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It was found in the preceding paper that mesotrons are
associated with particles present at several nieters distance
from the mesotron trajectories. At least part of these
particles are collision electrons ejected by these mesotrons

along their path in the air. The theoretical results obtained
in the present paper show that: (a) Only mesotrons of
momenta p) p0~10 ev jc can eject in air collision electrons
sufficiently energetic to reach and to traverse a counter
tube (C) placed at a distance D (a few meters) from the
mesotron trajectory. (b) The number v of collision electrons
ari'sing from a single mesotron and which are able to dis-

charge (C) is practically independent of the mesotron
momentum p if the inAuence of the spin of the mesotron

is neglected and is given, in first approximation, by

vo= (85/z. D) X 0,„„.. (D, Bi). In this formula, if the effective
area of (C) is expressed in m' and D in meters, then 8 = 10 "-

for standard air. 8„„.- is a function of D and of the minimum

energy 8& necessary for an electron to penetrate the wall

of the counter. For Zi ——2 Mev, for example, e,„decreases
from 0.50 for D = 2 m, to 0.30 for D =10 m. (c) When the
mesotron spin (0 or —,') is taken into account, v is about
equal to -', vo for the lowest mesotron momenta, but ap-
proaches asymptotically vo as p increases. (d) A fraction of
these collision electrons can give, by their subsequent
cascade multiplication in air, a certain contribution to the
counting rate in (C), in excess of v. However, when aver-
aged adequately over the mesotron spectrum, this shower
effect appears as a small correction only.

HE preceding paper, ' here referred to as II,
describes experiments (I I I) which show

that mesotrons are associated with particles
present at several meters from the mesotron
trajectories. At least a part of these particles are
collision electrons ejected by these mesotrons

along their path in the air.
The method used in these experiments consists

of measuring the frequency of discharges oc-
curring simu1taneously (a) in a group of counter

tubes, responding in principle only to mesotrons,
and (b) in a counter tube located at a variable
distance from that group. This group of counters,
which will be c'alled here mesotron selector or, in

short, selector, is surrounded by a lead shield

10 cm thick; it consists of two counters in coinci-

dence placed in a vertical plane, and of two side

counters, connected in anticoincidence to the
circuit of the two first counters. The principle of

this selector is based on the assumption that any
event in which the two counters in coincidence

are discharged, but not any of the side counters,
should be attributed to a penetrating particle,
such as a mesotron, since a high energy soft
particle would almost always emerge below the
lead with a shower discharging at least one of the

side counters.
The purpose of the present paper is to calculate

the mean frequency of discharges in the distant

counter, which arise fron& collision electrons
ejected in air by those mesotrons which traverse
simultaneously the selector.

A. NOTATIONS AND FORMULAS

1. The basic formulas for collision processes
between mesotrons and electrons will be applied
here in the form given by B. Rossi and K.
Greisen. ' The notations used below are similar to
those of the authors quoted.

The velocity of light will be put c=1; the
velocity of a particle: v = Pc =P; 1 Mev will be
taken as a unit of energy and 1 meter as a unit of
length. In that way, the rest mass of an electron

p, or of a mesotron p, will be expressed by the
same symbol as their respective rest energies.
These energies are assumed to have the following

values: p,,=0.5 and p, =100. Instead of the meso-

tron momentum p, the ratio r=p/p=p/(1 —tt')'
will mostly be used. This ratio r will be called the
equivalent momentum of the mesotron.

2. As a result of a collision between a mesotron
of momentum p and an electron, supposed to be
free and initially at rest, the latter is projected at
an angle 0 with respect to the initial trajectory of
the mesotron and acquires an energy 2' given by

P' cos' 0
= 2pe[,'+ (p'-+ ') l] —p' cos' 9

' Anatole Rogozinski, Phys. Rev. 65, 291 (1944).
' B. Rossi and K. Greisen, Rev, Mod. Phys. 13, 240

(1941).
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sin' 0+1 /r'+1 /p
(2)

3. It can be seen from (2) that, whatever the
energy of the primary mesotron, one has always

E'(cot2 0.

Thus, if, for example, 8 =~/4, the maximum
energy which can be transferred to the collision
electron by a mesotron of any energy is always
less than 1 (Mev).

When 1/r'»1/p, or p«p'=104, that is, for
momenta p«10" ev/c, (2) can be written in the
simpler form

cos' 0E—
sin' ft+1/r'

(2')

On the other hand, for p))10" ev/c, (2) be-
comes

cos' 0E—
sin' 0+1/p

(2//)

For head-on collisions (8=0), E' reaches its
maximum value E ', given by

It will be seen later that the values of p to be
taken into account for the present case will

always be appreciably larger than p. Therefore,
neglecting p.' as well as p' in comparison with p',
and remembering that 2p,. =1, (1) will be ex-
pressed by

cos' 0

tions; (b) the mesotron trajectory is a straight
line, regardless of any collision processes which
occur over the same distance H„; (c) the scat-
tering effects for both the mesotron and the
collision electron are neglected; (d) the collision
electrons lose energy only by ionization; the
average ionization loss k per meter of standard
air is taken as k=0.25 (Mev); the minimum
energy E& necessary for the collision electron to
penetrate the wall of a counter tube is of the
order of a few Mev; (e) the atmosphere is
homogeneous over the distance H„considered
in (a).

C. GEOMETRY; ENERGY FACTORS

Let us consider now a mesotron of momentum

p, directed downwards along the axis Os. At A, in
a plane perpendicular to Oc at 0, a counter tube
(C) is placed whose effective dimensions are
assumed to be small in comparison with OA =D
(see Fig. 1A).

This counter can be discharged by a collision
electron of energy E' ejected at a point T,
located at a distance OT=II from the origin.

The total energy loss (kD/sin 8+Er) suffered
by the collision electron along the path TA
=D/sin 8 in air, and by traversing the wall of the
counter tube, should be such that

E' (kD/sin t//+E&) ~&
—0, (4)

or, replacing E' by the expression (2') and
putting sin 0=x one has

F '=1/(1/r'+1/p) = (3) with
f(x) =x'+ax'+bx+c&0, (5)

E '=r2, for p«p2,

Em =p, for p)) p, 2.

(3')
a =kD/(F &+1), b = —(r' L' )/r'(F q+ 1)—

and
c = k Dr/'( E)+ 1).

We shall use the expression (2') since it ca.n be
applied to the majority of the mesotrons present
in the cosmic radiation. It should be understood,
however, that for p))p, ', r' should eventually be
replaced by p wherever it occurs in a formula
which is derived originally from (2').

B. ASSUMPTIONS

The following assumptions are made: (a) The
energy loss of the mesotron is neglected over a
distance II„which will be specified in the calcula-

Collision electrons which satisfy (4) or (5) will
be called "e%cient" collision electrons.

It can be proved that the equation f(x) =0 has
in general 3 roots: one negative, x1, and two
positive, x2 and x3, and that x should lie in
between the positive roots in order to satisfy the
physical conditions of the problem.

The general solution of (5) involves functions
of the three parameters D, r, and E1 requiring
rather laborious calculations. It is more practical
to proceed in the following way:
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10.0

E,= 2Mey
p= 2m

E,= 4Mey
P=2m

c50

E&=2Mey
}p=5m
) E,=4Mev

D=5m

10 15 20 r= p/p 25

Fic. 3. Curves of v/S expressed in m 2, as a function of r = p/p for different
values of the parameters D and E1. S is the effective area, in m', of the counter
tube (C). In case of v~ the mesotron spin (0 or —,') is taken into account. When
the spin term is neglected, and other less important approximations are made,
v reduces to v0, which is practically independent of the mesotron momentum.

slightly larger than r, . In first approximation,
this value of x3 can be taken as equal to its
asymptotic value (x3) &r; for r~~. (x3) &; can be
calculated easily in this case from (5), which
becomes then:

kD
f(x) =x'+ x+ =0.

Bg+ 1 E]+1
(8)

For D( 20 meters, one obtains

k'D'- kD
(x3)| — 1+ (9)

(Ei+1)& 8(E)+1) 2(Ei+1)

If D is small, (xq)ir; ~(Ei+I)
Table II gives certain values of (x3)1;m, for

different values of E1 and D.
From the fact that x2 becomes small rapidly in

comparison with x3, for r )r„one can show that,
with a good approximation,

TABLE I. Values of r, (D, E1) for E1——4 (Mev).

D meters 10

rc

along IT„, contributes to the discharges of the
counter (C). The collision electrons ejected below
H3 D cot 93 and above H2 Dcot 82 D/x——, ——
—(I/k) (r' —Ei), have insufficient energies to
reach the counter and to penetrate its wall. Since
cot 83 has a value comparable to unity and is
practically independent of the mesotron mo-
mentum for r)r„H3 is practically of the same
order of magnitude as D, for all momenta of the
mesotron considered. On the other hand, H2 is a
strongly increasing function of r, but it is practi-
cally independent of D. For example, for r =10,
that is, for P =10' ev/c, H2=400 meters. Hence,
the useful portion H„of the mesotron trajectory
is approximately given by H2.

kD
x2-

r B1
(10)

E1 (Mev)

TABLE II. Values of (x3)I;

D meters
5 10

The values of x2 and x3 determine the "useful"
portion H„=H2 —H3 of the mesotron trajectory
which, through the collision electrons ejected

0.50
0.40

0.41
0.34

0.30
. 0.27
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D. COLLISION PROBABILITIES

For standard air, if E' is expressed in Mev and
H in meters, one obtains B=0.98X10 '~10 '.

The term Ii depends upon the mesotron spin
which is not yet known. However, the results of
experiments' on bursts occurring in an ionization
chamber shielded by absorbers of different atomic
number show a considerable disagreement with
the hypothesis of mesotrons of spin 1; the agree-
ment is much better for spin 0 or spin -', . For these
reasons, only the latter values of the mesotron
spin will be considered here.

One has

and

F=P'E'/E„' for spin 0 (12)

F=P'E'/E~' E"/2(p'+—p') for spin —,'.
In case of spin —,', the maximum value of the

second term of F is equal to p'/2(&+p')'(p'+p')
Lsee (3)]; for P«p', this term is always negli-

gible; it is equal to —,', for p =p', and approaches —,',
for p))p'. When averaged over the mesotron
spectrum, this term will constitute only a very
small correction, and therefore, no distinction
will be made in the present calculations between
spin 0 and spin —,'.

For small values of E', one obtains in all cases
practically F= 0, and P then red uces to the
Rutherford formula

The probability for a mesotron of momentum p
and of velocity I8 to project, over a distance dH
of its trajectory, collision electrons of energy be-
tween E' and E'+dE' is given by

8
PdE'dII = —(1—F)dE'de.

2 EI2

mesotron spectrum. The integral mesotron
spectrum will be represented by the symbol
G(r) = J'p"g(r)dr.

The differential spectrum g(r) is normalized by

(14)

2. It will be assumed first F=0.
The mean number v of collision electrons

arising from a mesotron and able to discharge the
counter tube (C) is given by

H2

v= ~ dH 1 PdF'
03 "(az~)

(15)

In (15),Hp and Hp determine the useful portion
H„=H2 —H3 of the mesotron trajectory and are
given, in first approximation, by (9) and (10),
respectively. The energy difference (i1E') is
defined in the following way:

Let us consider first two cones forming angles 8

and 8+d8 with respect to their common axis Os,
and having T as their common vertex (Fig. 1A).
The energy interval of the collision electrons
ejected along dH into the solid angle d~ = 2z sin8d8
which is comprised between the two cones is

2m sin 8 d8

Let d be the effective diameter of the counter
tube (C), l, its effective length, and S=d)&/, its
effective area. Since we have assumed that the
two dimensions of the counter are small in com-
parison with D, the values of E', P, and dE'/d8
can be considered as constant all over the area S
which defines a solid angle Api = S/(A T)'
=S sin' 8/D' thus,

P =8/P'E".

E. FREQUENCY OF THE EFFICIENT
COLLISION ELECTRONS

(a) Approximate Formulas

(13) P
PdE' = -- —=duo

~(gg) ~(g„) 2x sin 8 d8

Ssin 8 dE'
P . (17)——

2 D' d8
1. Let N be the mean number of mesotrons per

unit time following the axis Os and Xg(r)dr their
fraction with equivalent momenta between r and
r+dr The function g(r. ) represents the differential

' M. Schein and P. S. Gill, Rev. Mod. Phys. 11, 267
(1939).R. F. Christy and S. Kusaka, Phys. Rev. 59, 405,
414 (1941).S. Kusaka, Phys, Rev. 64, 256 (1943). R. E.
Lapp, Phys. Rev. 64, 255 (1943).

On the other hand de= —(D/sin' 8)d8; hence,

H2

vv p= I dH =PdE'
Ha ~&ps&

BS 1+r'
t

P-i * d8
(18)Dr' ~ p;. cos' 8.
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~ Qo

g(r)dr =N[1 —G(ri)].

where |i; =arcsin x& kD/(r' —Ei) and ti,„, Ei/„i will then be equal to
=arcsin x3. The angle 8, as well as x3, can be
considered as independent of r) r, .

Developing in (18) cos' 8 in a series, one
obtains

(22)

BS1+r'-'
vI" 0 =-=(Omax+ g |lmax thorn in+

' ' ') i (1~)
AD r'

where the terms neglected in the parenthesis are
of power &~ 5 for 0, , and of power &&3 for 0,„;„.

It has been seen that except for values of r very
close to r„ the value of x~ or 0;„is small in com-
parison with 8,„, . Therefore, in first approxima-.
tion, v& 0 is equal to

The exact shape of the differential mesotron
spectrum, at least on the ground, is not yet
known at its very low end. There are, however,
experimental reasons to believe that the fraction.
of mesotrons with energies smaller than a few
times 10' ev is rather. small. Since for 10 cm of Pb
one has rl 2.5, corresponding to a mesotron
energy of 1.7 X 10' ev, G(ri) can be considered as
small and probably not larger than a few percent.

Taking into account (22), and using for v its
value from (20), one finds that n is given, in first
approximation, by

v0 ~max (20)

It should be emphasized that within the limits
of the approximations assumed, the value of v0

which represents the contribution of a single
mesotron to the number of discharges in the
counter (C) is practically independent of the mo-

mentum of that mesotron; this is true in spite of
the fact that the useful portion of the mesotron
trajectory increases approximately proportional
to r'.

3. The mean frequency n of discharges in the
counter (C) is given thus by:

1-G(r.) 2 S
n0

easel

Orna, x.
1 G(r,) ~D—

(23)

no = gael t) raax
AD

(24)

According to Table I, the critical value r,
represents mesotron momenta of the order of a
few times 108 ev/c. Therefore, G(r, ) is, like G(ri),
small and the ratio [1—G(r.)]/L1 —G(ri)]~1
—G(r, ) +G(ri) is approximately equal to 1.
Hence,

OG ~H2
n= EiEg(r)dr I dEI PdE'

'I'c H3 (6I")

=X t g(r) vv Odr (21)

This (approximate) formula, which gives the
frequency of discharges in a counter of effective
area S placed at a distance D from the mesotron
selector whose proper frequency of discharges is
equal to N„l, can be compared directly with the
experimental data.

In order to correlate n with those mesotrons
which

'
effectively discharge the selector, one

should remark here that N is the frequency of the
mesotrons which would be recorded by a hypo-
thetical unshielded mesotron selector. In trav-
ersing the 10-cm thickness of the lead shield
which, in fact, covers the selector (see II), all
mesotrons of a range not larger than 10 cm of Pb
are stopped. Let rl be the maximum equivalent
momentum of these stopped mesotrons. The fre-

quency of discharges in the mesotron selector
vF JdEI Jt

——P(1 F)dE'—
~ H3 (gE')

(25)

(b) Correction for the Mesotron Spin

In obtaining the above result the spin de-
pen. dent factor F was neglected. It will now be
taken into account (see Section D) in the case of
spin 0, for which F=P'E'/E ', and it will be
assumed that P = 1.

Only the final result of the evaluation of
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will be given here. One finds:

BS- 1+r2
VI' = Omax+

2r2

1
8m.z' —8m, ~

——Ii(r),
r

h(r) =arctan (r sin 8 „)
—arctan (r sin 8„„„).

(26)

E1 D r
(Mev) meters 4 5 6 7 8 9 10 20 30

2 2 24.5 22 19.7 17.6 15.9 14.4 13.3 7.2 4.9
2 5 — 17.4 16.6 15,4 14.2 13.2 12.2 7.1 4.8

4 2 21 19 18 16 15 14 13 7.1 4.8
4 5 — 15.4 14.8 14 13 12.4 11.6 7.0 4.7

In Fig. 3 the values of vo/S and vv/S are
plotted as a function of r.

When F is taken into account, a graphical
integration of J'g(r)vvdr will give the final result
for n since g(r) is an empirical function.

F. INFLUENCE OF THE SHOWER PRODUCTION
BY THE EFFICIENT COLLISION ELECTRONS

So far, we have considered single collision
electrons losing energy only by ionization and
discharging directly the counter tube (C). We
know, however, that when the energy of such an
electron is larger than its critical energy E,„,

'which is equal to 10' ev for air, it can undergo
a multiplication by successive radiation and pair
production processes. As a result of this multi-
plication, the average range of the produced
shower is smaller than would be the range of its
parent collision electron if it would not have
multiplied. Therefore, in order to produce any
effect on the counting rate in (C), in excess of v,

the energy of the shower particles arising from an
efficient collision electron must be high enough to
reach and to traverse the wall of the counter,
otherwise the above effect could become even
negative. On the other hand, to obtain an ap-
preciable effect, the number of these shower
particles should be, in addition, not too low;
therefore, the energy E' of the collision electron

For r )30, Ii(r) can be considered as equal to its
asymptotic value of s./2. On the other hand, the
formula (26) shows immediately that vv ap-
proaches asymptotically vp as r increases.

Table III gives h(r)/r for different values of
E1 and D.

TABLE III. Values of 10'gh(r)/r.

Euo'

8dE'&8, (E ' Es,')—

and the distance R =D/sin 8, which separates the
point of its ejection on the mesotron trajectory
from the counter tube, would have to be appreci-
ably larger than E,„( 10' ev) and Xo, respec-
tively, Xo( 300 meters) representing the radia-
tion unit of length in air.

Let v, be the number of discharges in (C), in
excess of v, arising indirectly, by the shower
particles, from a collision electron ejected in air
by a mesotron of momentum p. Let, furthermore,
o. = v, /v be the relative shower e8ect. One has
a=—0 as long as E'&&F,„.On the other hand, it can
be understood easily that provided R) Xp, the
factor a passes a negative minimum (a) when
E')E„remains close to E,„and (b) for E' re-
maining in the neighborhood of the highest
energy [see Figs. 1B, 2 and Eq. (10)] which an
efficient collision electron can possess and which
is given by 1/(8;„'+1/r') E '. Indeed, in both
cases, if a multiplication of the collision electron
takes place, the energy of any of the produced
shower particles will be too small to reach and to
discharge the counter.

An upper limit of o- can be obtained as follows:
According to the theory of cascade showers the
average maximum number P of shower particles
of energy larger than E,„,produced by an electron
of energy E'&)E„, is given by P =E'/6E. , If one
considers only values of E' for which f&&iPO, one
has evidently E' &~ Epo' = 6$0E.„.The above maxi-
mum occurs for a thickness t~XO log (E'/E, „) of
material in which the shower develops. In the
present case only small values of 8 will have to be
considered. At any rate, 8 & 8.= D/Xo. For
D&10 m, 8,~10 '.

Thus [compare (17)], neglecting 8', 8', in
comparison with 8,

D cot Hni jn

dII
i

P(1 —F)PdE'
V ~D cot gs (LIE')

1 BS
8dE'. (27)

v 27fD X6E„z~,'

It can be shown that for p«1/8, ', that is,
p« 10" ev/c, and consequently also for
E„'«1/8.', the integral
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1 BS
0 (— —— p&.

v 2+D 12L,„
(28)

Since the mesotron momenta to be considered
in this case are very high, v can be replaced by vp.

Now, BS/v02vrD is approximately equal to 1.
Therefore

a ((n./12K, „)pl. (29)

It can be seen from (29) that 0 will still remain
smaller than 1 even for p = (12K,„/~)', that is, for
mesotron momenta as high as 1.5X10"ev/c.

It will be sufficient to remember that the fre-
quency of the mesotron momentum in the
differential mesotron spectrum d'ecreases as

p ~(y) 2) to make clear that the shower effect of
the collision electrons, when averaged adequately
over the mesotron spectrum, adds a very small
contribution only to the frequency of discharges
in the counter tube (C).

and o is smaller than a few percent. The factor 0.

increases with increasing p. For p)&1/0, ', the
integral

f
@m'

JE~ I 2

hence,

G. ALTITUDE EFFECT

Concerning v, the only terms which in (20) or
(26) depend upon the altitude, that is, upon the
density of air, are 8, 8,„,and 8;„.The variation
of 8;n, which is anyway very small, can be
neglected. The coefficient 8 is directly pro-
portional to the density of air, and 0, depends
upon this density only through the coefficient k.
Hut, as can be seen from Figs. 18 or 2, 8,„,„
depends, at least for small distances D, very
little upon k. For example, for E1=4 Mev and
D=2 m, 8,„would increase from 0.40 at sea
level (k=0.25), to 0.45 only at the top of the
atmosphere (k=0). Therefore, in first approxi-
mation, one can admit that v is proportional. to
the density of air or to the atmospheric pressure.
On the other hand, the effect of the altitude on
the frequency n of discharges [see (21)] in the
counter tube (C) follows, in the general case, the
combined eff'ects of: (a) the altitude increase of
the intensity of the mesotron radiation, (b) the
altitude dependence of the mesotron spectrum
and, (c) the decrease of v which, as has been seen

above, is roughly proportional to the atmospheric
pressure.
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On the Perturbation of Boundary Conditions
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The solution of both the scalar and vector wave equations in regions which are bounded by
irregular surfaces which have non-uniform physical properties has been reduced to the solution
of a secular equation. The secular determinant is Hermitian. The solution to the secular
equation has been expressed in a form suitable for obtaining its value to any approximation.
Similar results are given for the corresponding eigenfunctions. Extension of these results to
the problem of scattering and to the situation where the bounding surfaces move is indicated.
The description of a source located in such a region is also discussed.

I. INTRODUCTION

HE solution to many physical problems can
be reduced to the solution of a system of

partial differential equations with prescribed
boundary conditions. In the past, exact solutions
were limited to those cases in which the boundary
conditions were "simple" and were satisfied on
"simple" surfaces. "Simple" boundary conditions

correspond to uniform physical properties of the
surface involved. "Simple" surfaces are coordi-
nate surfaces of coordinate systems in which the
partial differential equations will separate. As a
result, a great many physical problems of interest
have not been treated theoretically.

This paper will discuss solutions of the scalar
and vector wav& equations satisfying non-simple


