
PHYSICAL REVIEW VOLUME 65, NUM HERS 5 AND 6 MARCH 1 AND 15, 1944

On Supersonic Waves in Cylindrical Tubes and the Theory of the
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A theory of the Pierce acoustic interferometer is given which takes into account the non-

uniformity of the acoustic field. This leads to an interpretation of the satellite peaks observed
in the experiments of Pielemeier and others, and to an improved formula for the determination
of the absorption coefficient from the observational data.

1. INTRODUCTION distance between the emitter and reflector plates.
The reduction of the observations consists of the
deduction of the ultrasonic velocity and the
absorption

coefficient

from the form of this
curve. In order to study this latter problem we
must find an analytical expression for the acoustic
reaction on the emitter in terms of the velocity of
sound on the one hand, and in terms of parame-
ters describing the form of the vessel and the
character of the vibration of the quartz plate on
the other.

2. GENERAL THEORY

A rigorous solution of this theoretical problem
would be extremely difficult. In our analysis we
shall consider the various types of waves which
may be generated in such a system, and their
effect on the output of the source. This mathe-
matical theory is similar in principle to the
theory of electrical wave guides.

If, at a given frequency, the absorption may be
considered as small and the transverse dimen-
sions of the cylinder as large, we may follow
Kirchhoff' in neglecting viscosity and heat losses
on the surface of the cylinder, and consider it as
infinitely rigid, perfectly smooth, and absolutely
thermonegative. By virtue of these conditions,
we assume the existence of a velocity potential
satisfying the equation

V'y+ko'y =0

throughout the interior of the cylinder. Here
ko ——Po —ino is a complex wave factor for the
unconfined medium (Po ——. a&/vo), and the time
factor e'"' is understood.

Kith the s axis parallel to the generators of the

' G. Kirchhoff, Pogg. Ann. 132, 177 (1868).

H E successful application of the Pierce
acoustic interferometer to the determina-

tion of supersonic sound velocities is well known.
Many attempts have been made to apply it to the
measurements of absorption coefficients as well,
but the accuracy obtained has appeared ex-
ceedingly low. L. Mandelstam has concluded that
the most likely cause for this is the non-uni-
formity of the sound field, for which no correction
has been made. Ordinary methods of reduction of
the experimental data have assumed that the
quartz plate used as a radiator vibrates like a
piston, giving rise to a purely plane wave. How-
ever, real plates do not come up to this ideal,
usually exhibiting a rather irregular form of
vibration.

The present paper deals with the theory of the
interferometer, taking into account this more
complex pattern of the acoustic field, and de-
scribes a new method of reduction of the experi-
mental data which is believed to be more accu-
rate and general in application than those
previously employed.

Before attacking the general theory, it may be
desirable to give a brief description of the
principle of the interferometer and of the manner
in which it is employed. A cylindrical metal tube
of arbitrary sectional form is closed at one end by
a quartz plate driven by an electrical sine wave
generator, and at the other by a movable piston
used as a reflector. The whole volume of gas in
the tube is set into vibration, in virtue of which
there is an acoustic reaction on the sound source.
The observational result is a reaction curve in
which some quantity measuring the acoustic
output of the source is plotted as a function of the
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B pp/Bz =0, in the plane z = 0,

Bp2/Bz=F(x, y), in the plane z=L,

(3)

(4)

where F(x, y) gives the normal component of the
velocity on the surface of the radiator.

Following Rayleigh's method' we look for
particular solutions of Eq. (1) in the form of
progressive plane waves propagated in the z

direction, by setting

P(x y)0&imz

where P satisfies the condition

cylinder, the reflecting surface in the plane z=0,
and the radiating surface in the plane z=I, the
boundary conditions take the form

B&p/Bn=0, on the side wallsof thecylinder, (2)

The typical form of dependence of P; and n; on
the value of f; is shown in Fig. 1. The waves for
which f; is of the order of Ppp have such large
attenuation that they practically disappear
within a few wave-lengths, while if +0= 0, waves
for which f;&~ Ppp are not propagated at all. This
type of attenuation is not due to adsorption in

the medium, but to interference effects of pri-
mary waves from the source and their reflected
waves from the sides of the cylinder. It is this
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with f=kp' m', an—d where it will be assumed
that f is real.

Supposing this equation solved, with boundary
condition (2), we find the types of waves which

may be propagated along the cylinder without
change of. type, corresponding to a discrete set of
values f, ,j =0, 1, 2, for f, with associated
values for the wave factor m, =p; pox; U—nder. the
conditions assumed, the different solutions of
Eq. (6) will form an orthogonal set of functions
when integrated over the cross section of the
cylinder, and we shall suppose further that they
have been normalized.

The types of waves permitted vary with the
form of the bounding cylinder, as do their phase
velocities and attenuation coefficients. The wave

fp 0correspon——ds to an ordinary uniform plane
wave; the greater being the value of f;, the more
complicated the wave pattern becomes.

Separating the real and imaginary parts of
mj=kp' f;, we obta—in

2P ' = (Pp' —~p' —f )

+[(Pp
2 c2 p

2 f ) 2 +4c2 p)
2P p)

2]1 (7)

2n;2 = —(Ppp —np2 —f,)
+ [(p 2 ~ 2 f .)2+4~ 2p 2].2~ (g)

' Lord Rayleigh, Theory of Sound, Vol. 2, Section 301.
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FIG. 1.Attenuation and phase velocity of corrugated waves
in tubes for n0/po = 6X 10 '.

effect which constitutes the basis for the present
theory.

The general solution of Eq. (1) is obtained a,s a
linear superposition of all of these special waves

pp= P |k,(x, y) [c exp (pm;z)

+c/' exp ( pm;z)] —(9).
From the form of this solution, boundary condi-
tion (2) is satisfied automatically. Condition (3)
will be satisfied by taking c =c;"=c;.

We assume that, whatever the form of vibra-
tion of the source, F(x, y) of condition (4) can be
expanded in a series of the form

F(x, y) =2 ~;|k (x, y)

from which, restoring the time factor, our general
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Fro. 2. The elementary reaction curve for air at a frequency of 100,000 cycles.

solution satisfying all conditions turns out to be

A;p;
sirut g

Zmj

exp (im, )z+e px( im;s)—

exp (im;L) —exp ( im;L)—
where the symbols S and g will be used to in-
dicate the real and imaginary parts, respectively.

The acoustic output of the radiator is

'—"= t, f'p/' —'"'f
]
—'"'/ dS

dt ~ ~ ( 8$) z=r, EBs) ~=i,
(12)

dm 1
p~Z-

dt A„2 p2+ n~

XLp;g(cot mL) +cx; iR( ctom, I.)). (13)

To a sufficient approximation, the terms con-
taining the factors n;(R(cot m;L) can be neg-
lected, as they are small for both small and large
values of o,;, since for large values of o.;

(R(cot m;L) exp ( —2n,L).

in which p is the density of the medium. The
integral is to be extended over the surface of the
radiator.

By substitution of Eq. (11) in (12), taking
advantage of the orthonormal character of the
f's, and performing a time average in the usual
fashion, we get

In the remaining expression we need consider
only the terms for which

) p; ~

&&
~
n,

~

in which we
can put

~p /(p'+~') =~/p =~i

If the variation in the output of the sound
generator over a resonance curve is small, we may
assume that the experimentally measured plate
current of the power tube which drives the
oscillator is a linear function of the acoustic
power output, and we can take as a measure of
the observed curve the remaining quantity

d8)
I(I.) = Q pv;A —g(cot m;I.). (14)

dt A&

3. DISCUSSION

The simplest case is that in which the radiator
vibrates like a piston, as is usually assumed, so
that only A0 di8'ers from zero. This reduces I(L)
to the form

I(I) =psoAO'[1+exp (—2aoL) cos 2POLj (15)

for large values of I.. The reaction curve for the
ordinary theory is shown in Fig. 2. According to
Eq. (14) the complete reaction curve is made up
of a superposition of curves of this type. ' '

In order to explain the usual form of observed

' W. H. Pielemeier, Phys. Rev. 34, 1187 (1929).
4 J. S. Hubbard, Phys. Rev. 38, 1011 (1931).' L. Beliavskaya, Bull. Acad. Sci. U.S.S.R., No. 7 (1935).
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Fio. 3. The satellites after Pielemeier.

reaction curve, it is necessary to assume that in
most cases the acoustic field set up consists of a
group of waves forming a narrow wave packet.
The presence of absorption diminishes the re-
solving power of the interferometer, so that the
fine structure remains unresolved.

In particular cases, in which there are two
dominant groups of waves, satellites may be ob-
served, which gives us an explanation of the
subsidiary peaks which have been observed by
many authors. '' ' Figure 3 represents such a
curve taken from the work of Pielemeier. ' The
measurement of the intervals indicates that the
major peaks correspond to waves of high index
f;, while the minor peaks correspond to the nearly
plane wave. This is peculiar to Y-cut crystals; for
X-cut crystals the approximately uniform plane
wave predominates.

Since only the peaks without satellites are used
in the experimental work on absorption coeAi-
cients, we confine our attention to them. Ac-
cording to our theory, we consider them to be
made up of a group of waves forming a single
wave packet. We shall now show that the ap-
parent absorption coefficient of such a wave

' E. Klein and W. D. Hershberger, Phys. Rev. 37, 760
(1931).

7 R. Alleman, Phys. Rev. 55, 87 (1939).
'W. H. Pielemeier, J. Acous. Soc. Am. 9, 600 (1938).

packet arises from two independent causes:
(a) the true absorption of the medium, and (b) an
apparent absorption arising from the mutual
interference effects of the waves comprising the
packet. The separation of the two effects will lead
us to our improved formula for the reduction of
the experimental data.

For large values of apI. , when the dominating
part of the acoustic reaction on the source may
be attributed to the first reflected wave, ex-
pression (14) takes the form

I(L) =P 8,L1+exp ( 2a,L) cos (2P—;L)] (16)

with
9,=pv, A,'.

Replacing the line spectrum by a continuous
wave group, we get

0

I(L) ~r 8(P) [1+e ' ~ cos (2PL) jdP.
Jp,

If we transfer the origin to the center of the
packet P„and assume the whole spectrum to be
confined within the interval P,&b, we get

Xexp (—2a,L) cos (2P,L+y)+const. , (17)
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where

C'(L) cos pp= 8,($) cos 2L) d(,

nential in character, we must put

C'(L) = Cp e 2~r. (22)

~+b

C'(L) sin pp= 8.(t) sin 2L$ d$,
—b

8 (5) 2=9(5)+8( 5)—3
(19)

8.($) =cos pp C'(L) cos 2$L dL,
0

8.(E) = lL8(E) —8(—5)).

These equations may be inverted in the form

so that the apparent decay constant becomes

ne =CZc++ (23)

The absorption coefficient o., arises from direct
absorption in the medium, while the absorption
represented by the coefficient e is due to inter-
ference effects within the wave packet, the
resultant absorption being due to the combina-
tion of the two effects.

Substituting (22) in (20) we find

8,($)=sin 22 ~I C'(L) sin 2' dL
0

(20)

so that

8.(g) =cos pp

i22+ $2

It is evident that the relation between the form
of the spectrum 8(g) and that of the reaction
curve envelope C'(L) is similar to that con-
necting the optical spectrum and the visibility
curve of the Michelson interferometer.

Since a large variety of forms of the function

8($) may produce effectively the same enveloping
function C'(L), it is not surprising that observed
reaction curves may be approximated rather well

by an over-all exponential decay curve of the
form g

—2aL

exp (—2n,L).cos (2P.L+22). (21)

By comparison with the theoretical curve (15)
for a uniform plane wave, it is normally assumed
that (a) the experimental decay coefficient n. is

equal to np for the uniform wave, and (b) P, = Pp,

so that the wave-length of the uniform wave is

equal to twice the distance between adjacent
maxima.

By comparison with our more complete formula

(17), we see that the dependence on L is de-

termined in part also by the variation of the
envelope function C'(L). If we suppose that the
over-all variation of the reaction curve is expo-

4. REDUCTION OF THE EXPERIMENTAL DATA

It is customary, in the reduction of experi-
mental observations, to choose those reaction
curves which may be represented with sufficient
accuracy for large L by an expression of the form

is the half-width of the symmetrical part of the
packet.

Now we can express 6& in terms of the width

Af, for according to (7) and (8)

2P.A)=hf

so that to a first approximation

r2 =6f/8P, =Df/8P p. (24)

The ~alue of Af is characteristic of the form of the
vibrations of the source and the geometry of the
interferometer, but does not depend on the
properties of the medium in it.

According to Eq. (8), if f,/p, 2 (2, we have

n.=npLI+ (f /20p') j (2S)

n. (~f/8P p)—
1+(f./2Pp')

(26)

while the corresponding wave-length is given by
the formula

&p =7./LI+(f /2Pp') j (27)

in terms of the apparent wave-length ),.

so that, if the width of the symmetrical part of
the packet hf and the position of its center f, are
known, the coe%cient of attenuation no referred

to the supposed homogeneous plane wave may b|:
deduced from the apparent absorption coefficient

by means of the formula
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Since many authors reduce their results to a
calculation of aphp', we have the corresponding
formula

L~. —(&f/8Po)] &,'
apX p-'— (28)

L1+(f./2Po') ]
As far as can be judged, the corrections in-

volving Af and f, are appreciable, and with an
ideal uniform plane wave the ultrasonic inter-
ferometer would give a much less rapid attenua-
tion than that usually measured.

The determination of Af and f, for . a given
apparatus may be carried out by observation of

the reaction curve of a gas with known values of
vp and np. The coefficien u obtained by the
method of Lubny-Herzyk' may be used in (24) to
determine Af With 2f known, f, may be de-
termined by measuring n, and then using (25)
with n, =o.p

—a.
In conclusion I should like to express my deep

gratitude to L. Mandelstam, under whose guid-
ance this work has been done, and to K.
Theordortchik for his exceptional attention to
the present investigation.

E. Pumper, J. Phys, U.S.S.R. 1, No, 5—6 (1939).
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The intensities of the x-ray reflections from a given crystal of a known substance depend on
the vector distances between the atoms and not directly on the coordinates of the atoms. The
problem of uniqueness in the x-ray analysis of a crystal structure thus depends on the uniqueness
of the determination of the arrangement of a periodic set of points in space by its vector distance
set, In this paper a large number of cases is presented in which two, and sometimes three or four,
non-congruent sets of points are homometric, i.e., have the same vector distance set. Although
the investigation is largely based on a discussion of one-dimensional cyclotomic sets, i.e., those in
which the points divide the period on the line into rational fractions, it is shown that there are
many families of non-cyclotomic pairs and multiplets and that each of these families has its
counterpart in two and three dimensions. The significance of these results for practical crystal
analysis is discussed.

~
F(h;)

~

' =P P f.f~ exp 27rih (r~ —r,), (1)

in which f, and r„respectively, are the f factor
and the coordinate vector for the sth atom and

h= Qh;b, . (1a)
*A preliminary report of this work was presented at the

Ann Arbor Meeting of the American Society for X-Ray
and Electron Diffraction in June, 1943.

INTRO DUCTIO N

'T is well known that the Ji factors of x-ray
~ - analysis are completely determined in magni-
tude and in phase by the coordinates of the atoms
in the crystal and by the f factors of the indi-
vidual atoms. The absolute values of the I'
factors are, however, given by

In this latter equation the quantities h; are the
Miller indices for the plane in question and the
vectors b; are the reciprocal lattice vectors. The
intensities in the x-ray diffraction pattern thus
depend only on the vector distances between
atoms and on the f factors, since in Eq. (1) the
coordinate vectors r, do not enter alone, but only
in the form of the differences r& —r, .

We shall not concern ourselves here with the
problem of determining the distances from the
values of

~
F(k;) ~' since this has been discussed

in detail elsewhere. ' We shall investigate the
problem of the determination of the coordinate

'A, L. Patterson, Zeits. f. Krist. 90, 517 (1935); D.
Harker, J. Chem. Phys. 4, 381 (1936); M. Avrami, Zeits.
f. Krist. 100, 381 (1939);S. H. Yu, Nature 149, 638 (1942)
and 150, 151 (1942).


