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The total polycrystalline elastic and inelastic scattering cross sections are computed by
means of the Born approximation with use of the Fermi (8 function) interaction between
slow neutrons and bound nuclei. Isotopic disorder and magnetic interaction are neglected.
Numerical calculation for iron scattering "300-degree" neutrons yields an inelastic cross
section which rises from 0.006 at T=O'K to 0.192 for a scatterer temperature of 1000'K, in
units of the "free" nuclear elastic scattering cross section. The total (elastic plus inelastic)
cross section remains constant for scatterer temperature up to 250 K, but falls o6' from 0.9'7

at T=O'K to 0.90 at T=1000'K. High and low temperature approximate results are also
computed. Comparison of the results for inelastic scattering with the theory of the diffuse
scattering of x-rays as developed by Zachariasen is successful in the limiting cases in which
the two theories overlap.

I. INTRODUCTION
' 'F a neutron scattered by polycrystalline
& - matter possesses the same amount of kinetic
energy that it had upon incidence, then it is said
to have been scattered elastically. If the scatter-
ing results in a decrease or an increase in the
neutron's kinetic energy, then the process is said
to have been inelastic. In any given experiment,
elastic and inelastic processes occur simultane-
ously, so that by mere measurement upon the
intensity of the transmitted beam one is not
able to separate the contributions of the two
types of scattering. Comparison with theory
thus requires theoretical knowledge of both the
elastic and inelastic scattering cross sections.
The present work includes, in addition to a
presentation of the theory of elastic scattering,
a theoretical treatment of inelastic processes in
which energy is given to or absorbed from the
elastic vibrations of the scatterer by the neutron.
Loss of energy by the neutron is accompanied by

the excitation of one or more elastic vibrations-
the emission of one or more sound quanta, or
"phonons;" gain of energy by the neutron is
accompanied by the quenching of one or more
elastic vibrations —the absorption of one or more
phonons.

Although Halpern, Hamermesh, and Johnson'
have treated the elastic scattering of slow
neutrons by polycrystals, the subject is retained
here since the present derivation is more com-
plete and somewhat more general. Also, elastic
scattering is here treated as a special case of
inelastic scattering —zero-order process. '

In all the expressions derived herein, there is a
constant factor left undetermined, which in
general can be determined only by experiment;

'O. Halpern, M. Hamermesh, and M. H. Johnson,
Phys. Rev. 59, 981 (1941), henceforth referred to as HHJ.

~ HHJ gives no explicit derivation of the crystal temper-
ature dependence of elastic scattering; instead it borrows
the exponential factor from the earlier x-ray theory as
developed by Debye, Wailer, et al. This procedure is justi-
fied explicitly in the present work.
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this is the total nuclear elastic scattering cross
section for the free nucleus. That this quantity
should differ from the average cross section per
nucleus for nuclei bound in a crystal lattice
arises from the fact that nuclei so bound do not
scatter independently; but interference influ-
ences completely analogous to the familiar x-ray
interference effects occur in the scattering of
neutrons as well. In the present state of the
understanding of nuclear forces, theoretical
calculation of the free nuclear cross section is in
general not at all possible; only the knowledge
that nuclear forces are of short range ( 10 "cm)
is certain in the realm of features relevant to
the present problem. This fact is expressed in

the particular analytical form of the neutron-
nucleus interaction employed. What is here
sought is a comparison of the average elastic and
inelastic nuclear cross sections, and the variation
with scatterer temperature of these quantities
as well as of their sum.

For the calculation of all scattering cross
sections, the present work employs the Born
approximation with use of the Fermi (8 function)
interaction between slow neutrons and bound
nuclei. Attention is apparently limited to spin-
free nuclei, but a slightly more detailed analysis
reveals that the results are spin independent;
for all scattering cross sections (including the
free nucleus cross section) are multiplied by the
same spin dependent factor in the case of
scattering by nuclei of spin different from zero.

Initially, consideration is restricted to a single
crystal as scattering body. Since, however, we
are concerned with the scattering from poly-
crystalline substances, it is necessary to average
the single crystal results over all possible crystal
orientations. The single crystal is assumed su%-
ciently large to be approximated, for our pur-
poses, by an infinite crystal. On the other hand,
it is assumed that the crystal is suAiciently
small to neglect the influence of the so-called
"secondary extinction" in the polycrystal. This
refers 'to the fact that the incident beam, in

traversing the scattering specimen, is being
depleted because of scattering by individual
crystals, so that crystals farther back in the
polycrystal are shielded from the full intensity
of the beam, In HHJ, it is shown that for

reasonably small crystals this secondary extinc-
tion is negligible.

Throughout, it is assumed that the neutron
beam is monochromatic: Every incident neutron
possesses a definite energy, the same for all in
the beam. By the use of velocity selectors, such
beams are approximately attainable.

From the outset, it will be assumed that every
nucleus of the crystal scatters neutrons in

precisely the same way. Thus we shall be limited
to scattering by elements, and only those ele-
ments in which the abundance of the possible
rarer isotopes is negligible. In addition, the
interaction between the magnetic moment of the
neutron and the inhomogeneous atomic magnetic
fields in the case of magnetic substances is
neglected. Actually, its contribution to the
scattering is always quite small compared with
the purely nuclear part, if not completely
negligible.

The most significant result of the present work
from the point of view of comparison with
experiment is embodied in the variation of the
total (elastic plus inelastic) scattering cross
section with the temperature of the scattering
polycrystal. So far as the author is aware, there
have been no experiments performed which could
provide the necessary check, so that the test of
the theory must await more favorable times.

On the theoretical side, however, there is an
interesting check provided by a close similarity
between the inelastic scattering of slow neutrons
and the diffuse scattering of monochromatic
x-rays. Except that the scattering of x-rays from
the single atom is by no means isotropic, the
only significant point of departure of the two
problems is that for x-rays the energy of the
scattered photon may always be set equal to the
incident energy. That is, the photon energy is
always large compared with its energy change in

an inelastic process. For slow neutrons, the
incident energy and probable energy changes are
in general of the same order of magnitude. If,
however, the energy change were negligible for
neutrons as well, then the results should be
precisely the same as one would obtain for
x-rays of equal wave-length assumed to undergo
isotropic scattering by the individual atom. For
constant neutron wave-length —hence constant
momentum —the energy is inversely proportional



to thc 1Tlass, so thRt 1Q thc lln11t of neutroQ ITlass

equal to zero the equivalence with the case of
the supposedly isotropic x-rays is complete.
(Actually the mass needs to be only so small as
to render the neutmn energy large compared
with energy changes probable. ) Modiiication and
further development of the work of Zachariasena
on diRUSC x-ray scattering provide a result
suitable for the required comparison, as we
shall scc ln fUll dctR11 ln III.

Owing to the great complexity of' the resulting
mathematical cxpI csslon foI thc lnelRstlc CI oss
section, it is dificult to obtain much useful
lnfoflTlatlon fl olTl IIlcl e lnspectloQ of the formuIR.
In the special cases of high and Iow temperatures

compared with both the Dcbyc temperRtuI c
of the scatterer and the neutmn "temperature"—simpli6cations occur, however, to render obvi-
ous a number of interesting qualitative results.
The work is then completed with a numerical
computation of the nuclear elastic and inelastic
cross sections for polycrystalline imn as a
function of the temperature, for 300-degree
neutrons. . The strict calculations are supple-
mented by the low and high temperature ap-
proximate calculations. The results are discussed
in the 6nal section.

II. ANALYTICAL TREATMENT

The fundamental question is, then: Given a
crystal in a de6nite state described by the wave
function 4 „and a neutron incident with a
de6nite momentum y, what is the probability
that, as a result of the interaction between
crystal and neutron, the neutron will later be
foUnd to possess R momentum p, Rnd the crystal
mill be f'ound in the state C„& To this end, we
employ the Horn approximation, justi6ed by
Fermi4 for the case of slow neutmns scattered
elastically by bound nuclei. The justi6cation of
its use for inelastic scattering lies in the circurn-
stance, as will be shown, that the inelastic
amplitude is in general small compared with the
clRstlc.

It is necessary to know the solutions of the
Schmdinger equation corresponding to all states
of the neutron and crystal in mhich the inter-
action between them is neglected —that is, the

'%'. H. Zachariasen, Phys. Rev. 5'7, 597 {1940).
4 E. Fermi, Ricerca 5|:ient. V, Part 2, 13 {1936).

product of neutmn wave functions by crystal
wave functions. The neutmn functions are
merely exp (Rt r) for all k where it = (y/h) is the
propagation vector of the neutron; r is the
neutron coordinate vector.

The treatment of the crystalline potential
energy by the intmduction of normal coordinates
is carried out in the standard f'ashion of ex-
panding the individual nuclear displacements
from equlllbllUm ln tcrlT18 of R scrles of pIRQC

polarized standing elastic waves, each of which
is characterized by a propagation vector q and
one of three mutually orthogonal polarization
directions (j=1, 2, 3) corresponding to the given
q. Most of the details are omitted, since they are
abundantly coveIed ln the lltelRtUle,

If the position of each nucleus in the crystal
at any instant is given by the vectors R„we
01Ry W'I ltC:

w'hcIC e 18 the equillbIiuITl position of the eth
nucleus and u, the instantaneous deviation from
equilibrium. For not too high temperatures, the
potential energy of the crystal is expressible as
R qURdrRtlc form Involving the component8 of
all the displacements u, . To obtain the most
simple expression for this energy, we introduce
the variables y, and p, „where

u. =(2/mN)l P, n;(y, cos o q, —p, .sin o q,). (2)

The index s stands for the double index (q, j),
and the range of values assumed by s is such
that for each q the three mutually orthogonal
dlrectlons ot cg (unit poiarlzatloll vector) are
summed over, and then one-half (determined by
any plane intersecting the origin) 'of the q space
to be de6ned presently. N is the number of
scattciing centers in the crystal, m the mass at
each scattering center.

In terms of the y, and p„ the crystalline
potential energy may be written

Because of the fact that U may be so written,
the y, and p„ the "normal coordinates, " may be
regarded as the coordinates of harmonic oscil-
lators of unit mass and circular frequencies &,.

~ M. Born and K. Sarginson, Prop. Roy. Soc. A179, 69
{1941),
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To each s, then, there are both a "y-oscillator"
and a "p-oscillator'" —therefore one of each to
every (q, j) combination.

The definition of the q space over which
summation is taken is fixed by the usual require-
ment of periodicity of u. in a "fundamental
parallelopiped" of the crystal. Since all results
must be independent of the size of this parallelo-
piped, we take it to be that containing the N
lattice points of our crystal, for sake of definite-
ness. We write:

171~1+O 2~2+ O 3~3 (4)

where a1, a2, a3 are the basic vectors of the lattice
(of dimensions length), and 0~, 02, 0.~ are integers
peculiar to the 0th lattice point. If b1, 12, 13 are
the basic vectors of the reciprocal lattice-
bi= (a2Xag)/ta~. (a2Xa3) j, etc.—we have:

Then
glbl+g2b2+ g3b 3 ~

O" q = O 1g1+02g2+O3g3.

(3)

(6)

Thus g; must have only such values that if ~,
runs through its "fundamental interval, " then
O.,q; changes by some integral multiple of 2','
for only then will u. , given by (2), remain
unaltered. If the fundamental parallelopiped is
such that it is traversed exactly once when all
three of the 0., are a,ugmented by the integers g, ,

then we have

g, = 2n-Q, /g, ', (7)

where Q; is a positive or negative integer.
Also, q space is limited by the fact that each

oscillator actually represents a plane polarized
standing wave of half-interval of periodicity in

any of the three basic directions a; equal to
(m/g;). Since it is physically meaningless for the
half wave-length of a sound wave to be less than
the distance between successive lattice points in
the crystal, we must have (s./ ~ q, ~ ) ~&&, or
—s &&q, &&s.. By (7), then, the integers Q; are
limited by the inequalities —(g;/2) ~&Q; ~& (g~/2),
whence q space is limited to g1g2g3=~ points.
(Unity is neglected compared with g;.) We
employ this fact later to determine the upper
limit of the absolute value of q.

Now, the potential energy U, given by (3), is
that of a system of 3N uncoupled harmonic
oscillators of circular frequencies co, and each of
mass unity. (There are N/2 points of half q

space, to each q the three values j=1, 2, 3; to
each (q, j) combination are both a y and a p-
that is, 3N terms in (3) altogether. ) The wave
functions are well known to be' Hermite func-
tions of argument y(M/h)& and p(co/h)& for the
respective cases. The normalized solution for a
y-oscillator in the nth energy state is

4 -(7(~/&) ') = L(~/&~) '/(2"n!) '*j

Xexp (—~y'/25)II. (y(&o/h) '), (8)

where II„ is the nth Hermite polynomial defined

by the generating function

exp (—s~+2sx) =P„(s"/n!)II (x).

The energy of the oscillator in the nth state is
(n+1/2) h(s.

Thus we may write the total wave function
describing the thermal agitation of the crystal
as the product

Each of the indices s1, s2 clearly takes on the
3X/2 values assumed by s.

Finally, the total wave function of the system
neutron plus crystal without interaction is

q = exp (ik r) C„=exp (ik r) II p„, p„, .
81s2

Because of the interaction between crystal and
neutron, the state of either or both may be
changed, so that we denote the wave function
after interaction by

4'=exp (ik' r) II p„y„. .
SJS2

In the Born approximation, the probability of
transition from a state + to a state 0" because
of the interaction energy V between neutron and
crystal is proportional to

~
cV~', where

M= t t O'*U%'drdydp;~~J
the integrations are carried out over the com-

plete ranges of the variables; dr=volume ele-

ment in neutron coordinate space,

'Any elementary text on quantum mechanics —e.g. ,
V. Rojansky, Introductory Quantum Mechanics (Prentice-
Hall, Inc. , New York, 1938), first edition,
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Fermi has shown' that for bound nuclei
scattering neutrons of wave-length long com-
pared with nuclear dimensions, the interaction
energy between the neutron and individual
nucleus, position R, is given by

V.=A, t)(r —R,),

where, for spin-free nuclei (cf. introductory
remarks that the results also apply to a spin
dependent interaction) A is a scalar depending
upon the type of scattering nucleus. We are
restricted to scattering by identical nuclei by
setting A, =A, a constant for all e. 5(r —R,) is a
three-dimensional Dirac 8 function. For "room
temperature" neutrons, the wave-lengths are of
the order of atomic dimensions, so that we may
employ the above form of V,. The total inter-
action between neutron and crystal is given by:

V=+, A.6(r —R.) =A+, 6(r —R.),
where the summation is taken over all the nuclei
of the crystal.

We write, therefore, since C „.is a real function,

f f
cV=A '

I exp [ir (k —k')]
~ Js

Xp. 8(r —R,)c„c„.drdydp

=A Q, exp [iR. (k —k')]

xII@., y., d~., IIy y„, dt. ,
~1 ~2

=A Q, exp [ie (k —k')7

f fx ) exp [iu, (k —k')] II @„g„dya,
S2 1 1

xII @., @.;dt
$2

and
Fa, ——(2/nod)&(k —k') na) cos e.ga,

F.o
—(2/nt——N)l(k —k'). neo sin e qao (10)

It is necessary, then, to evaluate integrals of
the form

ee„(O=( „exp Ox/a)4 e(a/a)„4 (x/ )dxa
(t =iaF;, a = (5/oo, )'). (11)

For n' has been written n+X; i.e. , the result
corresponds to a change from state n to state
n+X of the given oscillator. X may be positive
or negative, but necessarily an integer (as is n).
The evaluation follows:

According to (8),

with the use of (1).The expansion of u, according
to (2) gives, finally,

&!/I =A Q. exp [ie (k —k') 7 II I.; ., I„.. . (9)
81S2

where
0'

~ trI ~ =Ji exp (iF, y.)@ p„,dy„

I„+),, „(t)= [2'"+"n!(n+X)!or] & exp (tx/a) exp ( xo/ao)H„+),—(x/a)H (x/a)d(x/a)

~ 00

[2o+" n!(n +X)! or]lr exp (tx) exp ( xo)IX„+)(x)H„—(x)dx

= [2'"+" n!( n+X)! o7r' exp [—(x —t/2)'7 exp (t'/4)H +),(x)H„(x)dx

= [2 " "+!(nn+A)! ]ore e'xp (t'/4) exp (—so)H +),(s+t/2)H„(s+t/2)ds

exp (t'/4) ~ m+)' (ni (n+), i
i
t"+P exp (—s')H„,(s)H„„(s)ds

[2 " "n'(n+&) d'or] .=o p-o E vI P )
exp (t'/4) (n) (n+X)

t"+Pt') +„p2" "(n v)!)r'*— —
[2'"+"n!(n+X)!or]l „p g vi i p )

exp (to/4) (n+X) n! (t ) "+"/ o

[n!(n+X)!7', g v+X] v! ), 2j
(12)
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The -second-from-last step is obtained through
the use of the expansion

II-( +y)=E I

(nl
v=o ( P

as one may show from the familiar recursion
formula (d/dx)H„(x) =2NII„~(x) and use of the
Taylor expansion of II„(x+y) about the point x
in powers of y. Otherwise, the expansion of

II„(x+y) may be obtained directly through use
of the generating function for Hermite poly-
nomials. The next-to-last step in the sequence
above is given by the orthogoriality relation

The summation limits for v (and p above) are
provided naturally by the presence of denomi-

nator factorials; the result is unchanged if one
sums from zero to infinity.

The quantity
~
M

~

' (proportional to the
scattering cross section), for scattering processes
in which the quantum number of the sth oscil-
lator changes by the (positive or negative)
integer X„ is given according to (9) by

[M('= (Ai'Q exp I p(e e') (—k —k')]

terms involve higher powers of E ' and are
therefore negligible for Ã))1.

For X = ~1, only the linear term must be kept:

I„+,„(t)=((n+1)/2]'t; I„&, (t) =(n/2) t. (15)

In the transition probability, proportional to
~M~P, the lowest appearing power of t due to
X= &1 for just one osci!lator (and X=O for all

the others) is the second, which is proportional
to N '. Since, however, there are 3N oscillators
which may so participate, the probability that
any oscillator so participate is the sum of the
single probability over all the oscillators. The
probability is thus rendered finite, no matter how

large N; the terms in higher powers of t still
contribute negligibly for large N. If more than
one oscillator, say p(«N) in all, undergo changes
in e by ) = &1, then the factor N & appears in

(3ATI
the quantity [ M (

'. Summation over the
((p)

combinations of 3X oscillators taken p at a time
renders the total probability finite, but the con-
tribution of higher powers of t remains negligible.

It is next shown that processes for which

~
X

~

&~ 2 are completely negligible so long as N)&1.
By (12), to the lowest power of t:
I.+&„.(t) = I pt!(pt+X)!]-1L(N+))!/X!]&2-"~',

where

Xg I., +~. ..I., +~. . . , (13)
8182

I„,„(t)= Ln!(n n)!]—&(n!/n!)t~2

(a= —X&0).
oo' trJ„„=I„ I„„.

S S S S S S.

If for all s, X,=O, the scattering is elastic; this
is th'e case which has been considered by HHJ.
Positive X, means loss of energy, of an amount
X,k~„by the neutron to the sth oscillator;
negative P, means the absorption of this amount
of energy by the neutron from the sth oscillator.

According to (11) and (10), t is proportional
to N t; since N&)1, then (for &o, &0) t«1. Thus
it is necessary to keep only the lowest powers of
t in the expression (12) for I„+q, (t). For X=O,
it is necessary to expand to the quadratic term
in t; to this approximation,

I„„(t)=1+(1+2m)(t'/4).

The term in t', proportional to N—', must be
kept since the quantity M involves the product
of approximately 3X such factors; higher order

For
~
X

~

~& 2, the squares of these quantities are
proportional to N ', or higher powers of N '.
Thus even summation over the 3N oscillators
still renders the probability negligible for 2V&) i.

From the expansions (14), (15), it is seen that
for AT)&1 the ratio ~I„~~, ~'/~I„„~' is propor-
tional to ~t~', or to (1't/&u, )(F. )', by (11). Since'

~I„~, „~' must be summed over all 3X oscil-

lators, the ratio of the probability of a first-order

process to that of a zero-order process is roughly

proportional to

I.= 1V(h/op, )(F.') '=(ttt'p'/2m(o, )
(1't'k'/2mp) (mo)

5(dg 4m)

to order of magnitude, according to (10). Here

mp is the neutron mass, so that (5'k'/2mp) is the
incident neutron energy; A~, is of the order of
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the energy of the sth oscillator. For room
temperature neutrons the ratio of these energies
is, on the average, of the order of unity for
many substances. Hence for such cases, what
counts in the ratio 1. is the factor (mo/m), the
ratio of the neutron mass to the mass of the
scattering nucleus. Thus, in general, for elements
of large nuclear mass L, is small compared with
unity; i.e. , inelastic processes are much less
probable than elastic ones. Also, since this same
ratio I. is involved in the comparison of the
probability of processes involving two oscillators
with the probability of those involving only one,
the former are much less likely than the latter
for (mo/m)« l. It is for this reason that the
present work shall confine itself to single oscil-
lator 6rst-order processes only, in addition to
zero-order processes, For Fe as scatterer,
(mo/m)=1/56, so that the limited consideration
is well justihed in this case. The role of the
factor, ratio of incident neutron energy to her„
in I. is not so clearly de6ned as a function of
neutron energy. This is because of crystal
interference e6'ects, which depend, for processes
of all orders, quite strongly upon the incident
energy and, therefore, may play a far greater
part in determining the relative magnitudes of
types of scattering than do these simple ratio
considerations.

To find the actual probability (eventually the
cross section) of each of the oscillators performing
the transition from n, to n, +), (X,= abl or 0
for all s, for our purposes), it is necessary to
multiply

~
M~ ~, (13), by the probability that the

oscillators originally be in the states n, . Since
before interaction with the incoming neutron the
crystal is in thermal equilibrium, the Boltzmann
probability that the sth oscillator be in the state
n, (energy=(n, +2)koi, ) is given by (1—x,)x,"',
where

x, = exp ( k~,/koT), x—,"'=exp ( n, leo,/koT), —

ko =Boltzmann's constant, and T=crystal tem-
perature, Kelvin. Hence the probability that all
the oscillators initially be in the states n, is

7481 SissII (1—x, )x, (1 —x, )x, —the indices si, s2 re-
slss 1 1 '2 '2

ferring, respectively, to the y and p oscillators,

as previously. Ke form, then, the product

Q=II {1—x, )x, (1 —x, )x, ~cV~',
8182

whence from {13),

Q = l~ I 2 -p ['(--- ) (It-Ir') ] ll (1-...)rr' 8182

tt st

Xx, J„+i,. (1 —x, )x, J„~i, , „.
1 sl sl' sl 2 2 82 s2' sg

Owing to the circumstance that the energy
levels of the harmonic oscillator are equidistantly
spaced, an important quantity is the quantity Q
summed over all n, (zero to infinity) for all s.
This gives (when properly normalized) .the prob-
ability of oscillator transitions by energies X,&co„

regardless of the initial states n, App. lied to Q,
this operation gives:

P= ~A ~' Q exp [i(e e') —(k —Ir')]
rrl

XII (1 —x, )(1—x, )Y, , F, , , (16)
sls2 1 2 1 sl 2 '2'

where
rr' its rr'

F,g, =Q x, J„,+i,„„,.
les

Dropping for the moment excess indices, we
write

I'), =Z x"A+~, ,

with J.+i„=I.+i„„{t)I„+i,, „(w), and t =iaP:,
w = —iaF, a = (Ii/o&, )&. The calculations of
~o& Y~i follow

According to (14)

J., =1+(1+2n)(t'+w')/4,
so that

I'0 = P x"+[(P+w')/4][P. x"+2 P nx"]
= (1—x)—'+ [(t'+w')/4]

X[(1—x)—'+ 2x(1 —x)—'],
since

Q. x"= (1—x)-' (x &1)
and

nx" =x(d/dx) Q x"=x(1—x)-'
Finally,

I'o = (1—x)—' exp [(t'+w') (1+x)/4(1 —x)],
since 1+s=exp (z) for s«1. Or, if we restore
the missing indices,

rr'
I;, p ——(1—x,) ' exp [—(t'i/e, )

X f(&. )'+(r )'I(1+x.)/4(1 —x,)7, (1&)
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t and m having been replaced by their respective
values given directly above.

In what follows, it is convenient to obtain the
quantities Y~& as multiples of Yo. To this end,
it is necessary to expand I„~&,„to powers higher
than the first of i (or w), as in (15). From (12),
we get

I +i -(&) =i exp (&'/4) [(0+1)/2]'[1+~(&'/4)]
whence

J'„+i,„——(tw/2) exp [(t'+w')/4](0+1)
X [1+n(t'+w')/4],

Yi ——g„x"J„+i,„——(tw/2) (1 —x)—'

Xexp [(t'+w')(1+x)/4(1 —x)]
=(tw/2)(1 —x) 'Y

as one finds by applying P n'x" =x(d/dx) P„ex"
=x(1+x)(1—x) ' (the sums P x" and P„ex"
having been evaluated to obtain Yo), and
1+s=exp (s) for s((1. Finally,

Y,, i ——[AF, F, '/2~d, (1 —x,)]Y,, p. (18)

Similarly, it is found that

Y,, i ——[Ax,F,~F /2(u. (1 —x,)]Y,, 0 ——x, Y,, i.

Since x, =exp (—k&o, /koT) is less than unity
for finite T, the relation Y ~=& Y~ expresses the
physically obvious fact that processes in which
the neutron loses energy are more likely to
occur than those in which it gains the same
amount; at T= 0, it is impossible for a neutron
to absorb energy from a crystal lattice. Only
for temperatures such that koT»ken, are energy
gain and loss equally probable.

For elastic scattering, the quantity P given
by (16) is denoted by Po, for first-order processes
in which the fth oscillator undergoes a change
nf by &1, P is denoted by Pf~&. According to
(16), (17), and (18),

Po= l~ I2 exp (—28')

X
l g, exp [in (k —k')]

l
', (19)

Pi~ =
l
2 l' exp (—2 W) [5/2coi'(1 —xi)]

X l P, exp [in (k —k')]Fi'l ', (20)
and

I'
g
——xfI'jf.,

f
(21)

IY= P, [(5/(os i) (Fzi) '(1+x~i)/4(1 —x~i)]
+Q, [(Ii/ca82) (Fag) '(1+xsam)/4(1 —xs2)].

The removal of exp (—2W) to the left of P is
justified directly; 8' is actually independent of e.

Since there is a one-to-one correspondence
between the terms of the two sums of S' this
quantity may be simplified by dint of the fact
that niai=&vsa ——co, (and therefore x8i ——xag=x, ) for
corresponding terms. From (10), we obtain, for
corresponding s~, s2,

(Fsi) +(Fs2) =(2/mN)[(k —k') n,]'.
Consequently,

IV= (5/2m') Q, .[(k—k') n, ]'(1+x,)/(u. (1—x,)

has clearly no dependence on 0.
In the usual fashion, the sum over s is replaced

by an integral over the half of g space. For
N»1, this is valid. Also, we employ the Debye
approximation for the frequency spectrum—
namely, co=cd, where c is the constant average
sound velocity (W.e adopt the average sound
velocity —to be characterized in terms of the
average Debye temperature —instead of keeping
the individual transverse and longitudinal veloci-
ties for the sake of great simplification of the
work involved. ) The assumption of a sound
velocity independent of wave-length actually
holds in a continuum, therefore for wave-lengths
long compared with the lattice constant. That
it breaks down for short wave-lengths (large co)

is not a serious difficulty so long as we use only
integral properties of the frequency spectrum.

With an average sound velocity assumed, the
values of co, (and hence x,) are the same for the
three mutually orthogonal directions of the unit
vectors n, for a given iI. Thus we may write

1F= (fi/2riiX) (k —k') ' g.' (1+x.) /a). (1 —x,),

where the prime of P,' indicates that only the
N/2 points of half iI space need be summed over

the su—mmation over j (indicating the three
directions of polarization) having been carried
out for all iI. Now g.' actually means summation
over the three sets of discrete variables g~, g2, g3,
given by (7). To convert this sum into an
integral, we must 6rst multiply the summand by
[X/(2s)']dgiiig2dg~ since (7) shows that there
are N/(2ir)' points per unit "volume" of giqmg~

space. It is yet more convenient to convert P, '

into an integral over the variables g~~, qs2, q~a,

where these are the Cartesian components of q



INELASTIC SCATTERING OF SLOW NEUTRONS

ao'=(«'/ ).
(23)

At length, with application of cg=co, cq0 ——co0

(the maximum circular frequency), we find (the
now unnecessary index s having been dropped):

co p

w= (3k/4mNO ) (k k') [&(1++)/(1 +)]d~
0

= (3k'/2mk00) (k —k') '
X I (1/4)+(T/8)'Qi(H/T) I (24)

where use has been made of the fact that
x = exp (—ki0/kDT), and 0 = (ka&o/ko) is the
Debye temperature of the scattering substance.
Here,

z

Q () = {0/[e p (0) —1]ld13.
0

(25)

A. Elastic Scattering

In order to convert I'0, (19), to an actual
cross section (per unit solid angle and per scatter-
ing nucleus), we must multiply by (mo'/4~'O'N),
where m0 is the neutron mass. Thus

Go(k —k') = (X/4irN) exp ( —2W)

XIX.e p [& (k —k')]I', (26)

is the elastic scattering cross section per nucleus
per unit solid angle for the single crystal; here
X= (mo'/s. k4)

I
A

I

' is the total elastic cross
section of the free scattering nucleus.

Our system of basic lattice vectors is neces-
sarily such that for each integer triple 0.10.20.3

(and of dimensions inverse length). This necessi-
tates further multiplication by B, where

dgldg2dg3 =Bdgsldgs2dgx3. (22)

For regular lattices, the transformation from
reciprocal lattice to Cartesian components is
linear, the Jacobian B constant. It will be shown
in Section VI that 8 is the volume per nucleus
in the crystal. Finally, we employ the usual
artifice of ~placing the region of q space by a
sphere containing the same number —N/2 —of
points. The volume element is thus a hemi-
spherical shell, or dq~ldqs2dg~3 = 2~g2dq; the radius
of the sphere, to be determined directly, is g0.
To insure that the number of points in the
hemisphere is N/2, we must have

Qp

(N/2) = [N/(2ir) ']B 2s g'dq;

(0&&a;&&g;) there is one and only one crystal
lattice point. [The definition of g,—))1—pre-
cedes relation (7) directly; we shall often neglect
unity in comparison with g;.]Thus, since

3 3

e = P o;a, , (k —k') = P (k, —k, ')b;,
and

~ (k —k') =P ~,(k, —k, '),
i=1

following (4), (5), (6) (where k, and k, ' are
clearly the reciprocal lattice components of k
and k', respectively),

lail'=
I E «p [i~ (k —k')]I'
3 gs 2

=II 2 exp ['"(k'f-k.')]
i=1 oi=0

sin' [g,(k, —k )/2]=II
, , sin' [(k,—k,')/2]

3

= (2~)'N Q ~(k, —k, ' —2~„).

Here 5(k, —k —27rr, ) is a Dirac 8 function de-
fined by the integral property J'f(z)g(z fi)rI~-
=f(b) for & within the range of integration, =0
for b without the range of integration; ~i is a
positive or negative integer. The vector

r;bi
i=1

therefore connects two points of the reciprocal
lattice, and is loosely referred to as a "reciprocal
lattice vector. " The validity of replacing the
sine-squared ratios by 8 functions rests upon the
facts that g;&&1 and that functions by which

I Pi I' is multiplied undergo no violent variation
in the region in which

I Pil' differs appreciably
from zero; also, only the integral properties of

I
P&l' are required in the present work.
If instead of using b functions whose argu-

ments are reciprocal lattice components of
vectors, we introduce 8 functions in which the
arguments are the Cartesian components of
these same vectors, we find from the definition
of 8(x —k) above that

3

Q 8(k, —k 27rr;) =B 'b(kxi —kxi 27rrxi)— —

IX &(k*2—k*2 —2irrg2) 8(keg —kx3 —2irrxq)

=B '6(k —k' —2irg),
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where B ' is the reciprocal of the Jacobian,
defined by (22), for the transformation from
reciprocal lattice to Cartesian components. The
three-dimensional, or vector, 8 function is
merely an abbreviated way of' writing the triple
product for which it stands. It has the additional
advantage of independence upon the orientation
of the Cartesian coordinate system. Thus (26)
finally becomes

Gp(k —k') =2n'B 'X exp ( —2W)b(k —k' —2pr~).

This result expresses for neutrons the familiar
x-ray Laue conditions for elastic scattering by a
single crystal —namely, that only for well-defined

(the better the larger X) angles of incidence is

there elastic scattering at all for an incident
monochromatic beam, and then only at certain
angles defined with the same degree of sharpness
as is required of the angles of incidence.

We now pass to the case of the polycrystal by
averaging over all crystal orientations. We do
this by averaging over all directions of ~, which
for any given value has a fixed orientation
relative to the crystal axes. We choose a polar
axis along the direction of (k —k') and denote
the polar coordinates of ~ by 7, 8„, p„so that

2' jr

Ep(k —k'), = (1/4pr) dpp, Gp(k —k'), sin H,d8
0 ~ 0

=(pr/2)B 'X exp ( —-2W)5&

is the polycrystalline elastic cross section. corre-
sponding to the reciprocal lattice vector
Here, clearly,

(%2& ~ 'lr

Si ——
I dpp, l)(k —k' —2pr~) sin H,de,
0 p 0

= (1/4n'r')
~

I ()(rsi) 5(rap)

into (28),

E(,(k —k'), = (X/8rrBr') exp (—2W)

X &(i k —k'i —2~r)

= (X/8prBrP) exp (—2Wp')

Xb(2k sin (8/2) 2pr—r), (29)

since for k =k' (elastic scattering), i
k —k'

i

=2k sin (tI)/2); 8 is the angle of scattering. This
result expresses for neutrons scattereR elastically
the familiar polycrystalline (or powder) scatter-
ing of' x-rays along certain right circular cones
about the line of incidence —so called "Debye-
Scherer rings. " The particular cone depends, of
course, on the magnitude only of ~, but we must
keep in mind that in general there are several
examples of z in the reciprocal lattice to a single
absolute value r Since si.n (8/2) ~& 1, only those
vectors ~ for which r&(k/pr) provide Debye-
Scherer rings of scattering.

To obtain the total polycrystal cross section
per nucleus, we integrate over all 8, q the polar
angles of neutron scattering. For simplification,
in the exponent W of (29) we have replaced
(k —k') by 2prs, its equivalent for permissible
angles of scattering, and have so replaced lV by
W'0'. Then the only 8, y dependence is in the
5-function factor. By (24),

Wp' ——(6m'k'r'/mk p0)

X {(1/4)+(T/0)'Q (0/T) }. (30)

It is here for the first time that we use the
independence of X on 8, q i.e., the fact that
purely nuclear scattering of slow neutrons is
isotropic f'rom the single isolated scatterer.

Since Ep(k —k'), is independent of ((), the total
cross section for given ~ is

B,i=2m B0 k —k', sin 8d8

Xl)(ik —k'i —2prrxp) icos g, i
'dr*idr~p,

where
= (X/4BrP) exp (—2Wp')Sp,

since the xi and xp components of (k —k')
vanish owing to the choice of polar axis, and the
Jacobian

D( 2rrrsi, 2prr*p/e„—y, ) =4pr'r' sin —8, cos 8,.

For a non-vanishing integrand, ~s3 ——v, so that
cos 8, =1. Hence the polycrystal cross section

per unit solid angle per scattering nucleus for
given ~ is, on substitution of the result for S~

S2 —— 8 2k sin 8 2 —2m' sin 8d8
0

= ()/).")f 6()k sin (e/2) —2 )

X {2k sin (8/2) }d{2k sin (8/2) }= 2prr/k',

whence, finally,

E.i = (sX/2Brk') exp (—2Wp').



For simple cubic structure (B=aP, volume of
unit cell), this reduces to the result of HHJ for
elastic scattering.

The total elastic polycrystal cross section per
nudeus is obtained by summing over all recipro-
cal lattice vectors ~ for which r ~& (k/pr) is satis-
6ed, together with other conditions on c de-
pending upon the type of lattice:

T'

= (mX/2Bk') P, (1/r) exp ( —2Wp'). (32)

B. Inelastic Scattering

Ke pass now to inelastic scattering processes
of erst order; initially, consideration is confined
to phonon emission —loss of energy by the
neutron in exciting a sound quantum. From the
definition (10) of Ff', we write (20):

Elf {A{'jk/4m——coj (1 —xy) &]L(k—k') iaaf]'

Xexp ( 2W)
I p, {exp {io'(k k +q&)]

+exp [pe (k —k' —llf)] I ~'. (33)

The & sign arises from the fact that Ff' may
contain either a cosine or sine factor (according
to whether f refers to a y- or ii-oscillator). The
ambiguity may be removed by recollection of the
limitation to consideration of just one-half of g
space (determined by any plane through the
origin). For qi/0 and X))1, only one term of
the summand in (33) will give a contribution
appreciably diferent from zero for suitable k, k';
each sum is essentially a 6 function of argument
different from that of the other. Hence, if we
now open consideration to all of q space, thereby
departing from the earlier restriction, it is
permissible to omit one of the terms of the
summand. That is, the one term provides for the
"non-zeros" of the other by the mere introduc-
tion of the previously eschewed values of qf of
opposite sign.

To convert I if to the cross section per unit
solid angle per scattering nucleus, one multiplies
by (mp'k'/4n'kk'N). Thus

G,i'(k —k') = [k'kX/16prkmp g(1 —xi)X']
XL(k —k') ef]'exp (—2W)

X ~P, exp Lie (k —k'+q~)](' (34)

Lwhere again X=(mp'/irk') ~A ~' is the total
elastic cross section for the free nucleus] is the

inelastic scattering cross section per unit solid
angle per nucleus for single phonon emission,
corresponding to the fth oscillator.

From (21), one finds directly that

G l(k —k') =xiGl~(k —k'). (35)

Comparison with the treatment given the
quantity

~ P, ~', (27), yields the result:

Gl~(k —k'), = Lpr'k'SX/2km&og(1 xf)BÃ]—

X{:(2«—ilf) ~f]'
Xexp (—2 Wf') 8(k —k'+pl —2s ~), (36)

~here ~ is a reciprocal lattice vector of the type
introduced in (27). Since Glf(k —k'), vanishes
unless k —k' = 2m~ —@, this substitution has been
made in (36); thus W has been replaced by

Wg' ——(3h.'/2mkp0) (2ir ~ —qf)'

X {(1/4)+(T/O)'Ql(O/T) I

Now the only dependence upon the angle of
scattering rests in the 8 function,

Ke next compute the total single crystal
scattering cross section for given k', but inte-
grated over all orientations of k'. The quantity
requli ed ls

dq' 8 k —k'+qf —2m~ sin 8'd8'. 38

We choose as polar axis the direction of
(2m~ —qf), so that the xl and xp components of
this vector diA'erence vanish. Also, we use the
variables

ksi=k sin 0 cos p and ksg=k sin 8 sin p'

for the integration, the Jacobian of the trans-
formation being

D(k*l, ksp/8, pp ) =k sin 8 cos 8 .

Sp= (1/k')' I,tb(kgl —k*l) 8(kxp —ksp)
J J

X ~(k*p —k*p —
I
2« —qf I) I

cos 8'
I

'd

d y' Gii'(k —k'), »n 8'd8'
0 0

= fpr'k'kX/2kmplf(1 —xg)BÃ]

XL(2« —q,) ~,]'exp (—2'')Sp, (37)

where k', 0', y' are the polar coordinates of k', and
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(5'k"/2mp) = (5'k'/2mp) kppq— (39)

Because of the equality of the first two compo-
nents of k and k', this becomes

The first two 8 functions yield k~& ——k~& and

k~2=k~2 for a non-vanishing integrand. The con-

sequent value of k~3 is obtained through the
condition of energy conservation:

the already imposed relation, (k —k') = (2pr~ —qr),
if one uses the fact that

k (2« —
qq) = k

I
2pr~ —

qz I
cos 8&,

since the polar axis has been taken along the
direction of (2pr~ —qy).

The ambiguity can be obviated by the change
of variable:

s = k cos 8p&(k' cos' 8p —2mpioy/k)'*,

and

/ 2

kpp ——+ (ksp —2m peag/k)' *=+Z,

Icos O'I =(Ik*pl/k') =Z/k'.

ds k' cos 8I, sin 8~= —k sin 8I,+
(k' cos' 8 2m—pal //k) &

Hence, finally,

S,= 8(k*paZ
I

2pr—~ —
qI I)/k'Z. (40)

Next, G~f" is averaged over all directions of k—a procedure physically equivalent to averaging
over all crystal orientations, so that the result is
the total polycrystal cross section for given k':

2m' 1r

E,~ '= (1/4pr) dppp Gq~' sin 8pd8p,
0 0

where k, 8I„qq are the polar coordinates of k.
From (37) and (40), we have

E &. &= [prpgx/4km~f(1 )ppQr+7

X [(27r~ —qi) .nr]' exp ( —2WI')$4,

where, after integration over pA, ,

S4= 5(k*p&Z
I
2pr~ —q—~l)Z "sin 8&d8

0

&k sin 8~

(k' cos' 8p 2m—
ppyp/k) i

X[k cos 8p&(k' cos' 8p —2mpcuq/k)l]

sk sin 8I„. zk sin 81,

(k' cos' 8p —2mphly/k)' Z

E&I' ——[pr'AX/4k'mcor(1 xg)BN I
2prz ——

qy I ]
X[(2pr~ —qr) er]' exp (—2''). (42)

Carrying through the same procedure in the
case of phonon absorption by the neutron, we
obtain the result expected directly from (35):

f, r2 'g ——xfBjf'. (43)

Thus we have, finally,

S4 ——(1/k) )"&(s—I
2« —qI I ) (ds/s)

=[kl2« —q~l] ' (41)

It can be shown that the argument of the
b function has the single root

k cos 8p = ( I 2«q~ I
'+2mo&~/k)/2

I
2« —q~ I

'

but since this solution is obtained through
squaring the term preceded by ~, it may pertain
to either sign. It turns out that for one of the
signs this solution always holds, for the other it
is extraneous —which condition depends on
whether I2« —q~!' is less than or greater than
2mpa&r/k. (In the case of phonon absorption-
i.e. , where cof may be replaced by —orf in the
conservation of energy and resulting formulae-
it is for the plus sign alone that the above
solution —with cpr replaced by —or~holds. )
That this solution gives no new condition is
ascertained by the fact that it is derivable from

k —k'=2m~ —
q (44)

and conservation of energy, (39). For phonon

Now (42) represents the total polycrystalline
scattering cross section for excitation of the fth
oscillator, (43) for absorption of energy from the
fth oscillator. To obtain a physically measurable
quantity, it is necessary to sum (42) and (43)
over all f—for each qr, over the three directions
of pola. rization and the two (y and p) oscillators,
and then over all of q space (the, restriction to
ka1f of q space having been removed at (34))—
and then to add the results. Also, summation
over suitable ~ must be carried out. The suitable
values of ~ and the corresponding ranges of g
(the index f is no longer required) are ascertained
by the conditions
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absorption, the latter is replaced by setting —~ variable t, where
for ~, so that the general condition for energy 2+z —

q~ =2xT+Xg
conservation is

or

k' —k"+ I2« —ql'
~&1,

2kl2«-ql

(I 2pr~ —ql —k)' —k" & 0.

This inequality is satisfied if and only if

k' —k&~ I2« —ql ~& krak'

a result significant for phonon absorption, where
k'&~ k. The condition that the cosine of the angle
between It' and (q —27r~) be less than unity
yields the corresponding result applicable to
phonon absorption: The sign of the left-hand
member of the above inequality is reversed.
Thus the general restriction for all first-order
inelastic processes is

k"= k'&2mppi/k.

From (44) we find, upon squaring, the condi-
tion for the cosine of the angle between k and
(2« —q) to be less than unity:

X
t

I
(2prr+I~g)' exp ( —2W')

Q' dgdxd pq.
ip(1 —x)

As variable of integration, A. takes on all values
between —1 and +1 consistent with (46),
which through (49) now reads:

For r/0 (the case r=0 is handled separately
la.ter), it can be shown that for simple, body-
centered and face-centered cubic lattices 2m' & gp,

so that the substitution (49) is valid for these
structures at least. If the direction of ~ is taken
to be that of 8, =0, then (49) becomes on
squaring

47f2T2+g2 47l Tg cos 8 4%2T2+47l TgA+~2g2

whence

sin 8pdB, = (2sr+A'q)dpi/27rr

Therefore, finally, the total inelastic cross
section (for phonon emission) is given by

Ei' ——(Xk/32prPk'mr)

Ik —k'I & I2« —ql &k+k' (46) (50)

The previous introduction of an average sound
velocity renders summation of Bjf ' over the
three directions of polarization quite a simple
matter. Since for a given q the three ef are unit
orthogonal vectors, the sum over them gives,
from (42),

Ei" $~'hX——/2k'm~(1 x)PN—]
X I2« —ql exp ( —2W'), (47)

where the prime of Ei" indicates that summa-
tions over the three directions of polarization
and the two oscillators (y and p) have been
carried out for the particular q.

In summing (47) over all points of q space,
we again integrate after multiplying the sum-
mand by the factor

LN/(2x) ']dgid gpdgp

=
I N/(2pr)']By' sin BggdB,d p„(4 )8

whereby the relation (22) has been written in

polar coordinates. Instead, however, of inte-
grating over the angle O„we introduce the

Also, for given T, g is limited to those values
consistent with conservation of energy, the above
inequalities, and g ~& qp. Integration over y, merely
yields a factor of 2m.

We employ an approximation to the first mean
value theorem of the integral calculus by re-

placing the factor, exp (—2W'), by its value for
) =0, and thereby remove it to the left of the
signs of integration; 5"' is therefore the same as
Wp', given by (30). Upon integration over pp,

and ), then,

Pi (XA/16m-k'mr) ——exp (—2 Wp')

X2 Q dg
t

I
4s'r'g+2xrgXP+(1/3)gPliP]xi, (51)

M(1 —x)

where X~, X2 are the limits of integration over ).
They are functions of T and q, consistent with
both (50) and —1&&iii&~Xp&~1.

In order to evaluate the integral over g, we

appeal once more to the Debye approximation—
namely, au=cd, where c is the constant sound

velocity. By letting P =kpi/kpT, whence x
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where

~1 &1
X {4jl r K'y +(2TrkpT/kc)Kp

+ (1/3) (kpT/kc) Kp }, (52)

K+'=~ (Xp" —X&")P"{Lexp (P) —1] '+1}dP
(phonon emission)

(53)

K, '= I (Xp"—Xg")P"{exp (P) —1] 'dP

(phonon absorption),

for v=1, 2, 3.

In order to interpret (50) to obtain the limits
of integration in (53) as well as the choices of X~

and X2, we must rewrite the energy conservation
condition (45) in terms of the Debye approxi-
mation:

k"=k'&2mpcq/k. (54)

The lower limit is in general zero; all limits
which differ from zero are inversely proportional
to T. (For, P = kcq/k p T, and the limits are
determined through restrictions upon q alone. )
If the upper limit for q is just qo, then the upper
limit for P is 0/T, since kcqp/kp = 0, the Debye
temperature of the scatterer. For phonon emis-

sion, the highest possible value for q is clearly
(kk'/2mpc), by (54); the corresponding limit for

P is (k'k'/2mpkpT) =(Tp/T), where Tp is the
neutron temperature. A convenient aid to ob-
taining the limits and values of X~ and X2 will be
indicated in the final section of the paper.

=exp (—kpp/kpT) =exp ( —P), we at length ob-
tain

Zap = (AXkp T /167rrkPk mc ) exp ( —2W ')

r = 0. For faster neutrons, (v) c), only oscillators
for which q ~&2mp(v —c)/k may participate.

For phonon absorption, (46) and (54) give

whence

k'+2kq+q' & k" = k'+2m pcq/k,

kq)~ 2m, (c—v).

These results, obtained in similar fashion by
Wick, ' are only approximate in that they rest
upon the Debye approximation for the frequency
spectrum.

For r=0, the transformation (49) is neither
valid nor necessary. We employ (48) directly to
obtain

D. Recapitulation

The total inelastic cross section is obtained,
T T T

finally, by summing the expression B;„=8&+B &,

(52) and (55), over all suitable values of ~:
T

0
Z~i = (5X/4k'm)

y )t Lx exp (—2 W')/~(1 —x) ]q'dq, (55)

where

W' = (3k'q'/2mk p0~) {(1/4) + (T/O~)'Q, (O~/T) },
and the limits are given through {k—k'~ ~&q

~&k+O'. The evaluation of this integral may be
carried out numerically for those specific prob-
lems in which consideration of r =0 is required.

(It turns out that for Fe scattering 300-
degree neutrons, the conditions necessary are
not satisfied, so that r=0 does not enter into
the computation carried out for this work. )

C. The Case ~=0

We now investigate the possibility of inelastic
scattering for r=0. For phonon emission, by
(46) and (54),

whence
k' —2qk+q' & k" =k' —2mpcq/k,

kq+2mp(c —v) & 0,

where v=(kk/mp) is the incident neutron ve-

locity. Hence, for neutrons of velocity less than
the sound velocity in the scattering substance,
single phonon emission cannot occur at all for

The suitability of a particular ~ depends upon
the consistency of its absolute value r with the
inequalities (50) for any simultaneously per-
missible X and g. Also, there are possible re-
strictions upon the values of ~ imposed by the
crystal structure of the scattering substance.
For example, as we shall see later, a body-
centered cubic lattice requires that (ar)P, where

(a) is the lattice constant, be an even integer.
For a simple cubic structure there is no such
restriction.

~ G. C. Wick. Physik. Zeits. 38, 403 (1937).
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III. COMPARISON W'ITH X-RAY PROBLEM

From (54) we see that in the limit mo«(kk'/
2cgo) = (k'k'/2k00») —which is equivalent to 0'

((Tp, the neutron temperature —we have
k=k'. In this limit, therefore, we should expect
that our results should apply to the scattering
of x-rays as well, provided that isotropy of
scattering is assumed. Insofar as the mathe-
matical treatment is concerned, setting k=k'
through mp=0 merely means lifting the restric-
tions on the limits of integration in K„—vis. , the
limits are always P and (0'/T), while Xi= —X2

= —1. This comes about through the weakening
of the condition (SP) to read 2~r+Xq &~ 2k. (lt is
clear, then, that for values of 7 so large that
2m~+gp&2k, there are still restrictions on the
values of the upper limits and of ) 2. But it is
not necessary to consider such special cases here;
they would of course apply to x-rays as well. )
For the sake of simplicity, only the term in (52)
involving X~~' is considered; but the following
comparison is valid even if the smaller term in
Za~' is taken into account. (Since Xi ———liq ———1,
It &1 —p)

From (52), (53), and (25), under the conditions
of the preceding paragraph,

g~;„=g, +E,= (X7rk02T2r/ycak2m)

Xexp (—2WO ) {Ql(0/T)+(1/4)(0/T)

Since there is no comparable formula for x-rays
readily available, it is necessary to develop
further the work of Zachariasen, ' beginning with
his Eq. (15), which we rewrite in the notation of
the present work:

J2 ——(X/4~) exp ( —2WO )(2ir~)'(B/m)

«Q 3 sin' Lg, (k; —k +q;)/2] 4xg'
x

~

~
~dg.

oP, i sin' { (k;—k, '+g;)/2] (2s.)'

Here we have written the angular independent
(X/4ir) for the non-isotropic Sf' Also, (k —k').'
has been replaced by the equivalent (2m~ —q)';
the subsequent negligence of q compared with
2m~ is equivalent in one case to ignoring of the
K~ term, while in exp (—2WO') it corresponds
with the use of the mean value theorem in the
present work to reach the result (51). The
frequency v is replaced by (cu/2ir), while the

volume element dv is substituted for by
t 4vrg'dg/(2s)'$ —integration over a sphere of
radius gp thus replacing the integral over rec-
tangular variables. An average sound velocity
has been adopted, so that the sum P; y =1 is
carried out. In terms of or,

Q =ks&{ exp (ka&/koT) —1j '+-'Ace.

Reducing Zachariasen's formula to the single
atom by dividing by X, we obtain

(J2/N) = (4m'X/m) exp (—2WO')

&o

X (Q/aP) O(k —k'+q —2s.~)g'dg
0

where use has been made of (27) to replace the
sine-squared ratios. Instead of integrating over

g immediately, we perform the angle integrations
over ail directions of k and k' to obtain the total
polycrystal cross section. These integrations of
the function 5(k —k'+ q —2ir~) have already been
carried out above —(38) to (41). The result for
the x-ray inelastic polycrystal cross section per
atom (again with negligence of q compared
with 2ir~) is then

(J3/X) = (Xirr/mk')

Xe p (—2Wo') (Q/ ')g'dg.

Using co=cq, and introducing p=kci7/koT, we
finally arrive at the expected result:

(J /X) = (Xs.k 'T'r/kc'kmm) exp (—2 Wo')

&& {Qi(o/T) +(1/4) (o'/T)' I

This is precisely the result directly above for
B;„, and thus provides the desired check with
the x-ray theory as developed by Zachariasen.

(Even though, on the one hand, the term in

Z3 has been dropped and, on the other, q has
been neglected in comparison with 2m~, the
check is still perfect. Detailed comparison with
the steps leading to (52) readily verifies the
equivalence of these negligences, and conse-
quently the exactness of the agreement. )

IV. RESULTS FOR LOW TEMPERATURES

For T«O» and T«T, = (k'k'/2mko), both, the
upper limit of integration in Z„, (53), is large
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compared with unity. Since the term of the
integrand involving [exp (p) —1]—' is close to
zero for P&&1, the upper limit may be replaced
by inanity for such small values of T. For the
term not involving the exponential, which ap-
pears in X, only, the limit must remain finite.
[Actually, the criterion for the smaHness of T
varies with v since the limits of integration
depend strongly on this parameter through (50).$
Also, for T small, it is only the range of small q-
g(koT/hc —which contributes appreciably to the
result from the exponential part of the integrand.
For sufficiently small q, the restrictions upon )
through (50) drop out, so that X& ———

l%.2= —1.
Comparison of (53) with (25) shows that for
this case Z4 ' ——2Q&(m) and X1' ——2Q4(~)
+1'(X2—lj, 4)pdp. For the term in X„' not in-
volving the exponential, this simplification can-
not be made. For T«9~, TVo' is simplihed by
setting Q4(~)(=m-'/6) for Q, (0/T), (25).

Because the term of E„' does not involve the
exponential, it is not possible to perform a
complete simplification for T small. One can,
however, glean some general qualitative points
of interest from the preceding results. Of course,
for T= 0 phonon absorption must vanish, as the
factor T' in (52) shows, since the integrals X„'
converge for T=0. In the case of phonon
emission, however, since the integral E„contains
a term which diverges as T—"—', inspection of
(52) reveals a non-vanishing cross section at
absolute zero. For, although at T=O the lattice
has no energy to give to the neutron, it is still
possible for an elastic vibration to be excited by
the impact of the incident neutron.

For T«0, T«TO, both, the most significant
term, aside from that which is non-vanishing at
T=0, is proportional to T'. This quadratic
term turns out to be directly evaluable, so long
as the condition

(3~' kr' /mokO) ((1 (57)

is met. From the remarks of the preceding
paragraphs, it is seen that for low temperatures

8;,=Z& +8 4
——C2(4rXko'r/4Ac'k'm)

X {4Q4(~)T'+ C& —C&(12''k'r'/mk00)

X(T/O) Q(-) }, (58)

C4 ——T'JI (X2—X4)pdp

+(k p T4/27rr5c) )f (X2' Xp—)p'd p

+(T'/3) (ko/27rrkc)')~() 24 X44)—p'd p,

C2 ——exp ( —3k's'r'/mkp 0);

exp (—214'0') has been replaced by the first two
terms of its expansion. Now, the highest possible
value of C~ is attained for X~= —X2 ———1 and
when the limits of integration are zero and
(O~/T). Tllls 111ax1111ulll ls then

C4= O~ {l. +42(k00~/2mrkc) }

It can be shown that the second term in brackets
is at most of the order of magnitude unity; so
tliat Cy = 0' is a satisfactory order of magnitude
approximation. The value of the last term in
brackets in (58) is therefore, to order of magni-
tude, (1 2'sk '2r/ mk 00)Q (4~)T'. If (57) is ful-
61led, then this term is negligible compared with
the first in brackets, and (58) becomes:

2;„=Cg(sXko'rQ4(~)/I4c'k'm) T'+Ca, (59)

C4 = C4C2(4rXk4'r/4kc'k'm).

It is interesting to compare this result with the
corresponding quantity for elastic scattering.
Expansion of the exponential in (31) to. two
terms and use of the fact that O=(hcgo/ko)
= (l4C/kp) (6s'/8) &, by (23), giVeS

8,)= C4 —C2(7rXkgrQ4(~)/kc'k'm)T'

(C4 =constant).

With (59), this gives the noteworthy result that
for low T [and (5'/) $, the total (elastic plus ine-

lastic) cross section is temperature independent.
Now the values of ~ contributing appreciably

to the integral Q4( ~) are small —the smaller, the
smaller T. Since it is this integral which provides
the term in T2, we need to consider processes
involving only low frequency oscillators in the
consideration of this term. For finite tempera-
tures these are on the average excited to high
quantum states to render their energies to the
order of 407, For high quantum numbers—
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whereby the separation of energy levels is small
compared with koT—it should be possible to
give the pmblem a classical treatment. Ke
should expect, therefore, to find a classical de-
scription of the constancy of total scattering
with temperature, under the assumption (57),
for low temperatures.

Since for low frequency oscillators k —k'=2m~
approximately, 4m'O'T' is essentially the square
of the neutmn's momentum change in being
scattered. If we consider now a classical collision
between a neutron and a free scattering nucleus,
4x'k'~' is therefore the square of the scatterer"s
momentum change. Also, mk00 is of the order of
the square of the momentum of the scattering
nucleus. Condition (57) holds, therefore, so long
as the motion of the scatterer is hardly disturbed
by the impact of the neutron. This condition
obtains if and only if the scatterer mass is large
compared with that of the neutron. Since we
have required that TOTO, or that the probable
neutron energy change be small compared with
the incident neutron energy, it is necessary also
that the scatterer velocity be small compared
with the incident particle velocity. Otherwise,
the neutron would experience a considerable
"Doppler shift" in velocity and therefore undergo
an appreciable energy change.

Thus the classical picture is the following:
Light, rapid particles are scattered by heavy,
slowly moving centers. All processes, in general. ,
involve an interchange, however small, of energy;
but owing to the relative mass and velocity
magnitudes, the scattering (total for all energy
changes) is just what it would be for neutrons
scattered by immovable centers at rest. The
more strongly are (57) and T«TO fulfilled, the
more closely does the total scattering approach
the "rigid scattering. " This is equivalent to our
quantum-mechanical limiting result.

For T&&TO, T»0, both, then the integrals
are simplified somewhat by dint of the fact that
p«1 over the range of integration, and exp (p)
may be replaced by (1+P+P'/2). Thus we have,
by (53),

to this approximation and with use of (1+s) '
= 1 —s for s«1. As for the factor exp (—2lFO'),
for large T, Qi(O/T) =(0/T)+(1/4)(O/T)', so
that, according to (30),

Wo'=(6ir'i''r'/mk00) (T/0).
It is thus clear that for large T the cmss section

Z~i varies as (aT&b) exp ( nT)—., where a, b, a
are constants. (This fact is hardly evidence that
the inelastic scattering cross section vanishes at
very high temperatures; for temperatures too
high, the entire mathematical treatment breaks
down, since the assumption of harmonically
bound nuclei in a crystal is no longer valid. )

The particular asymptotic expressions for both
high and low T are employed in the computation
carried out at the end of this work.

VI. NUMERICAL EVALUATION

The remainder of the work is devoted to the
computation of the inelastic cross section per
nucleus for 300-degree neutrons scattered by
polycrystalline iron at temperatures up to
1000 K. The slight change in lattice constant
with temperature is neglected in the computation.

A description of the positions of the cubic
body-centered lattice points —the structure ex-
hibited by iron thmugh 1000'K—in terms of the
basic vectors a~, a2, a3 must be such that the
position vector a=a. j.aj.+u2a2+a3a3 of the eth
lattice point bear only integer components
o&, g2, 0.~. Also, every integer triple O.i, 0.2, 03
(0&~0;~&g,).should denote the position of one
and only one lattice point. These requirements
follow from the work of Section II. If i~~, i*2, i*3

are three mutually orthogonal dimensionless unit
vectors, then the following triple ai, a2, a3
satisfies the required conditions for the body-
centered cubic lattice:

ai —sinai, a2 —Qis2, ag —(6/2) (isi+1xg+1x3),

where (a) is the lattice constant.
The recipmcal lattice is de6ned generally by

the system of basic vectors bj., 12, b3, where

bi =a2Xa8/D bR=a3Xal/D b3=aiXa2/Di
(60)D= (aiXa2) 'a3.

For the present choice of a~, a2, a3, we find

bi ——(1/u) (ix) —is3), b2 = (1/a) (is2 —isa),

b, = (2/a) i*,.
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A vector ~ having components 7.j, v2, r3 in the
reciprocal lattice system is written:

~ =Tibi+Tibi+Tibi ——(Ti/u) (isi —isi)

+ (T2/u) (isi —is,) + (2T2/u) is, .
This gives the relation between the Cartesian
and reciprocal lattice (covariant) components of
a vector:

Tsi Ti/u, Tsi——T2/u, Tsi——(1/u) (2T——2 —Ti —T2).

From here, the Jacobian of the transformation
from the Cartesian to the reciprocal lattice
system is found to be (2/u'). Consequently, its
reciprocal, defined by (22), is 8 = (u'/2); whence,
according to (23), q2= (122r2)'/u.

Also, the magnitude of a vector ~ in terms of
its reciprocal lattice components is clearly given
through

u T Tl +T2 +(2T2 Ti T2) (61)

Clearly, fear integer triples ~~, v.2, 73 we must have
a'v' an even number. Hence in summation over
~, as in (56), (32), only those ~ for which u'T' is
even are summed over. (Physically, this means
a destructive interference between the two simple
cubic lattices making up the body-centered
lattice, for "Bragg reHections" at "Miller planes"
for which a'v' —the sum of the squares of the
Miller indices —is odd. )

It is noticed for the special case of a body-
centered lattice, the Jacobian 8 is equal to the
volume per nucleus, here u'/2. It is possible to
show that this result is perfectly general provided

100 200 300 400 500 600 700 600 900
Scatter er Tknperature, Kelvin

Fro. 1. Inelastic scattering cross section vs. temperature
of scattering crystal.

that the basic lattice vector system is chosen
with the "one-to-one" restriction imposed here.
In this event, (aiXa2) a2 is the volume per
nucleus. By direct substitution through (60), we
find that (biX12) bi= L(aiXa2) a2] ', the num-
ber of nuclei per unit volume. Now if we write
the expansion of b; in terms of the unit Car-
tesian vectors as 1„=p; p, ,i*;, then ~ = p; T,b;
= p;; T;p, ,is; Hen. ce T*;=Q; r;j3;;; the Jacobian
of this transformation is the determinant whose
elements are the coefficients P;;. This is clearly
equal to (biX12) 12, from the definition of the
P,;. Since this determinant is the reciprocal of
the earlier defined 8, we have B=(aiXa2) ai,
whence the theorem is proved.

The numerical work can be greatly simplified
through consideration of the expression (51) for
Fi'. Even for q=g2, the term (1/3)g9, 2 can be
shown to be small compared with 4m'~9 First,
since —1 & li & 1, (

1~
(

' &
~

1~
(
. For TWO, the smallest

employed value of T' Lby the considerations just
following (61) above] is (2/u'). Therefore,
42T2T2 &~ (82T2/u2) = 79/u2. On the other hand,
g&' ——(122r')&/u'=24/u2, so that (1/3)g'&~8/u'.
Hence it is quite reasonable to neglect the term
involving E2~' in (52) compared with that con-
taining EI~'. The larger ~—and the lower T—
the better the approximation; in the present
work the error thus involved is much less than
10 percent, since an appreciable contribution to
the results comes from values of v' a number of
times as large as (2/u'). Similarly, the term in-

volving E2~' is neglected, since for the most
part (X2 Xi ) =0. Tllus slillpllfied, tile expfessloll

T

for B~i becomes

Z~i =X[iru(uT)k22T2/4Am(uk)2c2)

Xexp ( —2W2')Zi

where, for sake of convenience, the reciproca1
lengths k and 7- have been introduced as multiples

of (1/u).
The author has, with great bene6. t, plotted the

curves
l
k&k'~ as functions of g

—all, by (54),
parabolic arcs. There is one plot for each of
phonon emission and phonon absorption, each
done in units of (1/u). On the same plots were

drawn the lines 2~T&g for all permissible values

of v'. This leads to a simple graphical interpreta-
tion of the inequalities (50): The double ()i, g)
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integration is performed over that portion of a
"X—q plane" consisting of the area common to
the region between the two parabolic arcs
Ik&k'I and that between the two straight lines

2~r&g—and to the left of g =go—for each value
of w. The lines 2m 7 ~g, when "integration
boundaries, " are the curves X= ~1. If the para-
bolic are

I
k +O'

I
is an integration boundary,

then it corresponds to the curve X=(lk&k'I
—2sr)/rf Inter. sections between the straight lines

and the parabolic arcs provide ready information
as to the limits of the q integrations (and there-
fore of those over P), and as to when one changes
from one to another of the values of X~ and X2.

The g values of these intersections are obtained
exactly by the solution of four quadratic equa-
tions —2sr&g= Ik&k'I —but their meanings are
most readily interpreted through the graphs.

Whenever an integration boundary is sup-
plied by a parabolic arc, the latter has been
replaced by a suitably chosen tangent straight
line. Since the integrations are carried out
numerically, replacing of the parabolic arcs by
straight line segments serves the great advantage
of omission of the temperature T from explicit
appearance in the integrands. Thus only single
tabulations, good for all T, need to be carried
out; the temperature appears only in the limits
of integration. The only integrals so required are

Qi(s). = PLexp (P) —1j-'dP.
0

Qo(s) = I I exp (0)—13 '+1Id&
=log Lexp (s) —1j;

in addition are required

=(k00/k) =5.93X10" sec. ", go= L(12s')i/ai
=1.69X10' cm ' c= (s&0/go) =3.50X10' cm
sec. ', TO=300'K, s=(2koTO/mo)&=2. 23X10' cm
sec ', k=(~os/k) =3.51X10s cm z a&0 ——4.91
(kk'a/2nzoc) = 3.24, ak = 10.18.

The results of the computation may be grasped
most readily from the accompanying graphs
(Fig. 1). From 0.6 percent of the free elastic
cross section, at absolute zero, the inelastic
cross section rises steadily to 19.2 percent, at
1000'K, Between 150'K and 400'K, the increase
of the inelastic cross section is essentially linear,
but at higher temperatures the slope exhibits a
steady decrease.

Use of the low temperature approximation
given earlier produces the stated parabolic rise
from T=O; extension of the approximate curve
to 250'K shows good agreement with the rigor-
ously computed curve at 150'K, but at higher
temperatures the deviation becomes appreciable.
Since the low temperature expression is valid for
T«TO,—here 300'K—the beginning of deviation
at 150'K is to be expected.

The asymptotic expression valid for high
temperatures gives agreement at 1000'K to
about the computational accuracy of the work—
about 1 percent of the result. Although the
approximation made is valid only for T&&0~—
453'K for Fe—the asymptotic expression gives
an accurate result even below 400 K; the devia-
tion at 250'K is only about 8 percent of the
result. This low temperature agreement is merely
fortuitous, however; it arises from the compen-
sating effects of the errors committed in the

Z

P(Lexp (0) —1) '+1IdP = Q~(s)+s'/2,

Lexp (P) —1?'dP =Q, (s) —s.

In the high temperature approximation con-
sistent with Se'ction V, we have for s&(1

Qg(s) = s—(s'/4); Qo ——log s+ (s/2) —(s'/8).

,95

C0
.g .85

B.eo

Vl 70

TOTAL IELASTICl ~NECASriCi

~
~ELASTIC

The constants from which the computations
spring follow: k=1.056X10 ~' erg sec. , 40=1.38
X10 " erg deg ' m =1.66&10 " g, m=9.22
&10 " g, u=290X10 ' cm, 0=453 K, coo

IOO 200 300 400 508 600 700 800 900
ScaHerer Temperature, Kelvin

FK'. 2. Comparison of total and elastic scattering
cross sections.
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approximation. Although there is no a priori
assurance of the over-all reliability of the high
temperature expression in general, one is led to
expect a suitable computational result for any
given case by means of a plausible interpolation
between the low and high temperature curves.

The elastic and total (elastic plus inelastic)
scattering cross sections are plotted in Fig. 2.
Sin-e (3m'k'r'/mk00) «1 here (=.007a'r') the
predicted constancy of the total cross section at.
low temperatures is clearly exhibited. The con-
stancy is strict up to 150'K; but even up to
400'K, the entire variation (a monotonic de-
crease) is no more than a percent. At 1000'K,
the value has decreased to 90 percent of the
free elastic cross section, from the maximum
of 97 percent at absolute zero. Such a variation
should be readily detected by a reasonably
sensitive experiment.
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By use of the method of successive homology transfor-
mations in conjunction with Bialobjeski-Eddington's
formula, it is possible to predict the changes of radii and
luminosities of massive stars in different stages of their
hydrogen and contractive evolution. It is shown that at a
certain stage of contraction the star must reach the
maximum of its luminosity, and it is calculated that for
the star masses of 5, 10, 20, and 40 suns the maximum
luminosities are 1X10, 4X10, 1X10, and 4&(10 suns,
respectively. In the later contractive stages total luminosity
of the star remains constant whereas its visual luminosity
rapidly decreases because of the shift of energy into the
ultraviolet part of the spectrum. It is to be expected that
for such high values of the (luminosity)/(mass) ratio,
radiation pressure becomes strong enough to eject stellar
atmospheres into the surrounding space, and it is shown
that the ejection will actually take place if the force of
gravity on the stellar surface will be somewhat reduced by
the centrifugal force due to axial rotation. It is also shown
that under the conditions existing in the ejective atmos-
pheres of Wolf-Rayet stars, radiation pressure is pri-
marily due to the light scattering by free electrons. In

discussing the motion of the ejected gases, it may be
necessary to assume that their original velocity of about
2000 km/sec. can be considerably reduced by the gravi-
tational action of the star. If this is the case, gaseous
envelopes which will form around Wolf-Rayet stars in the
course of several centuries will possess properties very
similar to those of the planetary nebulae. This would
indicate a close evolutionary relationship between these
two classes of celestial objects. An alternate evolutionary
road of a massive star consists in the formation of an
energy-producing shell, which will take place in all cases
where the convective currents due to axial rotation are not
fast enough to secure homogeneity of stellar matter. It is
indicated that the growth of such shells will probably lead
to the formation of an extensive atmosphere which offers
certain possibilities for the interpretation of the so-called
red giant stars as intermediate evolutionary stages between
the stars of the main sequence and the Wolf-Rayet stars.
In conclusion the problem of stellar collapse, which is
expected to take place towards the end of contractive
evolution, is discussed in some detail.

1. INTRODUCTION
' 'T is generally accepted at present that during
~ ~ the largest part of their evolutionary life stars

receive their energy supply from thermonuclear
reactions in which hydrogen is being transformed
into helium through the "catalytic" action of


