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When the Lagrangian from which the field equations are derived contains second and
higher derivatives of the generalized field coordinates, the method of quantizing the field
equations developed by Heisenberg and Pauli cannot be immediately applied. By generalizing
a method due to Ostrogradsky for converting Lagrange's equations of motion of a particle,
when higher derivatives are present, into canonical Hamiltonian form, it becomes possible to
perform a similar transformation of the field equations. Applying this method to Podolsky's
generalized electrodynamics, we obtain the Hamiltonian of the field and double the usual
number of generalized coordinates and momenta. The quantization of the field follows without
any special assumptions. The last two sections are devoted to the discussion of the auxiliary
conditions and some of their consequences.

I. PRELIMINARIES. EXTENSION. OF H:RISEN~ERG leads to the field equation
AND PAULI'S' METHOD

HE basis of generalizing the Heisenberg and
Pauli method of quantizing fields to the

case when the Lagrangian of the field contains
second derivatives of the potentials is contained
in a suggestion due to Ostrogradsky. ' He showed
how the Lagrange equations of motion of a
particle, when higher derivatives are present,
can be transformed into the Hamiltonian form.

Suppose the Lagrangian L is a function of the
potentials y =(A, iy) as well as their first and
second derivatives

L =L(y~i yap~ y~, pv) i,

where p are functions of the space-time coordi-
nates x = (x~, x2, x3, x4=ixo=fact), and

ya, p
= By~/Bxp, ya, py

= B y~/BxpBxp

The variational equation

BW= B I
~

Ld Vdt = 0, d V =dxidx2dx3,

BL 8 BL O' BL
+

BP~ BXp Rgb, p BXpBXy B(Ptt, pp

=0, (1.2)

q =y, and Q =By /Bt= q, —(1.3)

and define the rnomenta conjugate to q„and
Q- bv

f - = (BL/Bi-) B/Bt(BL/B0-)—

and
—B/Bx; (BL/Bj,;) (1.4)

P =BL/Bj,

respectively. The Hamiltonian is then conve-
niently defined by

provided p and p, „are specified and are un-
varied over the boundaries of the four-dimen-
sional manifold 0 over which the integration is
performed.

We introduce as the new generalized coordi-
nates

OI
JI= I.+P r/, +I' Q . — (1.6)

zcBW = B~ILdn =0, dn=d Vdx4, (1.1)
The time derivatives of the coordinates, j and
Q, can in general be eliminated from the

*No H fo.d con, H .fo.d, p, , i, . Hamilto»an bp using Eqs. (1.3) and (1.5). The
'W. Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 result is

(1929).' See E. T. Whittaker, Analytical Dynamics (1927), H=~(a- P- a-, * a-, *;, Q- &-, Q«, ') (17)
ap er
'Greek indices will range from 1 to 4, while Latin sub-

scripts from 1 to 3. Repeated indices are summed. Taking the differentials of Eqs. (1.6) and (1.7)
228
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and equating coeScients we obtain:

BH/BQ = BL/—Bq +p,
BH/Bq, ;= B—L/Bq

BH/Bq „,= BI./—Bq „;,
BH/BQ „=—BL/Bq, ;,

nates P and x, respectively. The boundary P

remains fixed; the other x is to be displaced by
the amount bx, while (a) the potentials them-
selves and their derivatives q, „remain un-

(1 8) changed over the boundary, and (b) Eqs. (1.2)
are satisfied for every interior point. Then

BH/Bp. = Q.=q.. BH/BP. = Q. = q . (1.9)
icb W =

~
(L+bL) dQ )L—dQ, (1.20)

kp kp

BH/BQ = BP /N —B/Bx;(BL—/Bq „),

From Eqs. (1.4), (1.5), (1.8), (1.9), and (1.2) it h $ d }
and $p and xp+bxp the new boundaries. There-

(1 l 0) foie,

BP /Bt = BH/B—q +B/Bx;(BH/Bq, ;)

B'/Bx; B—x;(BIi/Bq, ;;),

BP /Bt = BIP/—BQ '+B/Bx, (BH/BQ;),
But, if we put

b! HdV= bH= "{—(bH/bq. )bq.

+(bH/bQ-) bQ-+(bH/bP-) bP-

+(bH/bP )bP }dV,
the quantities

bH/bq =BH/Bq B/Bx;(BH/B—q, ,)

icbW= bLdQ+ LdS„bx„, (1.21)
{*ap f'

kp tp
(1 11)

where the last integral is a surface integral over
1.12 the old xp boundary. From condition (a),

alld
B/Bx„(by.) = —(B'y./BxgBx„) bxg (1.2.2)

By use of these results and

bLdQ= ' {(BL/By )by
{'*p

kp 4p

+(BL/By, „)by, „+(BL/By,„,)by, „,}dQ (1.23)

+B'/Bx, Bx;(BH/Bq, ;), (1,.14)

bH/bQ =BH/BQ B/Bx;(BH/B—Q, ,), (1.15)

bH/bP. = BH/BP. , and bH/bP. =BH/BP. (1.16)

Eq. (1.21) can be transformed to

icbW= {Lb„, y, , „p, —

are the functional derivatives of II. Hence from where
Eqs. (1.9), (1.11), (1.12), (1.14), and (1.15), the
canonical equations

—y, „),P )„}d5„bx„, (1.24)

p-p =BL/By-. p B/Bx.(BL/By-.—p.) (1 25)

(1.26)Pape =BL/B ya, pv.p. = —bH/bq. , P = bH/bQ. , (1.1—7)

bH/bp 0 bH/bP (1 18) From the definition of the total momentum P„

follow. We note that

dH/dh = {(bH/bq )q, + (bH/bp )j
+(bH/bQ )Q +(bH/bP )P Id V=0. (1.19)

The energy-momentum tensor can be obtained
from the variational equation, where now not
only the potentials q but also the boundaries
are varied, Let the four-dimensional manifold 0
be bounded by two open 3 spaces, having coordi-

&8"=P„sx„.

We obtain upon comparison with Eq. (1.24)

(1.27)

where the energy-momentum tensor t„„is given by

&C~pv =Lbpv ya, aPav ya, a)Palv (1 28)

It can then be shown that this tensor satisfies
the equation of conservation of energy and
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momentum, namely:
trav, v =0. (1.29)

2. PRELIMINARIES. SPECIAL LAGRANGIANS

Thus we obtain

and

Q2

p4 =—F,4, ;4
ZC

(2.10)

As an application of the foregoing discussion,
consider the Lagrangian proposed by Podolsky. 4

1
p =—(1 —a'l:l)F~4

ZC

(2.11)

L= —-',
I ,'F pF -p+aV' p pF, , „I, (2.1)

where the field quantities

having macle use of the symmetry properties of
F p, namely:

Fap = pp, a pa, p
F p

———Fp ancl F~p. v+ Fpv, ~+Fv~ p

(2.2)(1 —a'- ) F.„,„=O

are now in Heaviside-Lorentz units. The field

equations
P-=(a'/")(F p, pf- F-p. p-)

P4=0, P, = —(a'/c')F, p p.

(2.12)

(2.13)

now follow from Eq. (1.2). To comPute the ln vector notation these quantities become:
energy-momentum tensor we need the quantities

and
BL/B(p, „=F„„ (2.3)

BL/8 p, „g = a ,'(F„p, p f—g -Fp, p b„g)—. (2.4)

Hence from Eqs. (1.25) and (1.26) we obtain

p4
——i(a'/c') div E,

p= —(1/~)(1 —a' )E,

P, =0, P = —(a'/c') (curl H —(1/c)E).

(2.14)

p „=(1 —a'C7) F „,

Paxu a (Fkp, p~av Fap, p~& v) ~

(2.5)

(2.6)

Equation (1.28) thus becomes

ict„„=Lb„„y,„(1—a' —)F „+a'F „,„F p, p, (2.7)

from which the Hamiltonian is

II= —ict44=L

We note that p4 no longer vanishes, as it does
in the usual electrodynamics, but because of the
vanishing P4, we shall encounter the usual diffi-

culty in quantization.
This difficulty can be avoided by using an

artifice similar to that used by Fermi' and
Rosenfeld. ' Using a modified Lagrangian,

L = 2(pa p'pa, p+a (pa, pppa, vy) y (2'15)

we find for the field equations
lpg 4 1 a Fg4+a'F, 4, 4F~p, p. 2.8

Care must be exercised in computing the
momenta canonically conjugate to q and
because of the ambiguity in the partial di6er-
entiation with respect to j,;. We have from
Eq. (1.4)

1 8L 8 BL
p

ZC Bq)~, 4 BX4 Bq)~, 44

8 ( BL BL
+

I9xj (BP~, 4j 8 P~, j4 3
1

LF.4+a'(F4p p~—~.-~ F.p, p4) 3. —
ZC

(1—a' )Oy =0. (2.16)

If we further require that these potentials q

give the same field equations, Eq. (2.2), we
must have

or, using Eq. (2.16), we have

(1 —a' )y„, „=0 (2.18)

for the additional conditions to be imposed on
the potentials. Since

(1 —a' )F-..=(1—a'&)v. , -.
—(1—a' )y, „„=0 (2.17)

4 B. Podolsky, Phys. Rev. 62, 68 (1942), Eq. (3.8)
Note the typographical error. This equation should read

Lj= I g F~p'+a'(BF~ p/exp)'I .
8 2 0

Henceforth this paper will be designated by GE.

BL/Bp, „=—y, „,

~L/~pa, Av= a pa, pp4v~

' E. Fermi, Rev. Mod. Phys. 4, 131 (1932).' L. Rosenfeld, Zeits. f. Physik 76, 729 (1932).

(2.19)
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we have, by Eqs. (1.25) and (1.26), In terms of these quantities then the relations
between the field strengths and the potentials

pav 1 ii ppa, vv aXv a &4v C1 Pa. become:

where

pp (r, xp) = "(M +i& )dk, (3 1)

(1'l'
M ={—

} {pp.(k) exp {i(k r —kxp)j
&2~)

+pp. *(k) exp {
—i(k r —kxp)$},

(3.2)

~.={—
} {P.(k) exp (i(k r exp)]—

&2)

+j.*(k) exp {
—i(k r —exp)$},

the notation being the same as in GE, Eq. (6.2).
Further, for each field variable I' we introduce
the Fourier amplitudes defined by the equation

&1' rF=
{
—

}
t {F(k) exp Li(k r kx p) $—

Therefore, by Eq. (1.28),

ict„„=I6„„+cp, „(1—a' ) p

+c"-(p., „„C3p, (2.21)

from which follows the Hamiltonian

II= I- q,—4(1 ——~'0)y, 4
—&'p, «0v . (2 22)

The momenta canonically conjugate to q and
pa are

p = —(1—a' )pp and F =(a'/c')Qpp„(2. 23)

and satisfy the equations

CIP =0 and (1 a'g)F =—0. (2.24)

3. REDUCTION OF FIELD QUANTITIES AND THE
HAMILTONIAN TO FOURIER AMPLITUDES

Following Fock and Podolsky, " we shall find
it convenient to express the field quantities and
the Hamiltonian in terms of the Fourier ampli-
tudes of the potentials. Since, ' in order to satisfy
Eq. (2.16),

H(k) =ik)&A(k),

H(k) =ikXA(k),

H*(k) = i—k XA*(k),

H"(k) = -ikyA*(k),

E(k) = i(kpp(k) —kA(k)),

E(k) = i(kpp(k) —kA(k)),

E*(k) = —i(kpp*(k) -kA*(k)),

E*(k) = —i(kpp*(k) —kA*(k)).

(3.4)

The reduction of the Hamiltonian to the
Fourier amplitudes is a little more dif6cult.
Putting

pp, 4= —)t {kN +AN, }dk,

p;=pi {,Ip;N +k,N }de,

g pp = (1/a') )
I M,dk,

(1—u' )pp =) M,dk.

N. =
{
—

} {p (k) exp [i(k r k—x)jp

&2x)

—p '(k) exp { i(k —r &xp)—j}
(3.5)

(
N. =

{
—

} {j (k) exp Li(k r —kxp) 7
&2xJ

—j *(k) exp L
—i(k r —kxp) j},

we obtain for the derivatives of the potentials

Adapting FP, Eq. (15) to our need, and after
some manipulations, we find+F*(k) exp L

—i(k r —exp)]

+F(k) exp {i(k r exp))—
II=) {p-*(k)p.(k)+v-{k)p-*{k)}&'d&

+F*(k) exp {
—i(k r —exp) j}dk. (3.3)

' V. Fock. and B. Podolsky, Physik. Zeits. Sowjetunion
I, 801 (1932).This paper will be designated as FP.' GE, Eq. (6.2).

-& {&.*{k)~.{k)+~.(k)~.*(k)}&'d~ (3 ~)
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4. QUANTIZATION

In order to pass from the classical to the
quantum equations, without having to make
some new postulate for the commutation rules
of the potentials, two methods are available.
In one, due to Heisenberg and Pauli, the canoni-
cally conjugate coordinates and momenta of the
field satisfy commutation rules similar to those
of the quantum mechanics of a particle, i.e. ,

[p (r, xp), qp(r', xp)]= ki—8 pb(r r'—),
(4.1)

[P (r, xo), Qp(r', xo)]= —Mb pb(r —r');

nentials. Thus:
ck

[op *(k), pop(k')] = ——8 p8(k —k'),
2k

ck
[p -'(k) ~p(k')] ==~-p~(k —k')

2k

(4.6)

All other pairs of the Fourier component of the
potentials commute.

The commutation rules for the potentials at
different space-time points can be obtained by
transforming back to coordinate space. The
result is

and

[q, (r, xo), qp(r', xo)] = [P (r, xo), Pp(r', xo)]

= [Q-(r xo), Qp(r' xo)]

= [P (r, xp), Pp(r', xp) ]
=[p.(r, x,), Q (r', x,)]
= [P (r, xp), qp(r', xp)]

= [q-(r, xo), Qp(r', xo)]

= [p (r, xp), Pp(r, xp) ]= 0.

Lp. (r «) pp(r', »')]
ichb p f

~' exp [ik (r —r')]
(2pr)' ~

sin k(xo —xo') sin k(xo —xo')
dk. (4.7)

k k

The first term gives the well-known Jordan-
Pauli invariant delta function:

(1)o p sinkXo
(4 2)

l l, i e'"' dk=&(x)

is satisfied for every operator F in the Heisenberg
representation. Either method will lead to the
same results.

From Eq. (4.3) we have, as special cases,

p. = (i/k) [H, P.] and P.= (i/k) [H, P.]. (4.4)

Using Eqs. (2.23) and (3.6) we obtain

f
p, = ( —i/c) kN, dk,

P =(1/c')] kN dk.

(4 3)

The commutation rules for the Fourier ampli-
tudes are now found by expressing both sides of
Eq. (4.4) in terms of their Fourier amplitudes
and equating coefficients of corresponding expo-

It is interesting to note that now the potentials

q and their time derivatives Qp commute, a
result which is quite different from that of usual
electrodynamics.

Alternatively, we may require that

F=(i/k)[H, F]

where

F(lRl, Xp), (4.9)

1
,~. -(Xo' —IRI')'

a

«r Xo) IRI

F(lRl, Xo) =& 0 for lRl )Xp) —lRl, (4.10)

1—Jo -(Xo' —IRI')'

for Xo( —lRl.

Equations (4.1) and (4.2) can be obtained im-

mediately from Eq. (4.7). For example, partial
differentiation with respect to xo, and subsequent

' P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 100 (1934)

1
[~(IRI —Xo) —~(IRI+Xp)] (4 8)

4prlRl

The second term is proportional to

(1 go
t

sinkXp

E2pr) & k
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substitution of xp' ——xp, gives Eq. (4.2). Later
we shall need the relation

[y (r, xp), y, ;(r', xp)]=0, (4.11)

which is easily obtained from Eqs. (4.1).
It is interesting to note that in our formulation

the four-divergence of the potentials at different
space-time points does not commute. In fact, it
can be shown that

[y (r, xp) yp, p(r', xp')]

ick—
r sin k(xp —xp )

cik (r—r') dk (4 12)
a'(2s.)' ~ k

The commutation rules for the Fourier con&-

ponents of the field strengths can be obtained
from Eqs. (3.4) and (4.6). Thus, since

ch
[A,*(k), A, (k') ]= ——8;,5(k —k'),

2k

All other combinations commute. In the last
expression, e;;g, is +1or —T, according to whether
ijk is an even or odd permutation of 123, and zero
otherwise.

The commutation rules of the field quantities
can be obtained by the method used in deriving
Eq. (4.7). Thus:

[E,(r, xp), E,(r', xp') ]
ick p sin k(xp —xp')

(O'B "—kik;)
(2pr)P & k

Xexp [ik (r —r')] —(k'8, ,—kik, )

sin k(xp —xp')
X exp [ik (r —r')] dk

k

ick ( B' B'

(21I) E BxpBxp Bx;Bx& )
ck

[y*(k), y(k') ]=—5(k —k'),
2k

ck
[A;*(k), A (k')] =—8,,8(k —k'),

2k

(4.13)

Also

sin k(xp —xp') sin k(xp —xp')

X~

Xexp [ik (r —r')]dk. (4.15)

cIE

[y*(k), y(k')]= ——B(k —k'),
2k

it follows that
ck

[E*(k) E '(k')] =—(k'B* —k'k ) B(k—k'),
2k

ch
LE (k) E *(k')]= -=

2k

X (kPB;g —k,k;) 5(k —k'),
ck

[H,(k), H;*(k') ]=—(k'8"—k;k )8(k —k'),
2k

ck
[H;(k), H;*(k') ]= ——

2k

X (k'8"—k,k,) 5(k —k'),

[E„(k),II;*(k')]= [E,*(k), II,(k') ]
ck=—k„p;,„5(k—k'),
2

[E*(k) Hi*(k')]= [E**(k) HJ(k')]
cubi,

= ——k, p;p, b(k —k').
2

(4.14)

[H, (r, xp), II,(r', xp')]

ictus ( 8' d'

(2 )' ( Bx,Bx,' Bx;Bx i
sin k(xp —xp') sin k(xp —xp')

X)

and
Xexp [ik (r —r')]dk (4.16)

(By /Bx )4=0'
However, it is required of an auxiliary condition

ckE&pp
[E;(r, xp), FI;(r', xp') ]=

(2pr) '

B t. sin k(xp —xp') sin k(xp —xp')
X

B..~ k k

Xexp [ik (r —r')]dk. (4.17)

5. AUXILIARY CONDITIONS

It is customary in the usual quantum electro-
dynamics to assume, in addition to the wave
equation, that the Schrodinger functional
satisfies the condition
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of the form A%'=0 that A(r, t) commute with
A (r', t') taken at another spa.ce-time point. This
condition, according to Eq. (4.12), is not satisfied

by (By,/Bx ).
A suitable generalization of the above equation

can be obtained as follows: Eq. (2.18) is satisfied
if we put

a(By./Bx.) +B= 0, (5.1)

where 8 is any function satisfying the equation

(1—a' )B= 0. (5 2)

In terms of the Fourier amplitudes, Eq. (5.2) is
equivalent to

B=( —
( IB(k) exp [i(k r —kxo)]

+BP(k) exp [—i(k r —kxp)]Idk. (5.3)

Following the suggestion due to Stuckelberg, "
we shall take as the auxiliary condition

[a(8y /Bx )+B]4=0, (5.4)

and assume that B(k) and B*(k) satisfy the
same commutation rules as the other tilde
functions, i.e. ,

[B(k), B'(k') ]= —(ok/2k) ~(k —k'), (5.5)

and commute with the amplitudes of the poten-
tials. Hence from Eqs. (5.3) and (5.5)

—ich

The operators occurring in these equations com-
mute among themselves and also with the
Hamiltonian.

f(r„ t) =—
2(2pr)& ' k

6. FIELD WITH CHARGED PARTICLES

The present formulation can be extended to
fields containing charged particles exactly as was
done by Dirac, Fock, and Podolsky. " As in

DFP, we shall find again that the operators in

Eqs. (5.8) do not commute with the operator"

R, ik(B—/Bt, ) (6.1)

This difhculty can be overcome by introducing
operators

C(k) =i[k A(k) —ky(k)]+ f(r„ t,),
(6.2)

1
C(k) =i[k A(k) —ky(k)]+ —B(k)+f(r„ t.),

a

and their complex conjugates, where f(r„ t,) and

f(r., t,) are chosen so as to make the C's com-
mute with the operators (6.1).A short calculation
shows that

&s

f(r. , t) =
2(2r) ~ k

Xexp [—i(k r, —kxp. )],
(6.3)

&s

Xexp [—i(k r, —kxo,)].[B(r, xp), B(r', xp') ]=
(2pr) '

I
sin k(xp xp )

X)
C(k)+ =0,C(k)+ =0,

(6.4)Using this result and Eq. (4.12), we have

[ay. .(r, xo)+B(r, xo),
C'(k)% =0, and C*(k)%' =0.

Transforming (6.4) to coordinate space, we
obtain

Bp
C(r, xo) =div A+ + B(r,xp)—

Bgp a

ayp p(r', xp')+B(r', xp')]=0. (5.7)

Equating coeFficients of corresponding exponen-
tials, the auxiliary condition can be written in
terms of the Fourier amplitudes, i.e. , sin k(xp —xp, )

(2pr)P ' " k[k A(k) —ky(k)]4=0,

Then, the modified auxiliary con'ditions are

exp [ik (r —r')]dk. (5.6)

[a(k A(k) —ky(k)) —iB(k)]+= 0,
(5.8)

[k A*(k) —ky*(k)]4 =0,
sin k(xp —xp, )

exp [ik (r —r,)]dk. (6.5)

[a(k AP(k) —ky*(k))+iB*(k)]4=0.
"E.C. G. Stuckelberg, Helv. Phys. Acta 11, 225—299

(1938).

"Dirac, Fock, and Podolsky, Physik. Zeits. Sowjetunion
2, 473 (1932).Hereafter referred to as DFP.

"For the definitions of these quantities see reference 11,
Eqs. (1) to (11), inclusive.
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The field equations can be obtained by pro- results:
cedure similar to that used in DFP. From the
defining equations, GE Eq. (3.3), or

( 1 ay)
(1 —a'0)

~

div A+ ——~%'=0, (6.10)
E cat)

and
E= —grad p —(1/c) (BA/Bt)

H=curl A,

(6.6)

1 BE)
(1 —a'0)

~

curl H ———~4=0, (6.11)
c ati

it follows immediately that

curl E+ (1/c) (BH/Bt) =0 and div H = 0, (6.7)

so that these remain 'as quantum mechanical
equations. The other two equations can only be
derived with the aid of Eq. (6.5).

Recalling Eq. (2.16), and observing that the
first and the second terms under the integral
sign of Eq. (6.5) satisfy Maxwell's and Yukawa's
wave equations, respectively, we obtain from
Eq. (6.6)

(1—a'2) div E4

fg 1 8= —P ———A(X —X,) @. (6.12)
'4m c8t 2 tg=t

The argument leading from DFP Eqs. (48) to
(49) has to be modified slightly in view of the
fact that the momenta conjugate to A, are not
—(1 —a'Cl)E;, but (1/c')(1 —a'Q)A;. Thus

[A., (1—a' )E]

= —e, p(r„ t,) n, A—(r,„t,),

1BEq
(1—a'I7)] curl H ———)e

c ()t)

&s

grad P —A(X —X,) 4', (6.8)

1
(1—a' )Vy(r, t)+—(1—a'Q)A(r, t)

= icky, n, B(r—r,) .

Since

(6.13)

1 8
A(X)

c BXp Xp=0where X is the four-vector (xi, x2, x3, xo) and

A(X) the invariant delta function defined in Fqs (6 11) and (6 12) become
Eq. (4.8). Similarly

(1 —a'Q) div E%'
( 1 BE)

(1—a' )~ curl H ———)0
c aT&

1 8 6B= ———P —A(X —X,) +. (6.9)
c Bt ~ 4m and

= (g e,e.a(r —r,))4 (6.14)

(1 —a' ) div E%'= (g e,a(r —r,))4. (6.15)
Now putting the various times equal to each 8

other, we get for the equations corresponding to These are natural generalizations of the equa-
DFP Eqs. (45), (46), and (47) the generalized tions of ordinary quantum electrodynamics.


