l'„(x)+ t P„(&)
Ak'=E '+xi /X +g' (3.15)E.' —E,aGi, (x, $) —Ii($)Gi„.(x, t) dg&. (3.10a) where

Bn~
(3.16)P ,P.d U.

RFrom (3.7), one finds

p(x) 0„(x)—"Gi,(x, &)

Formulae equivalent to (3.13) and (3.15) have
been given previously in I. They have been
applied to the acoustics of trapezoidally shaped
rooms and agree with experiment within the
range of their validity.

The convergence of the series for p given by
(3.13) is fairly good, the tth term behaving
asymptotically as 1/EP. This is sufficient to
permit its introduction into (3.5) or (3.7) to yield
a next approximation for the wave function. The
resulting series will behave asymptotically as
1/X, and could not be used to find either the next
approximation to the eigenfunction y or eigen-
value k'.

One method of improving convergence would
be to find a function which converges asymptoti-
cally as 1/XP and subtract it from (3.13). The
function p satisfying

ak. (k)
X &($)f.($) — der. (3.10b)

Bng

Formulae (3.10a) and (3.10b) are equivalent as
has been pointed out above. The eigenvalue
becomes:

iWk'=&.'+ P.)
—&P. ~d&. (3.11)

E an

g(x) = — Go(x, $)

ak-(3)
X F($)P.($) — d&~ (3.17)

Bng

This formula has been given previously. The
eigenvalue can be found to a second approxima-
tion by using the first approximation results for
the wave function.

The use of these results depends upon our
knowledge of GI„.. The latter is sometimes known
in closed form, but then, the integrations are
often unmanageable. In such case, it is useful to
expand GI, in a series in set 0 as follows:

0i(x)4 (k)
Gi, x, &

=
k' ICi2—(3.12)

, ~ -4 (x)
q(x) +.(x)+Q'

E„'—E,'
(3.13)

where the prime indicates omission of the n=t

This expansion will now be introduced into
(3.10b) for this yields the more rapidly con-
verging result.

is of this type. On substitution of (3.12) into
(3.17) one finds an expansion of the (3.13) type
with k replaced by 0. p is the solution of Laplace's
equation for region R, with a source distribution
Fig„(ap„/an) yean .ofte—n be calculated in

closed form especially for two-dimensional prob-
lems. If this is so, the next approximation for q

can be found by introducing the amended (3.13)
for @„in (3.7). Successive approximations could
be found by continuing this procedure.

These difhculties do not appear when S is a
simple surface. It is possible to find the solution
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Ft,F,.+2"
(O' —K(') (k' —K, ')

F„F,„Frn
+ "' —4 ~+ (3.18)

(O' —K ') (k' —K ') (O' —K ')

(F~ )'
k'=K„'+F„„+Q'

k2 +2

+P/I Fts Fsn Ftn

(k' —K, ') (k' —K, ')

Fts Fsr Frn Ftn+E"' —+ (3.19)
(k' —Ka') (k' —K ') (k' —Kt')

where

Ft, JQ, FP——„d5. (3.20)

The primes indicate omission of the nth term in

the summation over each index. It will be noted
that the unknown k appears in these results so
that (3.18) is really an equation which must be
solved for k. It is, however, in a form which per-
mits the evaluation of k' by means of successive
approximations leading to a continued fraction
solution for k' as compared to the usual power
series. Its chief advantage over the latter lies in a
considerably simplified formula. Moreover, it is
interesting to note that in acoustics F is a func-
tion of k, and so it would serve no useful purpose
to eliminate the explicit appearance of k on the
right-hand side of (3.18).

We shall now attempt a solution of the more
general case of boundary condition I ~ It is pos-
sible to write down general solutions of (3.5) or
(3.7) in terms of iterated kernels by means of the
method of successive approximations. As a rule,
the evaluation of the multiple integrals involved
in closed form, i.e. , not by expansion techniques,
is possible only by numerical methods.

Another method which suggests itself would

A short note giving similar results for secular perturba-
tion theory is in preparation.

of the subsequent integral equation by means of
the method of successive substitutions. This
yields:

Ftn
v =4'-+2'- 4~

O2 —Et2

involve the substitution of a general expansion of
. y in orthonormal functions lt „of set 0 on both
sides of (3.3). The resulting linear equations for
the unknown coefficients would yield a secular
determinant. However, in this case this procedure
is not valid since the y(x) occurring on the left-
hand side of (3.3) is discontinuous at S. An ex-
pansion of y in terms of set 0 would therefore
have poor convergence. It coulcl not be substi-
tuted in the right side of (3.3) since the expansion
would not converge to the correct value at the
surface S. This invalidates the above procedure
for the general case.

However, this difficulty does not occur when S
is a simple surface. This yields the secular
equation:

i
F,„8,„(k' —K„')

i
=—0. (3.21.)

The resulting secular equation is:

)A,„—N, „(k'—K ')
)
=0. (3.23)

From the equation:

A„t—Atn
N„=—tn

E„2—E,2
(3.24)

it follows that the secular determinant is
Hermitian. Secondly, good convergence can be
expected since the values of the non-diagonal
elements decrease as their distance from a
diagonal element increases.

A solution of this equation is given by formula
(3.19) with associated wave function (3.18).

It is also possible to derive a secular equation
for the more general case boundary condition I.
Two general requirements should be noted. First,
the secular determinant should be Hermitian.
Secondly, its convergence should be sufficient to
yield a well-converging expansion for q, the tth
term decreasing at least as strongly as 1/Kt2.

We shall expand y in terms of the non-
orthogonal set {O'„I. Each member of this
member of this set is discontinuous so that it is no
longer necessary for the expansions to represent
discontinuous functions. Note that this set is
complete in region R.

Let q =P& a&4&. Equation (3.3) yields

P a,[A,„X,„(k'—K„')]—=0. (3.22)
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Equation (3.22) can be solved by the method
of successive approximations for the coeAicients
a& yielding:

S gt +1I

+ P W.,W„,.W, ,O, + (3.25)

In many cases, a second or higher approxima-
tion will be needed. The formulae developed
above can be used if all the summations are
replaced by integrations over the continuous
spectrum. The function P„will satisfy the
normalization condition characteristic of continu-
ous spectrum theory:

where
A „i—N„,(k' —E,'-')

W„,=—
A gi

—N„(k' —Z, ')
(3.26)

ff P d V=5(n n'—)

The corresponding eigenvalue can be obtained
from (3.9).

1|2 + 2

A +Q W iA( + Q W„.W(A„,+
+ —.(3.27)

N +Q W iN( + Q W„.,W,.(N, „+
t QIZ S gt +II

The rapid convergence previously demanded is
exhibited by series (3.25). All the terms involved
in these formulae involve only surface integrals
except the normalization integrals X . These
formulae reduce in first approximation to those
given by (3.13) and (3.15).

The results given above apply to those situa-
tions for which the eigenvalues are discrete. A
great many problems, e.g. , scattering, require the
construction of a theory on which the eigenvalues
have a continuous spectrum. The above theory
can, with suitable modification, be applied to this
case. Integral equation (3.3) applies to the con-
tinuous spectrum case as well as to the discrete
spectrum. However, in view of the usual bound-
ary condition of incident plus outgoing scattered
waves, forms (3.5) and (3.7) are more convenient.

The first approximation (3.10) can be used
directly. The usefulness of this approximation
depends upon the proper choice of the Green's
function and the closeness of P to the solution
q. No general rules can be made as to the latter
since it depends mostly on physical intuition.
However, as to the former, it can be said that Gk

should be as close as possible to the Green's
function for region R. This applies particularly
over the region where the perturbation is most
important. If the G& chosen were actually the
Green's function for region R, the first approxi-
mation would yield exact results.

The integrations over the continuous spectrum
must be carried out in such a manner as to yield a
solution satisfying the boundary conditions men-
tioned above. This usually requires the use of
contour integrals in the complex plane for one of
the wave numbers.

1 8Gg(x, $) —Gi, (x, $) dS). (4.1)X
.F(P) Bnr.

The solution of this equation will be a function
which has a discontinuous value at surface S.
In the special case boundary condition IIA, the
solu'tion is discontinuous in slope at S.

Formulae corresponding to (3.5), (3.7), (3.9)
can be derived for this case. They are

1 BGg, (x, g) —Gi„.(x, $) dS), (4.2)X
F($) Bn)

ap(()
x — —p ($)

F($) Bnt

IV. BOUNDARY CONDITION II /=1/E(lip/Bn)

As in the case of boundary condition I, this
problem can be reduced to the integral equation:

~~(&)
(p(x) =
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k' =K„'+)t-
an

( 1 BP„
Xi — —p„ idS I 0'~ydU. (44)

Brf i
If one assumes that y P„within the surface
integrals of (4.2), (4 3), (4 4) one can find
approximate formulae analogous to (3.10) and
(3.11).

Using expansion (3.12) we obtain the ex-
pression:

wave equation is a dyadic satisfying

uI, ———Vp(/Kg (4.11)

satisfying the orthogonality relation Jg,u„u,d V
= 5„.Then:

V)(V( Sg(x, $))+O'GI, (x, () =B(x—$)3 (4.10)

where ~~ is the idemfactor. In acoustics, a @
gives the velocity due to an elementary source
located at (, having the direction and magnitude
of a. $~„.(x, $) can be expanded in terms of the
complete orthonormal set found by the vectors:

where

(4.5) u, (x)u, (5)
~(» 3) =2

k' —X' (4.12)

fBN (1BP(
B ~=J I

4'& IdS
an EJ' an

(4 6)
Combining (4.7), (4.~)), and (4.10) we obtain

Convergence of this series is poor. Equation
(4.5) can no longer be substituted in (4.4) to
obtain the next approximation for the eigen-
value, nor can it be introduced with either (4.2)
or (4.3) to obtain higher approximations for the
eigenfunctions. Moreover, it is not possible to
improve the convergence by means of an ex-
pansion in terms of the discontinuous set I+ I.
For example, in the special case B.C.IIA, one
needs an expansion in terms of functions which
have discontinuous slope rather than value. In-
stead of considering such a set directly, it is more
convenient to consider the vector v= —Vp/k.
It satisfies the vector wave equation:

v(x) = [nt. v($)V) SI„(x, $)

—V, v(&)n, 8 (, &)]dS,. (4.13)

Introducing boundary condition (4.8) we obtain
the integral equation:

k'
v(x)=J n( v(t) -nt $„(x, ()

- ~(f)

+V( $1,(x, &) dS). (4.14)

Comparison of (4.14) and (3.3) reveals their
strong similarity enabling us to use procedures
similar to those of Sec. III. The first approxima-
tion to v is

V'V' v+k'v=o.

Its boundary conditions are:

(4 7)

where

C(
v—u++ ug

X„2—K]~
(4.15)

V v= —k'/F(n. v). (4 8)

ku V'(V v) —v V(V u)]d V

I t (n. u)(V. v) —(n v)(V u)]dS. (4&)

In order to convert (4.7) into an integral
equation, it is necessary to develop a vector
Green's theorem and define the proper Green's
function. The former is:

K~ f Bf.f O' B&,
C =——

I

—
(

——P (dS. (4.16)K„J Be (K&'P Bn

Convergence of (4.15) is sufficient to permit its
introduction into (4.2) and (4.4) to yield higher
.approximation for both eigenvalue and eigen-
function. The eigenvalue result is of value:

O' K„'+B /N„„+ Q' — . (4.17)
K] X ' —E]'

The particular case of S a simple surface
The Green's function to be used with a vector permits the choice of 64 so that V Q~ ——0 (i.e. ,
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~nt
v =0.+2—G t

V=0 +p —— —lit
k~ —E2 E„V.„B„t

+ 2— —P, + . (4.27)
s g( ~nK ( (k' —K ')GnrGr t

+E"— «+ (4 18)
r, & (k'-—K ')(k' —K )

Finally, the result for the eigenvalue k' has
the same form as (3.27), with A~„replaced by

(4.19) Ct, W t by V t, and Nt by Mt„. Convergence
of (4.25) and (4.26) is good.

Remarks given in the preceding section on ex-
tension of these results to the problem of scatter-
ing hold here.

where
k' t. 8$„1 Bg(

EEt~ an I an

Introducing (4.18) into (4.2) one finds

EnEt Gnt
v =4-+Z'—

k' (k' —K(') V. BOUNDARY CONDITIONS III AND IV:

(nXcurl A) =(nXA) &.EtEnG„„G,.t+E"— -S+ . (420)
k'(k' —K. ') (k' —K -') The reduction of wave equation (2.5) to an

integral equation can be accomplished through
the use of a dyadic Green's function satisfying
the equation

The value of k' is:

GntGtn
k' =K„'+G„„+Q' ——

k' —E -' curl~ curl~ SI„.(x, $) —k'Sq(x, &) = 6(x —f)Q. (5.1)

G „G„tGtn We also need a vector Green's theorem+ + . 421
2 2 2 2(k K()(k K )

[A curl curl B—B curl curl A]d V
Result (4.21) can be derived from the secular
equation satisfied by k':

$„=0on S). The resulting integral equation can This permits the computation of y from (4.2):
be solved exactly.

{ G(„—(k' K„')8,„{=—0. (4.22)
[A (nXcurl B)—B (nXcurl A)]dS. (5.2)

A secular determinant can be developed for the
more general case. v is expanded in terms of a
complete but non-orthogonal set IU {.U„ is a.

vector function equal to u inside R but zero
outside. The resulting secular determinant is:

It then follows that:

A(x) = [A($) (n~Xcurl~ SA, (x, $))

—(n~Xcurl~ A($)) $&(x, $)]dS,. (5.3)

{C,„—(k' —K ')M,„l =0
where

r C t
—Ct.

Aft„=, u„udV=
En' —Et'

(4.24)

A(x) = —
~~ (nqXA($))

[curl&@1,(x, ()+((&) 0g(x, &)]dS). (5.4)
This determinant is Hermitian. Solution of (4.23)
can be given as before [cf. (3.25)],

Introducing B.C.IV we find the integral equation
(4.23&

satisfied by A(x):

C g
—M„,(k' —KP)

V t= —-
C(, 3E„(k' K,')— —(4.26)

v= U„+Q V,U, + Q V„,V, (U(+ (4.25)
tgsgn

where

This equation is very similar to (3.3) and per-
mits the use of the techniques developed in
Sec. I I I.

' J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), p. 250.
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Formulae corresponding to (3.5), (3.7), and
(3.9) can be derivecl. They are:

rA(x) = D„(x)— (ncX A(())

[curl) g(x, $)+(($) .Si,(x, ()]dSp, (5.5)

A(x) =A„(x)—J {curl) Sk(x, $)

where
D.t —Dt.

(5.12)Pnt —— D„.Dtd V=
Kn' —Kt'

Poor convergence prevents calculation of
further approximations from (5.9). However, in
the special case where S is a simple surface
choose (nX curl 0») = 0 on S (i.e. , n Xcurl D» ——0
on S). The resulting formulae have exactly the
same form as (3.18). F» should be replaced by

~ [nt XA(P) —nt X D.(f)]
+[n;XA($) (($)

I (n X D„) ( D,dS. (5.13)

—(n~Xcurl» D„)] SI,.(x, t)}dS», (5.6)

where D„ is any solution of Eq. (2.5). 4 is a
vector equal to D within R and equal to 0
outside of.R. If K ' is the eigenvalue correspond-
ing to D„, then,

k'=X '+)/(nXA)

~ [curl D„+( D„]dS J
A D„d, V. (5.7)

D, (x)D»($)
@I'(» 3) = —2 (5.8)

Introducing this expansion into (5.6) and re-

placing A by D„we obtain

Dtn
A(x) A. (x) +P' D, (x) (5.9)

En~ —Kt'
where

A second approximation to the eigenvalue follows:

D„„(D»„)'
k' Z '+—+Q'—

I'„„ t K„'—Kt'
(5.11)

First-approximation results can be immediately
obtained from (5.5), (5.6), (5.7) if A(x)~D„(x)
by replacing A(x) by D within the surface
in tegrals.

Suppose D„ is normalized so that it is a
member of an orthonormal set. The dyadic
Green's function can then be expanded in terms
of the set {D }:

The corresponding secular determinant is

!
I.,„—(k' —Z„2)S»„!=0. (5.14)

A secular determinant can be developed for the
more general case. A is expanded in the complete
set of discontinuous vectors {4 }.The resulting
secular determinant is

!D,.—(k' —Z.')~,.! =0. (5.15)

The determinant is Hermitian. Solution of (5.15)
can be founcl as in Sec. III. Formulae (3.25) ancl

(3.27) will apply to this case if 4» is 'replacecl by
4t, A t by D„t, Nt„by I't throughout.

VI. GREEN'S FUNCTIONS

The formulae developed in the preceding sec-
tions apply only when there are no sources
present in the region R being considered. This is
usually not the case experimentally since sources
must be present to excite the modes being in-

vestigated, or in the scattering situation the
source is frequently not at infinity.

The description of the effect of a source is

given by the Green's function which satisfies
the boundary conditions imposed by the physical
situation at the surface S of R. This Green's
function can be constructed in those cases for
which. the boundary conditions are such that the
solutions of the corresponding wave equation
form an orthonormal set. The Green's function
can then be expanded in terms of this ortho-
normal set according to Eqs. (3.11), (4.19), or
(5.12). The various possible solutions of the
wave equations yielding the desired set are given
in the discussion above. I t should be noted that
these form an orthogonal set, but are not normal-
ized as given.
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However, for some boundary conditions the
solutions are not orthogonal, or the expansion is
unwieldy. It is then interesting to note that the
Green's function also satisfie an integral equa-
tion from which approximate results for the new
Green's function may be deduced. We shall give
the details for the case of boundary condition I,
giving only the results for the others.

Let the desired Green's function be G%%d(x, $).
Let any other satisfying the wave equation for
other boundary conditions be L%%d(x, &). Then

~L%%d(p, k)
G%%d(x, f) =L%%d(x, $)+)i G%%d(x, p)

BSp

BG%%d(x, p)
L%%d(p, $)—— dS, . (6.1)

BSp

The introduction of boundary conditions I on GA,

yields

G%%d(x, $) =L%%d(x, $)+ G%%d(x, p)

BL%%d(p, $).
F(p)L%%d(p——$) d~' (62)

Qgp

For the other boundary conditions we get

( rIG%%d(x, p)
B.C.II G%%d(x, &) =L,„p(x, $)+ 'I —.

am,

~L%%d(p, k)
X — — L,.(p, ~) dS—„—(6.3)

F(p) Bn,,
B.C.IV N%%d(x, $) =4%%d(x, $)

—~~n, XS, (x, p)

Lcuri, &a(p, &)+&(p) &%%d(p, &)3d~' (64)

Any attempt to solve these integral equations by
means of expansions leads again to the expansion
in eigenfunctions mentioned above. It is possible,
however, to find an approximate value of GA, if
G&~J& by substituting the known L& for the
unknown G%%d in the right side of Eqs. (6.2), (6.3),
(6.4). This represents the chief use of these
integral equations in practice since usually it is
impossible to evaluate a second approximation
by the reintroduction of the first; approximation

into these equations. A similar approximation
used in a discussion of the Laplace equation has
been given by Hadamard. "

VII. CONCLUSIONS

It has been found possible to reduce the scalar
and vector wave equations to the solutions of a
corresponding secular determinant by means of
the following procedure.

i. Reduction to an integral equation through
the use of a Green's function. This equation
includes the boundary conditions.

2. For boundary conditions I and IV, expan-
sion of the solution in terms of a discontinuous
set of functions which vanish outside region R.
This leads to a secular equation.

3. For boundary conditions II and III, the
introduction of another auxiliary quantity whose
boundary conditions and equations are similar
to I and IV is necessary. The technique employed
for these boundary conditions is then valid.

We note that the secular determinant is
Hermitian. Its non-diagonal terms involve only
surface integrals whereas the diagonal terms in-
volve also volume integrals of the N type.

Extension of, these results to the scattering
problem has been indicated at the end of Sec. III.
Similar considerations as applied to source func-
tions are given in Sec. VI. The solution of these
equations in regions bounded by moving surfaces
is found to the second approximation in Ap-
pendix II.

The procedure developed here appears to
apply to any system of partial differential equa-
tions whose solutions form a complete ortho-
normal set or are orthogonal to another set.
There is, however, a restriction for boundary
conditions of type B.C.II. In this case, it is
necessary for the solution of the auxiliary equa-
tion to satisfy some orthogonality relation. 'I his
condition has not been found in the case of the
Schroedinger equation. However, for B.C.I, no
such restriction applies. In this problem, the
solutions found for the wave equation apply
equally well to the Schroedinger equation. It is
this boundary condition which occurs in the
Wigner-Seitz theory of metals.

The author wishes to thank Professor P. M.

"P. Levy, Lemons d'A nalyse Fonctionelle (GaIIthier-
Villars, Paris, 1922), p. 181.
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Morse for his active interest and aid. He is also
indebted to Professor J. C. Slater and Professor
L. I. Schiff for some illuminating discussions and
criticisms.

APPENDIX I
Here we shall show that the surface integral (3.2) repre-

sents any solution of the wave equation within R but is
zero outside. Any function f(x) which is zero outside R can
be expanded in terms of the set 0 as follows:

f(x) =& fk-dU 0 .

If, furthermore, f is a solution of the wave equation with
eigenvalue k', it follows that

)'(y", ~ ,'f)~s.
f(x) =&

k, K , 0' (I 2)
n n

Using the expansion of the Green's function (3.12) we
obtain Eq. (3.2).

Another result which can be derived in the same manner is

'v(x);„t p ~'v(() ~g 'g~~v(k) ~~ (IIat2
e J at2 a@~ at2 an

It will be noted that the time enters explicitly in these sur-
face and volume integrals as a parameter. Equation (II.3)
will be used in the present discussion since it yields a
value of q directly, whereas (II.4) would involve further
integrations before value of cp is found. However, the
latter equation has definite advantages because it involves
only surface integration.

Introducing boundary conditions and time dependence
of gf, we have

e(x) J=e(g) ' -~(&)Ga(x, t) d~1
BGf, (x, ()

+1/c' GI, (x, p), + 'q (&) d U(. (II.5)
~'v(h)

The surface integral term is identical to that which occurs
in (3.3). As a first approximation let q It„e '"'. The
volume integral drops out. The surface integral can be
evaluated in two forms:

APPENDIX II k' —K2 "
r — r' (II.6)

2

Vlf, ——1/c'—'+S(x—()e '"'.
832

Combining (II.1) and (II.2) we have

(II.2)

e(x)e-'" =J e(g) ——gg . dS)
&g. &~(()
8Ã$ Os'

+I/e' J gt, ——, , e ($) d U1. (II.3)
~'V {() &'gf

In this appendix, we shall consider the problem of
moving boundary surfaces. We shall restrict the discussion
to the scalar equation and B.C.I since the extension to
other cases involves the same calculations given in the
main body of this paper. The function p will now satisfy
the time dependent equation

V'~ = (1/") (~'~/~~').

The following discussion will be restricted to cases in-
volving nearly simple harmonic time dependence. The
extension to a more general type of time dependence can
be easily carried out in terms of a Fourier integral super-
posing the various possible frequencies. We, therefore,
consider the Green's function GI, (x, g) e '"' =gf, which satis-
fies the equation

or

g/ nr np( r )y (II 7)
A „„—N„„(k'—K„2)

Formula (II.7) is taken from (3.25) and converges more
rapidly than (II.6). Note that the matrix elements A „N„
are functions of time. It is most convenient to introduce
(II.6) into the volume term since the P, are independent of
time whereas +, in (II.7) are not. The second approxima-
tion for the surface terms will just be the second term in
(3.25). We finally find

'"' 0+ Z W,+,+ Z W, W„+,
gran rgsgn

1 ~ . A„,—2iorA„,
c' g g (k' —K ')(O' —K ') (II.8)

The dot notation has its usual significance of time
derivative. These results are useful when the time de-
pendence of q is approximately simple harmonic. More
general types of time dependence can be handled by means
of a superposition of simple harmonic terms as suggested
above. It would also be possible to make use of a more
general formulation of Huygens' principle for the time
dependent equation.


