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the Present measurements on the Lzzz state of
silver with those of Webster, Hansen, and
Duveneck' on the X state of the same element.
Two facts are clearly shown:

(1) The cross sections for excitation to the X
state and the Lzzz state are both greatest for
cathode rays whose kinetic energies are about 3.5
times the ionization energy of the state in

question.
(2) When U) 3.5, the decrease in ionization

cross section with increasing cathode-ray energy
is more rapid for the LIII state than for the K
state.
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The invariant field theory of Part II is interpreted, in

agreement with F. Bopp, as Maxwell's theory with a linear
differential relation between the fields E, B and D, H
involving a new constant k which measures the reciprocal
radius of the electron. The former "mesonic field" of
minimum frequency vo=kc/2~ represents polarization of
the vacuum. The electron is a singularity in the D, H
field whereas E, 8 remain finite. Instead of obeying
dynamical equations of motion, the electron moves under
the condition that the Lorentz force vanishes identically
on the singularity, so that no work is done on the particle.
All energy is located in the field. In this respect the theory
is unitary. Electromagnetic and inert mass are identical.

In contrast to Dirac's classical electron which is subject
to advanced and retarded potentials and displays self-
acceleration, the field theory works with retarded poten-
tials only, and self-acceleration is avoided. Stable equi-
librium between electrons and radiation is granted by
spontaneous and induced transitions, similar to Einstein's
derivation of Planck's radiation formula. In spite of dis-

playing a magnetic moment the electron does not have
magnetic self-energy, so that its radius is the ordinary
electrostatic radius 1/k = e2/2mc2. In contrast to Born-
Infeld's non-linear theory, our field equations allow a
Fourier representation as a basis for the quantum theory
of Part IV.

1. CLASSICAL FIELD THEORY

HE modification of electrostatics proposed
in Part I and its electromagnetic continu-

ation discussed in Part II ' rest on the assump-
tion that vacuum is polarizable, as described by
linear diiferential relations between the vectors
E, B and D, H (for details see Section 6):

D=E —k 'OE, H=B k'OB, (1)—
where Q is the Laplace operator in x, y, s, ict.
The constant k of dimension Ll '$ determines
the minimum frequency vo=kc/2x of waves of
polarization or "meson waves. "

k also plays the
role of the reciprocal electronic radius, although
the charges e are condensed in mathematical

'A. Lande, Phys. Rev. 60, 121 (1941). A. Lande and
L. H. Thomas 60, 541 (1941).

points only. The simplicity and naturalness of
our approach are demonstrated by the fact that
the same modification of Maxwell's theory has
been proposed independently and simultaneously
by F. Bopp. ' Whereas we began in Part I with
a Fourier representation of the field of a point
particle with finite self-energy, Bopp started
from a formal generalization of the Lagrangian
function of the field E, B=f p, namely,

(~/~6) I (f- —)'+k '(~f- /». )'I+~-v- (2)

where J is the 4 current and p is the 4 potential.
The relation. to other field theories (Maxwell,

Born-Infeld) become obvious if the vectors E, H
of Part II are called E, 8, and the vectors E",
H" are called D, H. Our "meson field" E' =D —II

' F. Bopp, Ann. d. Physik 38, 345 (1940).
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TAB&.E I. Notation.

Our former B, H; V, A 8",II"; V", A" 8' II' V' A'
Bopp E, B;q, e D, H;p, A F, G; V/k, U/k

and II'=H —8 then represents the electric and
magnetic polarization of the vacuum (see Table I).
In contrast to Born-Infeld, our relation between
D, H and E, 8 is linear so that it is easy to obtain
a Fourier representation (not discussed by Bopp)
with subsequent quantization. Infinities are
avoided automatically without resorting to arbi-
trary cutting-off procedures.

The new field theory is unitary insofar as all

energy is supposed to be located in the field, with-
out additional "mechanical" energy of particles.
Instead of introducing mechanical equations of
motion for the electrons, we postulate that the
field E and 8 (which is responsible for Lorentz
force and work on the particles) shall vanish at
all times on the point singularities themselves.
As a consequence of this condition we were able in
Part II to derive a quasimechanieal equation of
motion:

m(x) p = external force+ (2 p'/3c') (di/dt) p (3)

valid at a particular time (t =0). m is an abbre-
viation for kp'/2c' and represents the electromag-
netic mass of the surrounding field.

The simplest solution of the field equations is
an electrostatic field of spherical symmetry
surrounding a point charge p (II, Section 4):

D= p/r' E= p/r' p(1/r'+—k/r) exp ( —kr).

In contrast to D, the field B remains finite at
r =0, namely, E = pk'/2. However, similar to
Born-Infeld, the field component 2, jumps from
the finite value +

~

E
~

to —
~
E

~

when passing
through the singularity, with the average value
B,=0 on the singularity itself. This discon-
tinuity preserves the individuality of the par-
ticle. The electric field energy of the particle at
rest has value W=kp'/2=me'

Two point charges ei and ~2 at distance r have
field energy

W=kp, '/2+k pp'/2+(pgpp/r) $1 —exp (—kr)]. (4)

Two opposite charges + e and —e therefore yield

W=mc'+mc' —p'/r for large r i
5W=mc'kr for small r.

Hence, when r decreases from ~ to 0, field

energy of value 2mc' is released. It thus turns
out that transformation of mutual electrostatic
into radiation energy with neutralization of +e
and —p (annihilation) is possible already in the
classical domain.

Another significant feature of our theory
concerns electrons vibrating with high fre-
quencies v) vp

——kc/2pr. The energy emitted in
this case is reduced by a factor (I I, Section 6)

1 —(1—vpP/ vP) & (6)

as compared with the normal Maxwell-Lorentz
radiation. For v)~ vo the reduction factor ap-
proaches vpP/2 v', so that energy is emitted at the
rate v' rather than v4 per second, or v rather
than v' per period. This is of importance for the
quantum theory of stationary states which
always presumes that the energy emission during
a single period is small compared with the energy
of the state itself.

Our theory in its classical form does not dis-
tinguish between self-field and external field,
except for the special case of uniform motion.
On the other hand, the quantum theory of ra.di-
ation is dualistic. Here one considers electrons
in uniform motion with definite self-energies
W= Wp(1 —P') & surrounded by a "pure field"
with constant Fourier amplitudes. Transitions
between stationary states result from mutual
perturbations between pure field and particles.
The difficulties of the quantum theory of radia-
tion arise primarily from the task of describing
the interaction between external field and
mechanical particles in a dualistic fashion,
although the classical theory of the electron in
the field is unitary. The difficulty is solved in
Part IV by considering as zero approximation
particles without rest mass which therefore
travel with the velocity of light. When the inter-
action with the field is introduced, stationary
states of the particles with any velocity smaller
than c become possible. These states may be
obtained from states with zero velocity by
Lorentz transformations, and the rest mass now
has a definite value. Our special type of semi-
unitary field theory in which the particles retain
their individuality as singularities although all
energy is located in the field, offers a satisfactory
background from the classical and quantum
points of view.
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x =ut+ -',ft+ —,'gt' (7//)

during a short time t near t=0 and with small
coefficients u, f, and g whose meaning is u = (x)»,

f= (x)», g = (dx/dt)» at t =0. The self-force was
found to be

self-force = —(» k/2c ) f+ (2» /3c ) g

m(x)»+ (2»—'/3c') (dx/dt)»

where m is an abbreviation for (»'k/2c') repre-

' P. A. M. Dirac, Proc. Roy. Soc. 107, 148 (1938).

2. THE PROBLEM OF SELF-ACCELERATION

For vanishing external field Eq. (3) reads

dx/d(ct) =ax with a =3mc'/2»'. (7)

The solution of this non-relativistic equation is

dx/d(ct) =exp (act)+p (7')

where P is the velocity ratio v/c at t= —~. A
free electron thus should be able to accelerate
itself from any initial velocity v at t= —~ to
larger and larger velocities, the beginning phase
of the process being described by (7'). Rela-
tivistic corrections are needed for higher veloc-
ities only. Dirac' has emphasized the funda-
mental importance of self-acceleration in his
relativistic theory of the classical point electron.
There he assumes that the force on the point
charge is determined by the difference of retarded
and advanced potentials, in order to get rid of
the infinite self-energy. As a consequence he
obtains self-acceleration. However, the whole
idea of a free particle acquiring larger and larger
velocities on its own accord is so non-physical
that any theory yielding self-acceleration might
be rejected almost a priori. Yet, self-acceleration
is an inevitable consequence of any theory in

which the electron is subject to a differential
equation of motion of finite order because the
equation of motion at the beginning of the process
for small velocities is always approximated by
(7) with the solution (7'). It is a decisive ad-
vantage of the present field theory that the
singularity does not obey a differential equation
of motion. The force on the electron at t depends
on the whole path before t rather than on the
motion in the immediate neighborhood of t.

In I I, Section 4 we discussed an electron
moving with coordinate

dx/d(cs) =exp (acs)+ p,
d(ct)/d(cs) =1 for s= —~. (8)

With reference to a Lorentz system xt in which
the electron is at rest at the beginriing of the
process we also have

dxo/d(cs) = exp (acs),
d(ct//)/d(cs) = 1 for s = —»0.

(8')

Generalizing these equations tentatively for a11

s values we write

dx/d(cs) = S(e«'+b), d(ct)/d(cs) = C(e«'+b),
dx, /d(cs) = S(e-') d(ct//)/d(cs) = C(e-')

where b(P) is a function of P which coincides with

p for small p, whereas S(s) is a function of s which
coincides with s for small s like a sine function,
and C(s)~1 for small s like a cosine function.
We now write down relativistic transformation
formulae from xt to xptp

dx= Ldx»+d(ct») P](1—P')
d(ct) = $dx» P+d(ct»)](1 —P')

senting the finite mass of the point charge e.
our requirement of a vanishing total force means
vanishing self-force for a free electron, so that
the latter at t=0 satisfies the equation

m (x) //
(——2»'/3c') (dx/dt)»

This equation does not permit conclusions
about self-acceleration before or after t =0.
Whether self-acceleration is-possible depends on
the question whether the self-field vanishes during
an accelerated motion. Before answering this
question of dynamics we must first find the cor-
rect kinematic description of a relativistically
accelerated motion.

Let us assume tentatively that the motion of
a certain free particle were actually of the form
(7') at least for large negative t and for small

values of the initial velocity p. Let us ask also:
What is the correct relativistic continuation of
this accelerated motion& The answer may be
found by relativistic transformations without
resorting to dynamics. Since the electron is free,
the acceleration at any time must depend only
on the proper time s measured on the particle
itself. For large negative t, however, t and s are
identical provided that P«1. Instead of (7') we
therefore may write relativistically
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(1 —P') &=cos (ib) =Cosh (b),
P(1 —P') '*= i s—in (ib) =Sinh (b),

we have

Tanh b=P,

S(s+b) =S(s) Cosh (b)+ C(s) Sinh (b),
C(s+b) = 5(s) Sinh (b)+ C(s) Cosh (b).

These formulae are valid only if the functions S
and C are Sinh and Cosh. The correct relativistic
continuation of (7') in the xt system, therefore,
1s

dx/d(cs) =Sinh (e-'+b),
d(ct)/d(cs) =Cosh (e-'+b),

where p =v/c describes the original constant
velocity of the electron in the xt system at
t= —~, and s is the proper time. Equation (9)
represents the only accelerated motion possible
for a free electron with (7') as non-relativistic
approximation for E = —~. As a consequence we

obtain the following invariant description of
self-acceleration:

d'x, /d(cs)'=a exp (acs), (9')

where x„ is the Lorentz system in which the
electron is momentarily at rest.

Next let us calculate the self-force according
to the field theory if the electron is relativistically
accelerated according to (9). In order to simplify
the mathematical problem let us discuss only the
initial part of the process between f= —~ and
t = (1/ac) ln C where C is a small positive
number. During this initial phase we may use
the approximation (7'). Shifting the zero point
of the time scale we may consider the motion

d$/d(cr) = C exp (ac7),
P = (C/a) [exp (acr) —1]

during —~ (r (0. The zero point of the $ axis
coincides with the position of the electron at
7- =0. Furthermore, instead of discussing the
self-force during the whole time 7. &0, we cal-
culate it at ~=0 itself. In the original time scale
this is the time t=(1/ac) ln C where C is any

Dividing by d(cs) and writing s for e"' we obtain

~( +b) = {:~()+C( ) Pj (1—P') '
C(s+b) = [$(s)P+C(s)i (1 —P')-l.

These equations represent rotations in Minkow-
ski space. Indeed, if we write

small number, so that what applies to t=0 also
applies to a continuity of times t in the original
time scale.

In order to find the self-force of the motion
(9") at r=0 we apply the method of retarded
potentials (Part II, Section 4) and proceed in
three steps.

(1) If the exponential function in (9") is
expanded into a series we have

$ = (C/a) [acr+ ,'(acr)2—+6 (acr)').

If we omit all higher terms, the result was
already found in II, Section 4:

Self-force = —(e'k/2c') (g) 0+ (2c'/3c') (d]/dr) 0

= —e2a2CDk/2a) —(2/3) ].
The self-force vanishes for a =0 (uniform motion)
and also for a=3k/4 (self-accelerated motion),
that is, for a=3mc'/2e' which is Dirac's ~alue.

(2) If the next expansion term (acr)'/24 is
added to the series, the self-force becomes infinite
for every value of a except a =0.

(3) If the complete exponential function
exp (acr) is used the self-force becomes finite
again due to the fact that successive expansion
terms contribute infinite terms of opposite signs.
The resulting self-force according to the method
II, Section 4 is

—e2C. J{ gi(kR) {(aR le aR) +.(a 1R—B—e aR)— — —

0
—(R 'a ')+(R 'e '") )d(kR)

or after integration:

Self-force =

(a'+k')& —a (a'+k')& —k' 1—e'a'C +-
a 3a 3

If we had used the exact relativistic motion (9)
rather than (9"), the bracket would contain an
additional term linear in the small quantity C.
For small but finite C the self-force vanishes only
if the bracket is zero. The latter, however, does
not vanish for a=3k/4 nor for any other value
of a save a=0 (or a=0 if the small correction
term linear in C is added). That is, our field

theory does not allow self-acceleration in its
beginning phase. Therefore, the whole process
of self-acceleration is not compatible with the
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field theory. It will be noticed that the bracket
in the last equation for the self-force would
vanish for a=3k/4, if the positive root (e'+k') '

were replaced by the negative root. However,
because of our application of retarded potentials
the root appears with positive sign, and we arrive
at the gratifying result that self-acceleration is

impossible in our field theory.

3. NEGATIVE ENERGY DENSITY

It seems impossible to devise a field theory of
charged particles without violating the require-
ment that the density of the field energy ought
to be larger in the presence of a field than with-
out field, that is, be positive definite in the
presence of a field. As an example we mention
Born-Infeld's field theory which leads to negative
energy densities4 wherever the vectors D and 8
have certain large values. (In our theory negative
field energy is connected with large frequencies
v) vo ——kc/2s rather than with large field inten-
sities). Dirac' in his classical theory of the elec-
tron simply assumes that an infinite amount of
negative energy of unknown origin is condensed
near the point electron so as to counterbalance
somehow the infinite positive Maxwell energy.
He thereby denies that the mass of the electron is

of electromagnetic origin.
The negative energy density of the meson

field in our theory seems to lead to certain dif-
ficulties. Consider an electron vibrating with a
frequency v larger than vo for a limited time only.
As shown in Part I I, it then emits a group of
Maxwell waves L+, B and a group of meson
waves of polarization D —E„ II—B. The two
groups travel with different group velocities and
become separated at some distance from the
source. The Maxwell group carries more energy
than was emitted by the electron; the meson

group with its negative energy re-establishes the
energy balance. A resonator exposed to the
Maxwell group alone then might transform the
Maxwell energy into mechanical energy of the
resonator, thereby reducing the energy remaining
in the field to larger and larger negative values.
This objection does not hold, however, in our

4 M. Born, Proc. Roy. Soc. 143, 410 (1934). See also
W. Heitler, Quantum TIIeory of Radiation (Oxford Univer-
sity Press, 1936), Eq. (5), p. 237.

unitary theory where all energy is located and
conserved in the field, and the work on the
resonating charged particle is zero. From the
energetic point of view our position with respect
to negative field energy is the same as that of an
observer above sea level who discovers that
weights may be dropped below zero level at the
expense of other weights raised above sea level.
Difficulties appear, however, if one tries to
derive a statistical distribution of photons and
mesons over positive and negative levels, at
least if he wants to apply the same statistical
methods which had been developed for positive
levels.

In case of Boltzmann statistics the relative
number of particles on two energy levels is

n, /nm ——exp (W, —W, /kT),

and remains unchanged if both energies are
counted from a new zero point. Bose statistics,
however, yield the following formula for the
average number of particles of energy 8":

n=1/[exp (W/kT) —1j,

where S" is an absolute energy value without an
additional constant. ni/n2 depends on the ab-
solute position of the'zero energy. Furthermore,
Bose's formula is meaningless for negative values
of g unless a new interpretation of a "negative
number of particles" is invented. However, one
must remember that Bose particles are "par-
ticles" only in a very restricted sense, and that
the success of Bose's procedure is more or less
accidental. Bose showed that the same Planck
radiation law which was derived from an equi-
librium between radiation and radiating matter
(Planck's and Einstein's derivations) could also
be obtained from certain statistics applied to
"particles without individuality. "We cannot ex-
pect that a modified Planck law (asked for by
modified field theories) should still be derivable
from Bose's corpuscular method. This applies in

particular to our case where "pure field" and
"electronic field" are undistinguishable within
the range 1/k of the electronic "radius. " Radia-
tion of wave-length X = 2s /k may be treated in

connection with electrons responsible for the
radiation equilibrium, similar to Einstein s
derivation of Planck's law, as follows.
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4. MODIFIED EINSTEIN EQUILIBRIUM
1

An electron vibrating with frequency v& vo

=kc/2pr emits nega, tive meson energy at the
ratio of (1 —vp'/v')* 'to 1 in comparison to the
normal Maxwell radiation, according to (6).
This ratio has another significant meaning. The
number of Jeans proper vibrations per unit cube
and per wave-length interval dX is

dZ = (8pr/X') d(1/X).

Since c/X= v for Maxwell waves, and

c/X = (v' —vp') &

for meson waves, we obtain the following num-

bers of levels within the same dv:

dZ"=Sprv'dv/cP for photons kv (10)
dZ'= (Sprv'dv/c')(1 —vp'/v') & for meaons (—kv).

dZ' and dZ" turn out to have the same ratio as
the numbers of mesons and photons emitted
"spontaneously" by the vibrating electron during
a certain time. Hence, if a group of electrons has
emitted just one photon onto every one of the
dZ" levels within dv, the same group of electrons
has also emitted just one meson onto every one

of the dZ' meson levels within dv. The total
number of photons and mesons emitted is pro-
portional to (dZ" +dZ') whereas the total energy
emitted is proportional to kv (dZ" —dZ').

After this preparation let us discuss Einstein's
derivation of Planck's radiation law, modified by
our field theory. Two electronic energy levels

W and Wb & W, may be occupied by ¹
and

Nb electrons, respectively. Electronic transitions
between the two levels produce emissions and

absorptions of quanta +hv and —hv to and from

the Jeans radiation levels within a certain re-

sonance interval dv containing dZ" photon
levels and dZ' meson levels. An electronic transi-
tion from Wb to the higher level W, corresponds
to an increase of the electronic amplitude of
vibration and to a decrease of the Maxwell Weld

strength
~

2"
~

(=absorption of photons) and to
an increase of the meson field strength

~

P.'
~

( =emission of meson s) . In terms of statistics
this means that the probability of an electronic
transition from Wb to W. ought to be propor-

tional to the difference of the numbers n"dZ" of

photons and the number n'dZ' of mesons ready

The bars indicate average numbers of photons
and mesons per level. If equilibrium shall apply
to photon processes alone and to meson processes
alone we must have

Np/N, = (n"+1)/n" = (n'+ 1)/n',

hence, n"=n'. That is, the average number of
photons and mesons per Jeans level must be
equal. 'If the electrons are subject to Boltzmann
statistics N=const. exp ( P/kT) we o—btain the
following value for the average number of
photons and mesons per level:

n" =n'= [exp (kv/kT) —1]—'. (10')

The total radiation energy within dv has density

wgv=n kvdZ +n (—kv)dZ =(w„—w„)dv

8mhv'd v

c' exp (kv/kT) —1

For v) vp=kc/2pr Planck's radiation formula is

multiplied by the same factor (6) which already
occurs in the classical energy emission of an
electron for v) vo. The result is obtained without

applying statistics to the pure radiation.

S. STABILITY OF EQUILIBRIUM

In order to show that the equilibrium is stable
consider small deviations from the average
numbers

+II+ g/I I nI + gl

¹=iV+6, Nb ——1V'b —5

to be absorbed from the resonance interval dv:

Pp, = Np[n
"dZ" n—'dZ']

Opposite transitions a~b induced by the radia-
tion will be proportional to the same diff'erence,

whereas spontaneous transitions will be propor-
tional to 1 dZ" —1 dZ' [see (6) and (10)] so
that

P,p
N——,[(n"+1)dZ" —(n'+ 1)dZ'].

I n case of equilibrium we must have P,b ——Pb.
in the average, that is,

(n"+1)dZ" —(n'+ 1)dZ'
¹/N,=

dZ —'0 dZ
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which are related by the condition

where Z' and Z" are the number of radiation
levels involved (formerly called dZ' and dZ").
Photonic processes lead to an increase of
the number of photons, d(n"Z")/dt=P, q Pq, —
whereas dZ' =0, that is,

d(n"Z")/dt = (N, +6)(n"+0"+1)Z"
—(Ng —6) (n"+5")Z".

The terms of zero order in the deviations cancel,
and the second-order terms shall be neglected.
This leaves the first-order terms:

d(6"Z")/dt= —(8"Z")(¹ N,)+6—(2n" +1)Z".
zVesonic processes yield similarly d(n'Z')/dt
=Pb —P b and dZ" =0, that is, after removing
second- and zero-order terms:

d (&'Z') /dt = —(8'Z')(¹—N, ) + 6 (2n'+ 1)Z'.

At last; the electronic number X, increases with
probability Pb —P b, that is, after removing
second- and zero-order terms:

dA/dt = —6{(2n"+1)Z" —(2n'+ 1)Z'
I

+ (Ng N.) (8"Z"—6—'Z')

The last bracket is —A. Writing C for the
positive constant Xb —X„we thus obtain

(a) dD/dt= —6{C+(2n" +1)Z"—(2n'+1)Z'I

together with the former results

(P) d8"/dt= —5"C+6 (2n"+1),
(y) db'/dt = —O'C+6 (2n'+1).

The factor of —6 in (n) is positive since C)0,
and n"=n', as well as Z")Z'. Thus the absolute
value of 6 will always decrease. The terms
with 6 in (P) and (y) will therefore shrink to
zero after some time, and from thereon the ab-
solute values of 8" and 6' will always decrease.
A small deviation from the average values n",
n', Ã„Nb thus tends to disappear automatically
according to the transition probabilities accepted
before, and the equilibrium turns out to be stable.

6. FIELD EQUATIONS

derived from potentials V, A and V", A", re-
spectively:

E= —V V—A/c,
II=~XA. .

V XE+H/c=0,
(V H) =0;

V XE"+H"/c =0,
(V H") =0;

V XFI E/c= ——A+VR,
(V E) = — V—R/c;

V XFF' —E"/c = — A",
(V E")= — V".

(13)

(13')

(14)

(14')

The right-hand sides of (14') represent 4w times
the current j/c and density p of the true charge
(which later on is supposed to be condensed to
world lines only). The right-hand sides of (14)
represent 4x tim'es the free current and density.
QA and Cl V have the dimensions of potentials
divided by the square of a length. They may be
written in the form

—gA =k'A',
—0 V=k'U';

A" =4m j/c,
V"=4 p',

(15)

(15')

thereby defining a new "potential" A', V'.

Hence (O'A'+VR) is 4s. times the free current
density, and (t'e'V' —R/c) is 4~ the free charge
density. As a consequence of (14) (14') we obtain
continuity equations for free and true charge:

II"=vyA".

However, only the potential U", A" shall always
obey the Lorentz condition:

(V A)+V/c=R, (12)

(V' A")+V"/c=O (12')

where R on the right of (12) may be any scalar
function of xyst, to be restricted later. In our
applications we usually consider the special case
R=O only. As a consequence of (11), (12) one
obtains field equations for 8, II and E",II":

We now return to our former notation 8, H
for Maxwell's field E, B, and 8",II" for Max-
well's D, H (Table I). Both fields shall be

(V A')+ W'/c= —gR/k',

(V i)+t'=o
(16)

(16')
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From the potentials A', U' we may also derive
a new "field" Z', H':

E' = —. VV' —A'/c, FI' = VXA'. (17)

(13) and (14') are Maxwell's equations. It has
been assumed that both fields E, H(=E, B)
and E,",H" (=D, FI) are derived from poten-
tials, and that U", A" satisfy the Lorentz con-
dition.

We now postulate a new relation between the
two potentials, namely,

Equation (25) together with (15')

—CIA" =4s.j/c, —CI U" =4s.p (25')

shows that the true charge is the common
source of the two otherwise independent fields
B",H" and 2', H'. True charge shall be con-
densed on singular world lines only.

The absolute values of the potentials A', V'

have a physical meaning without additional
constants since they occur in the field equations
(14) whose right-hand sides read

V"= V—~ V/k' A"=A — A/k' (18) k'A '+ VR and k' V' —R/c. (26)

from which follows

E"=E— E/k', EI"=II Ii/k—' (19)

or D=E — E/k' and II=B— B/k' in the
usual notation. Eliminating A and 0 U from

(15) and (18) we obtain

A =A"—A', V= U" —V'. (20)
m=m" —m', 5=5"—5', (27)

They represent 4m times the free current and
free charge density.

Since the fields E=E"—B' and EI=Ii"—EE'

determine the Lorentz force and work, the energy-
momentum tensor T must be the difference
T= T"—T'. In particular, the density of energy
and flux are

1/4s) {
', (E"+FI"—+k'A "+k' U")

+RV'/c —R V'/c+-', R'}, (28)
21

S' = ( /4c)}x[E' XH' j+k' V'A'+ U'VR+ A'R/c },
—D R+k'R = O.

From (20) we learn that
and

Hence (12) must be the dilference of (12') and
(16).That is, the right-hand side R of (12) must
satisfy the condition tc'= (

B' =4mP, H' = —4+M.

Equation (16) now reduces to

(V' A')+V'/c= —R.

(22')

(23)

The field equations for B' and EE according to
(17) and (23) read

V XE'+H'/c=0,
(V H') =0;

V XII' E'/c = — A' ——VR,
(V' E') = —Q V'+ R/c.

(24)

(24')

Subtraction of (15) from (15') yields, because of
(2o),

(25)A'+k'A' =4'/c,
—Q U'+k'U'=4m p.

E=E" E', II=H—" H' (22—)

or B=D —B' and B=EX—H' in the usual
notation, which shows that the fields B' and H'
determine an electric (P) and magnetic (M)
polarization of the vacuum

~PI (1/4 )1(EII2+HII2)
S"= (c/4s-) LE"XH"].

(28')

Equation (28) contains the right-hand side R of
(12) and is more general than the expressions
for m' and 5' of Part II where we considered
the case of R=O only.

Meson waves in vacuum may have longitudinal
field components. Indeed, consider the special
case

A, '=a, ' sin (27rvt+2mx/X), A„'=0,
A, '=0, V'=u' sin (27rvt+2vrx/X).

The amplitudes a,' and U' are not restricted by
(12). The field is

E,' = —(a,'v/c+ v'/X) 2x cos (27rvt+ 2sx/X),
By' ——B,'=H, '=H„' =H, '=0,

representing a longitudinal electric wave. In
case of Maxwell waves we would have a,"= —v",
and 8 "=0.Maxwell waves do not have longi-
tudinal components for two reasons: first,
because X = c/v, and second, because of the
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Lorentz condition (12'). Meson waves do not
have to satisfy the Lorentz condition, and their
relation between X and v is

(v/c)'= 1/g'+ (kc/2s)'. (29)

B (11 B (11
B her) By & r)

B
A, '=0, A, '= p (e "/r), —

Bs
B

A.'= y (e "—'/r)—(31)
By

with the magnetic fields

3xs
Hz =y

&5

/3x' 1 p (3x' 1 q—1+k
Ir3) ( r4 r~)

f'x' 1 q
+k'] ———

I
e "",

ri

(31')

3xy 3xy xy
+P +$2 g

—kr

r5 y4 ~3

'"y
H.'= p +k +02—e—'"

For large r this is the ordinary Coulomb field of
a dipole of moment p parallel x. Although the
field H=H" —H' does not vanish for r=0, the
Lorentz force @BE/Bx vanishes for r=0. The

7. ELECTRIC POLE AND MAGNETIC DIPOLE

In Part II we discussed the potential and fielci

of an electric point charge e. The field equations
allow the following solution:

V" = c/r, U' = (e/r) exp ( kr),— (30)
E„"= e/r', E„'= (e1/r' jk/r) exp (—kr).

At large distance this is the ordinary Coulomb
field of a point charge e. In a similar way we
now discuss the field of a magnetic dipole of
moment p. The field equations for R=O allow
the solution:

classical field theory remains unitary if we
postulate as before that the electron moves so
that the total Lorentz force and work on the
singularity are always zero.

In order to find the energy of the magnetic field
we use (27), (28) for the energy density w=w"
—m' with function R=—0. Integration over space
yields

%ming= p k 9 ~

The field energy of the point dipole is 6nite due
to magnetic polarization of the vacuum.

If the electron really had a magnetic self-
energy like this, the common electric and mag-
netic radius 1/k at which Coulomb's law breaks
down would be determined by the equation

Substituting the quantum values

p = ek/2mc, e' =nkc, n = 1/137, (32)

this would yield the following equation for
B = 2mc'/e'k.

-=2+9(nB) '
2

solved by B = 16.47; that is, 1/k = 16.47 (e'/2mc ) .
The radius would be more than sixteen times the
electric radius, and the magnetic energy more
than fifteen times the electric energy.

However, results obtained from substituting
quantum values into classical formulae do not
mean very much. Take the example of the ratio
of spin M to magnetic moment p which according
to quantum theory and experience is p/cV = e/mc
corresponding to a g factor 2. In the classical
field theory the spin is due to the radial electric
field of the pole e and the longitudinal field of
the dipole p, which together produce angular
momentum about the dipole axis, proportional
to the product ep. In case of a point pole and
point dipole with surrounding Coulomb fields, M
becomes infinite. If instead we take a "model"
in which the field is present outside the radius
1/k only, M becomes 2epk/3c. In our invariant
field theory in which Maxwell and meson terms
are subtracted the spin happens to be zero. It is
not surprising that the classical theory cannot
yield the correct spin, because the angular
moment rests on the exact knowledge of per-
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pendicular components of Z and H simultane-
ously which cannot be measured without uncer-
tainty. The actual value M= ~h is just halfway
between the field value 3f=0 and the "normal"
value M=A.

We learn, however, from these considerations
that the ratio of magnetic moment to spin and
also to magnetic energy varies widely with the
special theory under consideration. The "model"
with fields outside 1/k yields

W~y= ~ e k) Wm8g= 3 tk~ 3E'= 3epk/c~

1/k = 23.3e'/2mc'

Quantum theory and experience, however, yield

(see Part IV):

1/k = e'/2mc. (33)

The result that the magnetic energy and mag-
netic mass are zero in spite of the presence of a
magnetic moment p is suggested already by the
simple formula p=ok/mc; if m in this formula
should depend on p implicitly, the ratio between
electric and magnetic energy would have com-
plicated values [like 16.47 (see above)]. Also,
the radius 1/k would be much too large as soon

as the magnetic energy plays any considerable
part in the self-energy [even with so small a
factor as —,

' (see above)]. Already the discussion
of various classical models and field theories
shows that it is well possible already on a clas-
sical basis to construct a dipole moment whose
surrounding magnetic energy happens to vanish.

The satisfactory result of Part IV that the elec-
tron does not have magnetic self-energy arising
from its magnetic moment, and that its radius
is the electrostatic radius 1/k=e'/2mc', is ex-
plained in the following way. In the first place,
the only sources of the field according to the
field equations (25), (25') are the electric
charges, and there are no retarded potentials
from magnetic poles or dipoles. Turning to the
Fourier representation of Part II, Section 7, the
Hamiltonian consists of terms referring to the
particles alone, to the field alone, and perturba-
tion terms. In our unitary theory the terms
referring to the particles alone vanish [first two
terms in II, (26)]. The part of the "mutual"
energy which is proportional to e' may be inter-
preted as electromagnetic "self-energy. " It arises
from scalar and vector potentials, but for a
particle at rest the contribution of the scalar
potential [last term in first line of II, (26)] is of
opposite sign and half as large as the contribution
of the vector potential [second line in II, (26)];
the resultant energy is —~ke'+ke'= 2k&'. If the
particle is in an external field one also obtains
mutual energy terms proportional to e, namely,
for a particle at rest e (U' —U"),„t and also, if
Dirac's quantum method is applied, the scalar
product (p H" H') where —p stands for ek/2mc

as though the electron had a dipole moment p.
There are no terms, however, proportional to p'

which could be interpreted as magnetic self-

energy. In spite of displaying spin and magnetic
moment p, the electron at rest has only electro-
static self-energy, and the mass is m=-', e'k/c'.


