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The straight wire antenna is approximated by a perfectly conducting prolate spheroid of
eccentricity very close to unity. (1) The first three harmonics of the axially symmetrical free
oscillations are discussed, with calculation of the wave-length ) and the logarithmic decrement b.

(2) The tangential electric field component of a plane wave with E parallel to the axis of the
spheroid is expanded in the prolate spheroidal wave functions of Paper II. (3) The oscillations
forced by such a plane wave are discussed for frequencies in the neighborhood of resonance with

reference to current distribution, radiation resistance, and scattered field.

I. FREE OSCILLATIONS

)P E shall discus h iedy thea iaiiy ymmet ical iree osciiiatio s of a perfectly cooductioa prolate
spheroid so thin that the squares and higher powers of the value to of t= (q' —1)' at—the

surface' can be neglected as compared with unity. Under these circumstances to represents eff'ectively

the ratio of the minor semi-axis b of the spheroid to the major semi-axis a. We are concerned with the
wave functions (II-15), in which v&i stands for the function ri~ representing a diverging wave as given

by (I I-32).
The sole boundary condition is E~=0 for t = to, that is,

—{tr„(~)}=0,
dt

(III-1)

a. Fundamental or First Harmonic

For /=1, Eq (III-1) .becomes

where

b„=(4/3') i~'I g,ad i s
(III-2)

(1+tii')'+1 1 9
li I = 10g —2 62+ ~4

(1+Iii') l —1 5 5' 7

886
~ ~ ~

34.55. 7

if we neglect squares and higher powers of to.

For the limiting case to=0 of an infinitely thin antenna l» ——0 and hence b» =0. Hence, as shown

in II, e=~/2. Consequently, if X is the wave-length and 8 the logarithmic decrement of the free
oscillation s,

X=4a, 8=0. (III-3)

To discuss antennas of finite thickness we put to= (10) "and mak—e e=s/2 everywhere except in

the factor of b» which vanishes for this value of e. This approximation yields results accurate to
within one percent for n&3 and to within two or three percent for n=2. Then we find from (III-2)
that

0.1685i

2 n —0.228

' See Paper II for definitions of the symbols appearing in this paper. References to Paper II will be indicated by II
and to Paper I by I.
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In terms of the wave-length and the logarithmic decrement

x 4a

2X 2x
Therefore

X=4a, 8=1.059/(n —0.228).

b. SccoQd HRfQMQ1c

(III-4)

(III-5)

For /= 2 we have the boundary condition

4
b21= ie'l21a21,

33, 52
(II I-6)

where
(1+t22) l+1 1 95

l21=—log —3+ ~' — e4+
(1+t ')'* —1 3 7 3'7'

For a thin antenna this gives approximately

from which it follows that
X = 2a, li =0.67/(n —0.5). ( I l1-7)

c. Thill HRI'moQlc

For t =3 the boundary condition becomes

32
~31 ~& ~31+31)3'54 7'

(III-8)

(1+t22) '*+1 11 1 59
log + 42 24+. . .

(1+ 2)& —1 3 2 3 5 2 345'11

As the series for b2i converges too slowly for 2=32r/2, we have used (II-3'7). For a thin antenna we

get, approximately. ,

3~ 0.086~

2 n —04
from which it follows that

X = (4a/3), Ii=0 54/(n 0 4.)—. (III-9)

The series given in I I have not been carried far enough to calculate even rough values of the
logarithmic decrement for higher harmonics than the third. However, the wave-length for a thin
antenna is given by X =4a/I for the Ith harmonic, however great the integer I may be.

2. INCIDENT VIVE

Preparatory to the investigation of the electrical oscillations of a perfectly conducting prolate
spheroid forced by a plane electromagnetic wave of angular frequency + with the electric vector
parallel to the long axis of the spheroid, it is necessary to expand the held components of the incident
wave in the prolate spheroidal wave-functions specified by Eqs. (II-15) to (II-18). Evidently
vi„(2t) =pi„(2t) since gi (2t) becomes infinite at the origin.

Designating unit vectors in the directions of increasing $, 2t, p by gi, ni, pi, respectively, and
putting s=—(1 —p)'*, t= (2p —1) l, 4—= (zt4) l(~—f/c) =2~f/X, as before, we find the electric and magnetic
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field intensities in the incident plane wave are

qsEi g +n Sisst sin tt

(n' P—)'* (n' 8—)'
g cos tt 2ts cos tttH'=

, ++& $1 Sin ttt Stsstsin qt

(n' P) '— (n' f')'—

(III-10)

(I II-11)

for a wave of unit amplitude. As usual we have omitted the time factor e '"'.
Expanding the exponential as a power series we find for the two components of the electric field

of the incident plane wave:

q2t2 q4t4 ~6t6 2t3

E~' —— s ——s'+ s' — s'+ . . +i& sin Q ts' — s4+
(g2 $2)1 22 22, 42 22.42. 62 2 22

Q2 ~2t4

+—cos 2ttt t's' s—'+ +i sin 3ttt{t's' . . }+—
22 3 22 23 3

2t3 4t6 q6t7

B,'= t ——s'+ s' — s'+ +i& sin Q t's-
(it' —P)6 2' 22 s4' 22 442 46'

~2t4

$
2 2'

Q2

+—cos 2P t3s2—
22

$3

s4+ ~ +z
3 22 23 3

sin 34 {t4s3 — }+

Since the boundary conditions involve Bg' only, we need concern ourselves with this component
alone. In order to obtain the coeScients with the desired accuracy, it is necessary to calculate the
first few terms of 2421($) and P21(2t) in addition to the functions given in Table II of II.

Ke find for the desired expansion

1 2 3
86 = M103411($) {tPll(2I) }+ 6 M30N31($) {tP31(YJ)}+ 6 M603461(f) {tP61(tt)}+ '

(~2 p)»t- dt 52 dt 72 ~ 9' dt

where

~ l ll ll+i0 Sill @ M112411($)P 1 1 (tt) + 6 M313431($)P31(2t) + ' ' ' M21Q21($) P21 (4t)
s 5's s

2 $ ll
0 M413441(k)p41(tt)+ ' ' ' cos 2ttt M2 22(24)2)p22('g)+ ' ' '

7 s 22 s

—-M32~32($) p32(tt) — . +
s

2 93 446
Mgp —= 1 ——e'+ e' — e'+

52 54. 72 34.55. 72

32 742
M30 =—1 — 02+ 64+3'5' 34 5'11'

10
M6p = 1 — &2+ ~

3 132

(III-12)

llM„=—1 ——&2+
52

2
M2g —=1 ——e'+

72

ll
3f3j =1+ l

21I4I = 1+ ll l
3I22 =—1+ M» =1+
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3. THIN RECEIVING ANTENNA

In this section we shall investigate the current produced in a very eccentric perfectly conducting
prolate spheroid by an incident plane electromagnetic wave of angular frequency co and unit ampli-

tude, the electric field of which is parallel to the long axis of the spheroid. Mfe shall be particularly
interested in the frequency of resonance and frequencies close to resonance. Since the eccentricity
of the spheroidal conductor under consideration is close to unity, the value tp of the parameter t

at its surface is effectively equal to the ratio of the minor semi-axis b of the conducting spheroid to
the major semi-axis a. We shall confine our discussion to conductors for which t (10), with par-

ticular attention to the limiting case attained as tp goes to zero. Therefore we can neglect terms of
order t02 as compared with terms of order unity.

Remembering that the first term in p41(lt) for I odd is t, it is clear, then, that we need retain only
this first term in the part of the expression (III-12) for E84 which is independent of p. As regards the
part of this expression involving sin p, terms in the first power of t appear, but this part of the ex-

pression determines only the distribution of the current in azimuth and has no effect on the total
current through any cross section of the conductor. Therefore we shall neglect it. The same is true
of the part of the expression involving cos 2p, which, however, contains no terms of order less than
t3 and is negligible on that account. Similar considerations apply 45 fortiori to the remaining parts of
the expression.

Hence we write as a su%ciently good approximation

2 I 3
E$ = M103411($)+ 5 M30831($) + 5 M504451($) + ' '

("-e)-: 52 72. 92

The corresponding component of the electric field intensity in the scattered wave must be

1 d 1 d
+103411($)——{«11(s)}+5 +803431($) {tr31('9) }

(n' 4') **- t dt t dt
1

+5'&504451(k) —{tr5-1(s)}+
t dt

(II I-13)

(I II-14)

in order to satisfy the boundary condition B~'+E~"=0 for t=tp. Consequently, if terms in t' and

higher powers are neglected,

/ 2 f 3
+10 & ill~10

(4
{
—53t„a„}+Ii„

)

N30 ———

32
e'l3 F31—Zb31'33. 54. 72

~4t»m,'03'547 ( 32
0 1314531 +I'8l(3'54 7' j

256
~"~5151 —Zb5116, 3'5'74 11'

N, P
—— ~'l51lV 5P3'5'7'11 ( 256

5 1I54155+f151&3'5'74 11'

where 111 and l31 are defined in Section 1 of this paper, and

(1+t03) '*+1 137 1
l51:—log + $ + ~ ~ ~

(1+to')' 12 3 5 —5 13
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The magnetic field strength in the scattered wave corresponding to (III-14) consists of the single
conl poncn t

(141 l
f fII0"= i—

~

—
~ 6[Nlou»($) rll(2t) +6 N30u31($)131(Y/) +6 N„.ouol($) r;1(2t) + ],

&tl)

alld tl'le cul 1 ent 1s

I= [22rCfStII, "], (,
This gives

(II I-15)

—,~'~I. i+ii —zbii
MgplI g

3'
I=2~~ —

) cfo
E t4) a 11 f4'

~

—6'Illa» ( +bll
I 32 )

32
~'l3ga3g —zbag

M3pl31 3'54 7'
j su„(]) I +

3 5 g3I ( 32
(suol(&) I

256
~"l51a5(—zb51.

3ffsplsI 3 '53'7 11
+

5 7'9' a f' 256
+b,',

30 53. 74. 112

I suol($) I + e '"' (II I-16)

with inclusion of the time factor.
We consider first the limiting case of an antenna of length 2a=2f and zero thickness. Then

lpga
——l3I —l5I —0 and the current is zero except for those wave-lengths which make one of the coef-

ficients bll, bol, bol vanish. It was shown in II that bll vanishes for 6=or/2, bol vanishes for 6 =32r/2,
and bol vanishes for 6=52r/2. Hence, as 6=2~f/X and a =f when to ——0, it follows that the first three
resonances'occur at wave-lengths equal to twice, two-thirds, and two-fifths the length of the antenna.
The resonance is infinitely sharp but not infinitely high.

a. First Resonance

Ke shall discuss the first resonance in some detail, as it is by far the most important. First consider
an infinitely thin antenna. Making use of Eqs. (II-34) and (II-38), we find for the current at first
resonance

(e) '
I= 22rC( —

) a SVI0(00)(1 —P)*'ull(k) COS40r
&u)

(~l '' ('2r l
22rc) —

[ a 1.045 cos
(t4) (2 )

iIl exact agreenle»t with the result of the approximate method employed in I.
Since the element of length dX6 corresponding to the increment dg is

(II I-17)

dh16 f~ ~

——d$,
E 1-P)

the applied electromotive force along dX~ is

cd( , 2 3 f
+6 d716, ~loull($) + 0 4IIoou31($) + 6 IVoouol($) + ' ' COS 40T.(1-~'): 52 72. 92

Remembering that the functions ull(() are orthogonal, we find that the mean time rate of absorption
of energy is

2rc~ —
~

a'[Mlo(60)]' ll [ull(k)]'d5.
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The radiation resistance 8 is defined as the ratio of this quantity to one-half the square of the current
amplitude at the center of the antenna. Hence,

1.

2s c 4 K) $Qii(0)] 2'Ec ( K)

If R„ is the radiation resistance in ohms

(I II-18)

R„=4wc'(10) 'R=73.08~ —
~

ohms, (III-19)

in exact agreement with the result of the approximate method employed in I.
Finally we obtain, with the aid of (II-34) and (II-38), the following simple expressions for the

three non-vanishing 6eld components in the wave scattered by an infinitely thin antenna at resonance:

(III-21)

4ii03IIio(eo) (s) n—cos
~

—P ~
cos —(ii —iso) —~r, (III-20)

I (s'- t')(1- e) I'

4iioMio(eo) (n. ) n.
Ee"=— slll

i $ i sin ('g f/0) (or((s'- 8)(~'-1) I
'

4soM&0(eo) (ii) i (s. ) s
Iiq" ——— cos

(
—$ (

cos —(s —rlo) cor,— (III-22)
s [(1—P)(vP —1) I

& &ii) (2 ) 2

where Mio(eo) =0.8206 and, for the limiting case of an infinitely thin antenna, go=1. These
expressions are valid at resonance for all q& I.

Next we pass to the case of an antenna of small but finite thickness. As in Section 1 we put
kg = (10) ". If n&3 we do not incur an error as great as one percent if we retain the expressions for
the wave-length of resonance and for the radiation resistance at resonance which were found for
the infinitely thin antenna, and even for n=2 the error is only about two percent. But now the
resonance peak in the current is no longer in6nitely sharp. To determine its form we shall use only
the first term in the general expression (III-16) for the current, ignoring a small but almost neg-
ligible asymmetry due to succeeding terms. W'e 6nd

(x &
1.045 cos

(2 )I= 2~c/ —
f
a-

(y] (bX'lt '
1+35.2(~ —0.228)

~

—
(ix, )

cos (err+@) (I'I I -23)

for the current, where X,=4u is the wave-length of resonance and 8X the deviation from X, The lead

p of the current ahead of the electromotive-force is given by

tan &=5 93(n 0 .228)— .

These expressions are valid, of course, only for values of the ratio Q,jX, small compared with unity.
They represent quite typical resonance curves.

b. Second Resonance

In discussing the second resonance we shall consider only the case of an in6nitely thin antenna,
and, as the series involved converges more slowly in this region, we can do no more than calculate
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a rough value of the current amplitude at resonance. Ke find for the current at resonance

(s'' (3m &I= —2~el I
a O.O4cos

( 6 I. cos~r.
Ep)

(III-25)

The current is in phase with the impressed electromotive force in the two extreme thirds of the
antenna, but out of phase in the middle third. As the current amplitude at the center of the antenna
is only some 4 percent of that at first resonance, the second and higher order resonances are evidently
of little importance as compared with the first resonance.
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The partition function of a two-dimensional "ferro-
magnetic" with scalar "spins" (Ising model) is computed
rigorously for the case of vanishing field. The eigenwert
problem involved in the corresponding computation for a
1ong strip crystal of finite width (n atoms), joined straight
to itself around a cylinder, is solved by direct product
decomposition; in the special case n = ~ an integral
replaces a sum. The choice of different interaction energies
(&J, &J') in the (01) and (10) directions does not
complicate the problem. The two-way infinite crystal has
an order-disorder transition at a temperature T= T. given

by the condition

sinh(2 J/kT, ) sinh(2 J'/kT, ) = 1.

The energy is a continuous function of T; but the specific
heat becomes infinite as —log [T T, ~. For —strips of
finite width, the maximum of the specific heat increases
linearly with log n. The order-converting dual transfor-
mation invented by Kramers and Wannier effects a simple
automorphism of the basis of the quaternion algebra which
is natural to the problem in hand. In addition to the
thermodynamic properties of the massive crystal, the free
energy of a (0 1) boundary between areas of opposite order
is computed; on this basis the mean ordered length of a
strip crystal is

(exp (2J/kT) tanh(2 J'/kT))".

INTRODUCTION

HE statistical theory of phase changes in

solids and liquids involves formidable
mathematical problems.

In dealing with transitions of the first order,
computation of the partition functions of both
phases by successive approximation may be
adequate. In such cases it is to be expected that
both functions will be analytic functions of the
temperature, capable of extension beyond the
transition point, so that good methods of ap-
proximating the functions may be expected to
yield good results for their derivatives as well,
and the heat of transition can be obtained from
the diR'erence of the latter. In this case, allowing
the continuation of at least one phase into its
metastable range, the heat of transition, the
most appropriate measure of the discontinuity,

may be considered to exist over a range of
temperatures.

It is quite otherwise with the more subtle
transitions which take place without the release
of latent heat. These transitions are usually
marked by the vanishing of a physical variable,
often an asymmetry, which ceases to exist
beyond the transition point. By definition, the
strongest possible discontinuity involves the
specific heat. Experimentally, several types are
known. In the n Pquartz tran—sition, ' the
specific heat becomes infinite as (T, T) i; this-
may be the rule for a great many structural
transformations in crystals. On the other hand,
supraconductors exhibit a clear-cut finite discon-
tinuity of the specific heat, and the normal state
can be continued at will below the transition

' H. Moser, Physik. Zeits. 37, 737 (1936).


