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When the Lagrangian from which the field equations are derived contains second and
higher derivatives of the generalized field coordinates, the method of quantizing the field
equations developed by Heisenberg and Pauli cannot be immediately applied. By generalizing
a method due to Ostrogradsky for converting Lagrange’s equations of motion of a particle,
when higher derivatives are present, into canonical Hamiltonian form, it becomes possible to
perform a similar transformation of the field equations. Applying this method to Podolsky’s
generalized electrodynamics, we obtain the Hamiltonian of the field and double the usual
number of generalized coordinates and momenta. The quantization of the field follows without
any special assumptions. The last two sections are devoted to the discussion of the auxiliary

conditions and some of their consequences.

1. PRELIMINARIES. EXTENSION OF HEISENBERG
AND PAULI'St METHOD

HE basis of generalizing the Heisenberg and
* Pauli method of quantizing fields to the
case when the Lagrangian of the field contains
second derivatives of the potentials is contained
in a suggestion due to Ostrogradsky.? He showed
how the Lagrange equations of motion of a
particle, when higher derivatives are present,
can be transformed into the Hamiltonian form.
Suppose the Lagrangian L is a function of the
potentials ¢.= (A, 7¢) as well as their first and
second derivatives:?

L =L(§0a, Pa, By QOa,ﬂ‘y)y

where ¢, are functions of the space-time coordi-
nates x,= (x1, %2, X3, Xx4=1x9=1ct), and

Pa,8=00a/0%g,  @a,py=0%Pa/0Xp0X,.

The variational equation

6W=6fdeth=0, AV =dx dxqdxs,
or

icaW=5deQ=(), dQ=dVdx, (1.1)

* Now at Haverford College, Haverford, Pennsylvania.

1'W. Heisenberg and W. Pauli, Zeits. {. Physik 56, 1
(1929).

2See E. T. Whittaker, Analytical Dynamics (1927),
Chapter X.

3 Greek indices will range from 1 to 4, while Latin sub-
scripts from 1 to 3. Repeated indices are summed.

leads to the field equation
oL a4 9L a2 oL

+
6<pa 6.76,, aga,,,,‘ 6x,‘3xy a<Pa,uv

=0, (1.2)

provided ¢, and ¢,,, are specified and are un-
varied over the boundaries of the four-dimen-
sional manifold Q@ over which the integration is
performed.

We introduce as the new generalized coordi-
nates

fa=¢a, and Qua=0¢as/0t={(q, (1.3)

and define the momenta conjugate to g. and

Q. by
pa=(3L/8a) —9/0t(dL/0§e)
~8/8%(0L/8 (s, )
Po=0L/da,

(1.4)
(1.5)

and

respectively. The Hamiltonian is then conve-
niently defined by

H= =L+ pafatPaQa. (1.6)

The time derivatives of the coordinates, ¢, and
Q., can in general be eliminated from the
Hamiltonian by using Egs. (1.3) and (1.5). The
result is

H=H(Qay Pa, q«,i, Qa. 1 Qm Pay Qa. 1')- (1'7)
Taking the differentials of Egs. (1.6) and (1.7)
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and equating coefficients we obtain:
0H/9Qa= —0L/3Ga+ pa,
0H /3G, := —9L/0qa,,
0H /3qa, ij= —9L/3qa, ijs
0H/3Qa, ;= —0L/8¢a, s,

(1.8)

and
0H/3pe=Qa=Gar OH/dPoy=Qa={a (1.9)

From Egs. (1.4), (1.5), (1.8), (1.9), and (1.2) it
now follows that

OH/3Qu= —dP,/0t—3/0%:(0L/d{a. ), (1.10)
0pa/0t = —0H/dqa+0/0x:(0H/3qa, 5)
—0%/0x:0x;(0H/8qa, i5), (1.11)
OPy/3t=—0H/3Qa+0/0%:(0H/3Q0,:).  (1.12)
But, if we put
BfHd V= al?:f{ (6H/6q4s)8a
+(8H/6Q0)5Qu+ (61 / 5pa) 6pa
+(8H/8P,)6P,}dV, (1.13)
the quantities
0H/8qa=0H/3qa—0/3x:(0H/0qu, )
+9%/0x:0x(0H /8qa, i), (1.14)
0H/6Qu=0H/3Qu—08/3%x:(0H/3Qu, ), (1.15)

6H/8pa=0H/dpa, and 6H/6P,=0H/dP, (1.16)

are the functional derivatives of H. Hence from
Egs. (1.9), (1.11), (1.12), (1.14), and (1.15), the
canonical equations

Pa=—0H/6¢s, Pao=—06H/6Qa,
qa:aﬁ/apa) Qa=6ﬁ/6pm

follow. We note that

(1.17)
(1.18)

il dt= f (671 /6¢2) Gat (571 /5p2) P

+(811/800) Qu+ (8 /5P) P} dV=0. (1.19)

The energy-momentum tensor can be obtained
from the variational equation, where now not
only the potentials ¢, but also the boundaries
are varied. Let the four-dimensional manifold ©
be bounded by two open 3 spaces, having coordi-
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nates £, and x., respectively. The boundary &,
remains fixed; the other x, is to be displaced by
the amount éx., while (a) the potentials them-
selves and their derivatives ¢, , remain un-
changed over the boundary, and (b) Egs. (1.2)
are satisfied for every interior point. Then

. xﬂ-}-aza zg
zc6W=f (L+6L)d9—-f LdQ, (1.20)
7} &

where & and xg symbolize the original boundaries
and & and xs+d6xs the new boundaries. There-
fore,

ic&W:fIﬂaLdQ—f—deS,.ax,‘, (1.21)
i &g

where the last integral is a surface integral over
the old xg boundary. From condition (a),

8pa= —(0¢a/0x,) 0%,

and
0/0%,(80a) = — (020a/0%20x,) 6xr.  (1.22)
By use of these results and
8 g
. f 6Ld9=f {(OL/80a)b0a
7] &
+(0L/3¢a, ) 300, st (OL/0 P, u) 3@, } A2 (1.23)
Eq. (1.21) can be transformed to
'iCﬁW: f {Lapv— ‘Pa,ypav
- ﬂaa.m\Pa)\v}dSy(sx‘“ (124’)
where
Pag=0L/0¢a—03/0x,(0L/d¢a,p,), (1.25)
Pogy=0L/0@q,py- (1.26)

From the definition of the total momentum P,
W =P,éx,.

We obtain upon comparison with Eq. (1.24)

P,= f 1udS,,

where the energy-momentum tensor #,, is given by

(1.28)

(1.27)

'I:Ct;.w = Lauv — Pa, upav - Qa, n)\Pa)\v-

It can then be shown that this tensor satisfies
the equation of conservation of energy and
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momentum, namely :

b v =0. (1.29)
2. PRELIMINARIES. SPECIAL LAGRANGIANS

As an application of the foregoing discussion,
consider the Lagrangian proposed by Podolsky.*

=—3{3FapFapta’FappFay}, (2.1)
where the field quantities
Fog=¢ga— ¢as

are now in Heaviside-Lorentz units. The field

equations

(1—a°0) Fay =0 (2.2)

now follow from Eq. (1.2). To compute the
energy-momentum tensor we need the quantities

OL/du,v=Fa (2.3)
OL/3¢a,m=—0a*(Fu5,80ar— Fap, ). (2.4)

Hence from Egs. (1.25) and (1.26) we obtain
Pav=(1—0a?0) Fa, (2.5)
Porv=—0a*(Frp 80— Fag, 86\). (2.6)

and

Equation (1.28) thus becomes
ity = Loy — 0o u(1 —0?00) Fart-0?Fus, uFus g, (2.7)
from which the Hamiltonian is
H=—dctu=L

— 0o, 4(1 =a?0) Fas+a?Fas, 4Fas 5. (2.8)

Care must be exercised in computing the
momenta canonically conjugate to ¢. and ¢@q
because of the ambiguity in the partial differ-
entiation with respect to ¢@.:; We have from
Eq. (1.4)

1[6L d oL

Pa=—
i) oL oL
)
0x;\0@a,4; O@a, j4

ic

1 N
=—[Fos+a*(Fip 80a;— Fap,p4) ].

1’

a@a,&l

(2.9)
4B. Podolsky, Phys. Rev. 62, 68 (1942), Eq. (3.8)
Note the typographical error. This equation should read
1
Li= —E{%Fag"’-}-a?(aﬁ‘a@/axg)ﬂ.
Henceforth this paper will be designated by GE.

PODOLSKY AND C. KIKUCHI

Thus we obtain
a?
pae=—Fjs s
ic

(2.10)
and

1
pi=-—(1—a*0)Fjs;
1C

(2.11)

having made use of the symmetry properties of
F.g, namely:

Fap=—Fpa and  Fogy+ Fgyat Frap=0.
Similarly
Po=(a®/c*)(Fup,p0as— Fap.p) (2.12)
or
Py=0, Pj=—(a%/c*)Fjss. (2.13)

In vector notation these quantities become:
pa=1(a?/c?) div E,
p=—(1/0)(1-a’D)E,
Py=0, P=—(a*/c*)(curl H—(1/0)E).

(2.14)

We note that p4 no longer vanishes, as it does
in the usual electrodynamics, but because of the
vanishing Py, we shall encounter the usual diffi-
culty in quantization.

This difficulty can be avoided by using an
artifice similar to that used by Fermi’ and
Rosenfeld.® Using a modified Lagrangian,

L= —3(¢us¢apsta’¢apsperr), (2.15)
we find for the field equations
(1—a?0)Oea=0. (2.16)

If we further require that these potentials ¢q
give the same field equations, Eq. (2.2), we
must have

(1-a’0) Fopp=(1-0a’0) oy e
—(1=a*D)¢aw=0 (2.17)
or, using Eq. (2.16), we have
(1—a*0)¢uau=0 (2.18)

for the additional conditions to be imposed on
the potentials. Since

aL/a#’a,v = T Pa, vy

aL/a Pa,\v = — a2<Pa, Bﬂa)\w

8 E. Fermi, Rev. Mod. Phys. 4, 131 (1932).
6 L. Rosenfeld, Zeits. f. Physik 76, 729 (1932).

(2.19)
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we have, by Eqgs. (1.25) and (1.26),

Pov=—(1—0*0)¢a,s, Parv=—000¢a (2.20)
Therefore, by Eq. (1.28),
1t = Loy + ¢, u(1 —a?0) ¢a,»

+a*0o, O e, (2.21)

from which follows the Hamiltonian
H=—L— 04 41—0a%0) ¢a,4— 20, 140 0a. (2.22)

The momenta canonically conjugate to ¢ and
@aq are

pa=—(1=a?0)¢o and P,=(a%/c®) 0 ¢a, (2.23)
and satisfy the equations
Opa=0 and (1—a20)P.=0. (2.24)

3. REDUCTION OF FIELD QUANTITIES AND THE
HAMILTONIAN TO FOURIER AMPLITUDES

Following Fock and Podolsky,” we shall find
it convenient to express the field quantities and
the Hamiltonian in terms of the Fourier ampli-

tudes of the potentials. Since,? in order to satisfy
Eq. (2.16),
eolty )= [(Moti)dk, ()

where

14\1 .
Ma= (;) {ou(k) exp [i(k-r —kxs)]

1 —:¢a*(k) exp [—i(k~r—kxo)]}, (3.2)
M= (?) {5 (k) exp [i(k-r—Fxo)]

+ &a* (k) exp [ —i(k-r—kxo) ]},

the notation being the same as in GE, Eq. (6.2).
Further, for each field variable F we introduce
the Fourier amplitudes defined by the equation

e (i) [ 7@ exp Liter—re)]

+ F*(k) exp [ —i(k-t—kxo) ]
+ F(k) exp [i(k-r—Fkxo)]
+ F*(k) exp [ —i(k-r—FExo) J}dk. (3.3)

?V. Fock and B. Podolsky, Physik. Zeits. Sowjetunion
1, 801 (1932). This paper will be designated as FP.
8 GE, Eq. (6.2).
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In terms of these quantities then the relations
between the field strengths and the potentials
become:

H(k) =k X A(k),

H(k) =ik X A(k),
H*(k) = —ik X A*(k),
H*(k) = —ik X A*(k),
E(k) =i(ke(k) —kA(K)),
E(k) =i(k(k) — kA(K)),
E*(k) = —i(ke*(k) —kA*(k)),
E*(k) = —i(k* (k) —kEA*(Kk)).

(3.4)

The reduction of the Hamiltonian to the
Fourier amplitudes is a little more difficult.
Putting

1\}
Ne= (2_) {alk) exp [i(k-r—kx0)]

— oo*(kK) exp [ —i(k-r—kxo) ]}

and 3.5)

3
Fum (;—) (Ball0) exp [ilk-1—Fxo) ]

— 3 (k) exp [ ~i(k-r~Fxo) ],

we obtain for the derivatives of the potentials

fus= —f{kNa+ENa;dk,

o s=i f (ksNant Vo) db,
(3.6)
Oea=(1/a%) f M.dk,

(1—aﬁm)¢a=fM,,dk.

Adapting FP, Eq. (15) to our need, and after
some manipulations, we find

H= f {02 () (k) + pu(k) pa* (k) | R

- f {32*() Ballk) + $() 32> (k) | BB, (3.7)
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4. QUANTIZATION

In order to pass from the classical to the
quantum equations, without having to make
some new postulate for the commutation rules
of the potentials, two methods are available.
In one, due to Heisenberg and Pauli, the canoni-
cally conjugate coordinates and momenta of the
field satisfy commutation rules similar to those
of the quantum mechanics of a particle, i.e.,

[Da(r, x0), gs(r', x0) ] = —hidapd(r —1),
[Pa(r, x0), Qs(r’, x0) ]= — hidesb(r—1') ;
and
L[a(r, %0), gs(r’, x0) = [Pa(r, x0), ps(r’, x0) ]
=[Qa(r, x0), Qs(r’, x0) ]
=[Pa(r, x0), Ps(r’, x0) ]
=[pa(r, x0), Qs(1’, x0) ]
=[Pa(r, x0), gs(r’, x0) ]
=[ga(r, x0), Qs(r’, x0) ]
=[pa(r, x0), Ps(r’, 20) ]=0.

It is interesting to note that now the potentials
g« and their time derivatives Qs commute, a
result which is quite different from that of usual
electrodynamics.

Alternatively, we may require that

F=(i/m)[H, F]

(4.1)

(4.2)

(4.3)

is satisfied for every operator F in the Heisenberg
representation. Either method will lead to the
same results.

From Eq. (4.3) we have, as special cases,

Pa=(/B)[H, p] and P.=(/W)[H, P.]. (4.4)
Using Eqgs. (2.23) and (3.6) we obtain

Da= (_1/C)kaadky
(4.5)

Po=(1/c% f EN.dE.

The commutation rules for the Fourier ampli-
tudes are now found by expressing both sides of
Eq. (4.4) in terms of their Fourier amplitudes
and equating coefficients of corresponding expo-

PODOLSKY AND C. KIKUCHI

nentials. Thus:

h
[oa*(K), oa(k))]= —;aaﬂuk—k'),
(4.6)

ch
[pa*(k), ¢s(k')] =2—£5as5(k—k')«

All other pairs of the Fourier component of the
potentials commute.

The commutation rules for the potentials at
different space-time points can be obtained by
transforming back to coordinate space. The
result is

[‘,Da(r, xo), ‘Pﬂ(r’1 xol)]

ichbe
—Zw):f exp [ik- (r—1') ]

[Sil‘l k(Xo —xo')
k

The first term gives the well-known Jordan-
Pauli invariant delta function:

sin E(xo—xo')

- dk. (4.7
o

LN o sin kX, 3
(5,) Jorm=mma0
1
= R DIRI=X0 =R +X0] (49)

The second term is proportional to®

143 sin BX,
(L) forst
27 k

1 0
= ———— ——F(|IR|, X0, (49)

47|R| 9|R|
where .
_.Jo[~(Xo2—|R|2)*]
a
for X0>NRI,
F(|R|, Xo)=<0 for |R|>X,>—|R|, (4.10)

1
~ - 1R
la

for X0<— IRI

Equations (4.1) and (4.2) can be obtained im-
mediately from Eq. (4.7). For example, partial
differentiation with respect to xo, and subsequent

9 P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 100 (1934)
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substitution of x'=x,, gives Eq. (4.2). Later
we shall need the relation

[‘Pa(ry xﬂ)) Pa, i(rly xo):]z Oy

which is easily obtained from Egs. (4.1).

It is interesting to note that in our formulation
the four-divergence of the potentials at different
space-time points does not commute. In fact, it
can be shown that

[‘pﬂ.d(rv xﬂ)) Soﬁ,ﬁ(.r,y xO,)]

—ich sin E(xo—x0")
- f e T gy

" a2(2m)? 3

The commutation rules for the Fourier com-
ponents of the field strengths can be obtained
from Egs. (3.4) and (4.6). Thus, since

(4.11)

(4.12)

h
[A*(k), 4,(k)]= —g};&”é(k—k’),

*(k), ok’ Ghék k’
[0, (k) 1= o(k—k),

. (4.13)
LA, A;(K) ] =—=b.53(k— ),
2%
ch
[¢*(k), p(k)]= —Z—Ea(k—k’),
it follows that .
[Eik), E*(K&")] =;—k(k26ﬁ—kik,-)6(k—k’),
EA), By ]= -
[ 1.( ) i( )]—_—2—%
X (k26— kik;)6(k—k'),
A
[H(), H(K)] i;—k(kzaii—kik;)a(k—k’),
H.(k), H*(&)]= ch (4.14)
[Hi(k), H*( ]——272 .

X (k2;;—kik;)o(k—k'),
[E(k), H*(&') ]=[E*(k), H;(k')]

ch
=—kne;imd(k—K’),
2
[E:(k), H &) ]=[E*k), H;k)]

ch
= ?kmeijma (k - kl) .
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All other combinations commute. In the last
expression, €;;1s +1 or —1, according to whether
1jk is an even or odd permutation of 123, and zero
otherwise.

The commutation rules of the field quantities
can be obtained by the method used in deriving
Eq. (4.7). Thus:

[Ei(rv xo)’ Ei(r,1 xOl)]
ich sin k(xo— xo)
= k26ij—kikj R —
(2m)3 f1( ‘ k
Xexp [ik- (r—r1')]— (E26;,— k:k;)

sin % (x0—x,")
X——E——— exp [ik-(r——r’)]}dk

ich / 02 92
= 6{] )
(27")3\ axoaXQl axiax/
(sin k(xo—xo’)  sin B(xo—x0")
x [ [ -

k k
Xexp [2k- (r—1’) Jdk.

4.15)
Also (

CH.(x, x0), Hi(t', %) ]

ich ( 9?2 02 )
2m)3\ “axdx,’  Oxidx,

Xf{sin k(xo—x0) _sin E(xi,—xo’) }

k E
Xexp [ik-(t—1)]dk (4.16)

and
. Che;jm
LE(x, x0), Hi(t', x0") ]= (2m)
d sin k(xo—xo")  sin E(xo—x")
A { & ’

Xexp [ik- (r—1") Jdk. (4.17)
5. AUXILIARY CONDITIONS

It is customary in the usual quantum electro-
dynamics to assume, in addition to the wave
equation, that the Schrédinger functional ¥
satisfies the condition

(0¢a/0xa)¥ =0.

However, it is required of an auxiliary condition



234 B.

of the form A¥=0 that A(r, ) commute with
A(r', t') taken at another space-time point. This
condition, according to Eq. (4.12), is not satisfied
by (0¢a/0%4).

A suitable generalization of the above equation
can be obtained as follows: Eq. (2.18) is satisfied

if we put
(3 pa/0%a) +B=0, (5.1)

where B is any function satisfying the equation
(1—-e*0)B=0. (5.2)

In terms of the Fourier amplitudes, Eq. (5.2) is
equivalent to

B:(i)%f{B(k) exp [i(k 1 —Fx) ]

2T

+B*(k) exp [—i(k-r—FExo) ]}dk.  (5.3)

Following the suggestion due to Stiickelberg,!®
we shall take as the auxiliary condition

[a(d¢a/dx4)+B ¥ =0, (5.4)
and assume that B(k) and B*(k) satisfy the
same commutation rules as the other tilde
functions, i.e.,

[B(k), B*(k) )= —(ch/2k)6(k—k’), (5.5)

and commute with the amplitudes of the poten-
tials. Hence from Egs. (5.3) and (5.5)

., —1ich
[B(r, xo), B(r', xo') ]= T
sin B(xo—x0")
Xf —————exp [tk (r—1') Jdk. (5.6)
Using this result and Eq. (4.12), we have
[@@a, «(T, x0) +B(r, xoj,
aess(t’, x0') + B, 2) ]=0. (5.7)

Equating coefficients of corresponding exponen-
tials, the auxiliary condition can be written in
terms of the Fourier amplitudes, i.e.,

(k- A(k) — ko(k) ¥ =0,
[a(k-K(k)—Ea(k))—iB(k)]\I/=0, (5.8)
[k-A*(K) —ke*(K)]¥=0,

[a(k-A*(k) —ke* (k) +iB* (k) J¥ =0.

WE. C. G. Stiickelberg, Helv. Phys. Acta 11, 225-299
(1938).
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The operators occurring in these equations com-
mute among themselves and also with the
Hamiltonian.

6. FIELD WITH CHARGED PARTICLES

The present formulation can be extended to
fields containing charged particles exactly as was
done by Dirac, Fock, and Podolsky.!! As in
DFP, we shall find again that the operators in
Egs. (5.8) do not commute with the operator!?

R.—ih(d/0t). (6.1)

This difficulty can be overcome by introducing
operators

k)=1i[k- k) — k sy Vs)y
C(k) =i[k-A(k) —ko(k) ]+ f(rs L) 6.2)

~ - - 1 -
C(k) =i[k-A(k) —kp(k) J+-B (k) + f(rs, 1),
a

and their complex conjugates, where f(rs, ;) and
F(rs, t;) are chosen so as to make the C’s com-
mute with the operators (6.1). A short calculation
shows that

i

e D= e 5 %
Xexp [—i(k-r,—kxos) ], 6.3)
f(rh t)=_2(27r)%zs -;?—

Xexp [ —i(k r,—Exo,) ]

Then, the modified auxiliary conditions are
given by:

C(k)¥=0, Ck)¥=0,
C*(K)¥ =0, C*(K)¥ =0.

Transforming (6.4) to coordinate space, we
obtain

de 1
C(r, xy) =div A+—+-B(r, x0)
dxe a

1 sin k(xo‘—x'o,)
T E‘f { k

sin ié(xo“xo.s)
_._____} exp [ik-(r—r)]dk. (6.5)

(6.4)

and

k

11 Dirac, Fock, and Podolsky, Physik. Zeits. Sowjetunion
2,473 (1932). Hereafter referred to as DFP.

12 For the definitions of these quantities see reference 11,
Egs. (1) to (11), inclusive.
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The field equations can be obtained by pro-
cedure similar to that used in DFP. From the
defining equations, GE Eq. (3.3), or

E=—grad o—(1/c)(dA/0¢)
and

(6.6)
H=curl A,

it follows immediately that
curl E4(1/¢)(0H/0t)=0 and divH=0, (6.7)

so that these remain 'as quantum mechanical
equations. The other two equations can only be
derived with the aid of Eq. (6.5).

Recalling Eq. (2.16), and observing that the
first and the second terms under the integral
sign of Eq. (6.5) satisfy Maxwell’s and Yukawa's
wave equations, respectively, we obtain from
Eq. (6.6)

19E
(1 —~a2l___!)(curl H—— v
¢ 0t

=[grad > EA(X—XS)]‘I', (6.8)

where X is the four-vector (xi, xs, x3, xo) and
A(X) the invariant delta function defined in
Eq. (4.8). Similarly

(1—a?0) div EY¥

ira €s
- __[_ 5> MA(X—XS)]\I/. (6.9)
cLot s 4rw

Now putting the various times equal to each
other, we get for the equations corresponding to
DFP Eqgs. (45),‘(46), and (47) the generalized
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results:
1d¢
(1—a2D)(divA+————)\If=0, (6.10)
¢ 9t
16E
(1—a2D)(curlH————)\Il=O, (6.11)
q c ot
an
(1—a?0) div EV¥
1 0
=~Z—[——A(X—Xs)] V. (6.12)
s 4xlc ot te=t

The argument leading from DFP Eqgs. (48) to
(49) has to be modified slightly in view of the
fact that the momenta conjugate to 4, are not
—(1—a20)E,, but (1/¢%)(1—a20)A;. Thus

[R,, (1—a*0)E]

= _58[¢(r3v tS) —aS'A(rs» ts)»

1 . :
(1—a20)Ve(r, t)+-(1—a20)A(r, t)]
c
=1che,a;0(r—r,). (6.13)

Since

1 9
[— —A<X>] _——r
4 6X0 Xo=0

Egs. (6.11) and (6.12) become
1 0E
(1 —aQD)(curl H—- —)\I/
coT
=(X e@,d(r—r,))¥ (6.14)
and

(1—a20) div E¥ = (3 e:8(r—1,))¥. (6.15)

These are natural generalizations of the equa-
tions of ordinary quantum electrodynamics.



