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Energy Eigenvalues for the Coulomb Potential with Cut-off. Part I.
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In this paper, the Schrodinger equation is solved analytically for the Coulomb potential
with horizontal cut-off. For this purpose, a detailed mathematical study of the confluent
hypergeometric functions is carried out and their similarity to Bessel and Neumann functions
is put on a quantitative basis. The resulting formulas for the energy levels are valid for all
cases except when the energy is lying very little above the cut-oE.

l ~HE Coulomb potential with a cut-off (see
Fig. 1) has been proposed as an approxi-

mate potential energy for certain quantum
mechanical problems in the theory of solids. '
It has actually been used for such a purpose by
Tibbs, who solved the problem in one particular
case by numerical integration methods. ' But,
in. fact, the problem is capable of an analytic,
though not rigorous, solution which is to be
derived in the following.

The problem is to solve the equation

d'F t' n' 2~ I(&+1))
+I + —IF=o

dr' E k' ro r'

for r&ro and

which is finite at the origin while the other,
M&, , ~;(2nr/k), has a pole of order t At .plus
infinity, one solution, 8'&, &+~(2nr/k), is finite
while the other tends to infinity. It is well

known that whenever the expression k —l is a
positive integer, the solution which is finite at
the origin also happens to be finite at + ~.
Hence k =3+1,3+2, 1+3, are the eigenvalues
of k in the case of the Coulomb potential without
cut-off. If there is a cut-ofl at ro, then Wq, ~+~(s)
is the correct wave function beyond ro, but the
values of k will no longer be integer.

The similarity between the functions 3II and
the Bessel functions is well known. 4 In order to
bring it out we introduce a new variable x
which is defined thus:

d'F t' a' 2n I(3+1)y

+( + [F=O (2)
x=2(2nr)'*=2(ks)&

a.nd instead of 3E we introduce J~~(x),
for r )ro, and to join them with continuous
derivative at r =ra. The usual conditions are to
be added at the origin and infinity. The energy
parameter is written here in the form —n'/k',
where n is a given constant and k is our unknown
to be determined.

J,'(x) = 3' )„(s).
pl

(4)

1. BESSEL-LIKE AND NEUMANN-LIKE FUNCTIONS

The solutions of Eq. (2) are called confluent
hypergeometric functions and are discussed in
Whittaker and Watson. ' The two solutions may
be either distinguished by their behavior at the
origin or their behavior at infinity. In the nota-
tion of WW, we have one solution, M»+&(2nr/k),

FIG. 1. Coulomb potential with cut-off. Solving the
Schrodinger equation for such a potential is the problem
of this paper.

' G. H. Wannier, Phys. Rev. 52, 191 (1937).
2 S. R. Tibbs, Trans. Faraday Soc. 35, 1471 (1939).'E. T. Whittaker and G. N. Watson, A Course o

Modern Analysis (Cambridge University Press), Chapte
XVI. In the following quoted as WW.

f
r 4H. A. Bethe, Handbuch der Physik, second edition,

Vol. XXIV, 1, p. 287.

358



ENERG Y EI GENVALUES 359

It can be verified by substitution into Eq. (2)
that

lim J'„~(x)= J„(x),

ji I (u)

i.e. , the zero energy Schroedinger eigenfunction
is a Bessel function. In addition, by comparing
power series, one finds that the first two terms
of the series agree for all values of k. A better
standard of comparison is gained by a study of
their integral representations. The well-known
Bessel integral may take the following form

4k +—X4k R(u)

Fio. 3. Path of integration to be followed in defining the
Bessel-like function by a contour integral LEq. (6)j.

J P 2
~~ &~

' ) follows: If we substitute t back again into (6)
we get

The path comes from —~, circles around the
origin in a positive direction and returns to —~
(Fig. 2). A similar integral exists for J„(x).
Whittaker and Watson introduce an integral
representation for t/I/'I„only. ' The same integral
will also be valid for M'A, if the path is suitably
altered. Transforming their integral with (3)
and (4) and introducing a new variable of
integration u through

t = —-,'(xu —z) = ——',xLu+ (x/4k) ],
we get

x ) —k—$(@+1)

J„'(x)= el*"~ u+—
I

2m.i & 0 4k]

( g i I(:—$(@+1)

X~ u ——
)

du. (6a)
4k)

x'q
J„~(x)= —exp

I
l(1~x)"(1/ 1ri)

Sk)

I s—(( t)
—p—1LI+ (x2/4kt) ]k—$(@+1)dt

Since the path encircles both singularities it can
be deformed to ma. ke ~t~ )x'/4k. Hence the
binomial can be developed into a power series,
and the series can be integrated term by term.
The resulting series, by (3) and (4), agrees with
the series given for M in WW.

To bring out the simila, rity between (5) and

(6) we write the latter in the form

J "(x)= (1/2)rt)

t'
X

J
exp —,'x~ u ——

~
u—&-'y(x/4ku)du, (6b)

u)
with

The path in WW must be altered to encircle
both singular points of the integrand in a
counterclockwise direction and then to return to

(Fig. 3). This statement is verified as

1 —s ~

(t, (s) = (1 —s2) '1(m+1) s2~-
1+s

= 1+-,'(P+ 1)s' —-', ks'+
(7)

j) I (u)

R (u)

Since
~
u

~
may be made larger than 1 in the

integrand, we can conclude that

(x'q
J„'(x)=J„(x) 1+Ol

(.16k')

FIG. 2. Path of integration to be followed in the definition
of the Bessel function by the Bessel integral (Eq. (5)j.
' WW, section 16 ~ 12.

It is possible, incidentally, to derive a de-
velopment of the Bessel-like function J„~(x) in a
series of Bessel functions, following up the
reasoning just indicated. It can be stated as
follows: If we write for the series (7)

y(s) = P b.s"
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then

and

N„'(x)
lim =1 for all k*=' N„(x)

N„'(x)
lim =1 for all x,
km' N (x)

then the new function is completely determined:

N„'(x) sin p7r

J,'(x) = P b, (x/4k)" J,p, ( x) . (9b)
v=0

The convergence is quite rapid, but there are
other, more physical ways of constructing im-

proved expressions for J„o(x) which are outlined
in Sections 3 and 4 below.

In working with Bessel-like functions of integer
index p we are faced with a diS.culty which is
well known from the theory of Bessel functions.
Usually, J„~ and J „~ form a complete solution
of our differential Eq. (2), but whenever p
becomes integer the two solutions become
identical, apart from a constant factor. We must
therefore define an auxiliary function to use
beside J„~, and it is natural to look for a function
which may be compared with the Neumann
function N„(x) (called Y„(x) in some books).
In the latter case, the definition runs

N„(x) sin per= J,(x) cos px —J,(x). (10)

The right-hand side of this equation is con-
structed so as to vanish identically for integer p,
The same principle must be applied in con-
structing a Neumann-like function N„~ from the
two Bessel-like functions J„~ and J „'. The
relationship between the latter two may be
obtained from their power series. If we add to
this relationship two requirements which we wish
to impose, namely,

2. A SIMPLE APPROXIMATE SOLUTION
OF THE PROBLEM

Our problem consists in fitting the solution of

(1), namely,
!rx'! xo' q ~y

~~=xJ~+~l
(2xo E 16k'& I

(14)

where we have defined consistently with (3)

xo = 2(2nro)'

and the solution of (2), which may be written
according to (13),

The Bessel-like and the Neumann-like function
form a complete system of solutions for (2), and
therefore, our wave function Wo, (s) is expres-
sible in terms of them. These relationships are
well known. ' We may write the relation relevant
to our case

s—'W),
, „(s) sin 2m'

1r,= (k+m ——',)!k Jo (x) sin (k+m ——,')7r

—(k —m —-,')!k"J o„(x)sin (k —m —-', )x. (12)

This relation reduces to 0=0 for integer or half

integer nz. But if we eliminate J 2 with the help
of (11) we get a non-trivial relation for all m

s 'Wp, (s)
= (k+m ——,')!k-"Jo„(x)cos (k —m ——,') n.

—(k m ——,')!k"No„(x) sin (k —m —-', )x. (13)

Through its trigonometric factors, the formula
shows up clearly the oscillating character of W
as a function of k. Every time k —m+-,' is a
positive integer the term in X will drop out.
The oscillatory character does not continue,
however, into the region where k &m because the
vanishing of the sine is cancelled by the pole in
the factorial.

(k+ op -')!—o
—J„'(x) cos px —J „"(x).

(k op o—)!k"—
We can expect the new function to equal N„(x)
under the same condition (8) as in the previous
case. ' having

P~2k.
But these two conditions imply also

XQP
and under these conditions, the lowest negative power inJ „~ outweighs all other contributions to the function ¹

7 WW, section 16 41.

It appears at first sight that the factor in front of J~k
alters the situation because it is possible to satisfy the
requirement (8)

x«4k
and yet to have that factor markedly differerit from 1 by

(11) Fo =xJoiyy(x) cos k7I

(k —f—1)!k"+'
+ x¹(„g(x)sin kyar. (16)

(k+I)!
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It is possible to get a quick and simple answer

by observing the following. We have a condition
under which the Bessel-like and Neumann-like
function can be replaced by their namesakes,
namely, and he found for k:

x = 2.62

energy values for the 1s, 2s, and 2p states.
His cut-off is located at

(17)x(&4k. k =1.154+.002 in the 1s state,
k = 2.143~.019 in the 2s state.

Now it is very fortunate that for physical
reasons a somewhat weaker condition is always Formula (22) gives
satisfied at the cut-off x=xo'. k=n+0 158. for all s states

x &4k. (18)

and
F, =xJ4+4(x'/2xp)

Fp=xJp4+4(x) cos kpr

(k I 1)!k—"+-'
+ xNp4+4(x) sin kpr. (20)

(k+1)!

We find the following result

(k I 1)!k"—+'—
tan km.

(k+I)!

Jpl(x) J~+4(px) —Jp4+4(x) J4-4(px)
(21)

Np4(x) J4+4(px) —Npi+4(x) J4-4(px)

We obtain the condition by demanding that the
total energy be higher than the potential energy
at the cut-off. Condition (17) will, in fact, apply
to all but some of the lowest levels although the
latter are no doubt the most important ones.
Keeping this restriction in mind we shall con-
struct an approximate solution valid for most
states by setting equal at x=xo the logarithmic
derivatives of the following functions

The agreement may be partly accidental because
it is upset if a refined approximation is used for
one of the wave functions only. However, it is
not impossible that formula (22) is actually
better than it appears from this paper and that
the deduction of the author is not doing it full

justice. In any case, formulas (21) and (22) are
very useful for a rough location of the energy
levels.

What follows first from (21) and (22) is that
while the energy correction is of course smaller
for high energy levels, the correction to the
principal quantum number is of the same order
for all levels having the same angular momentum
quantum number. It is actually the same (within
the restrictions of this section) for all s states
and tends to be the same for suSciently high

energy in the other cases. If we turn to comparing
states of different I, then s states are more
disturbed than p states, and so forth. One can
appreciate that difference particularly well if one
assumes x suAiciently small to permit power
series development of the Bessel and Neumann
functions. We get in that case from (21)

Jp(x) sin —',x —J4(x) cos —',x
tan km =—

Np(x) sin —,'x —N4(x) cos px
(22)

To realize the power of this simple formula we
shall recompute with its help the results of
Tibbs. ' Tibbs calculated in a particular case the

where we have replaced for brevity the cut-off
coordinate xp by x. Equation (21) is explicit in
that it contains on the right a function of the
cut-off coordinate only and on the left a function
of the unknown k, the "effective" principal
quantum number. For s states the formula is
particularly attractive:

(-,'x) 4'+'

(2l+1)!(21+3)!

where n is the next lower integer, i.e. , the
principal quantum number in the correct sense
of the word. The limiting formula for large x is
also very simple if the Bessel and Neumann
functions can be replaced by their trigonometric
equivalents and if the ratio of factorials can be
set equal to 1. We get

k =n+ (x/24r) ——,'1——',.
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Fro. 4. Plotting energy against cut-off radius according
to Eq. (22). The abscissa x goes as the square root of the
radius PEq. (3)j and the ordinate contains the difference
of the principal quantum number n and a number k which
must be substituted into the Balmer formula to give the
energy levels. The graph applies only to s states under
the restriction (17).

The validity of this formula is somewhat re-
stricted because x must be large compared to l,
yet condition (17) must not be broken. A
graphical evaluation of formula (22), plotting
k —n against x for s states is given in Fig. 4.
One sees that the curve oscillates about the
asymptote which we discussed just above.

3. A MORE PRECISE SOLUTION FOR s STATES

It has been pointed out that the solution of
Section 2 is correct if condition (17) holds while
only condition (18) is fulfilled in many actual
cases. In this section, we shall improve Eq. (22)
by applying various corrections to the approxi-
mation (20), so as to make it quantitatively
correct everywhere except in the immediate
neighborhood of x =4k.

When one studies the approximate wave
functions (20) numerically and compares them
with the Schrodinger eigenfunctions in the case
of integer k, one finds of course complete dis-
agreement beyond x=4k. Below that point the
two functions show the same general structure,
but vary somewhat in detail. It is possible to
cancel out most of this discrepancy by the
following two steps.

In the first step, we carry out a change in the

These two equations give for rI, as a function of r

u2 2n 2u t'dray 2 1 dF d'rq——+—=—
lk' r rI, &dr) FdrI, dr'

It is approximately correct to leave off the
second term on the right-hand side because
(1/F)(dF/drj, ) is an expression of alternating
sign which wi11 make little long range contribu-
tion to (dr&/dr)' The remain. der of the equation
reads then

(1 n)&=ra'l--
E r 2k')

or passing over to x coordinates with the help of
(3)

de / xm

&6k2)

which integrates to

( x2 x
xg = ~xl 1 —

l
+2k arcsin —.

16k') 4k
(23)

TABLE I. Approximations of the 2s eigenfunction.

2cl'

0
1
4

I6
8

I 9
12
16

0.000
2.000
4.000
4.899
5.657
6.000
6.928
8.000

F(20)

0.000
1.154—0.264—1.540—1.861—1.660—0.180
1.876

F& 2s)

0.000
1.168
0.010—1.308—2.181—2.414—2.642

0.000
1.168
0.000—1.337—2.164—2.370—2.392—1.758

abscissa scale so as to bring the nodes of the
true wave function and its approximation to
coincidence; i.e. , we write the wave function in
the form

F=xpZg(xg),

where Z~(x) stands for the linear combination
(20) of Bessel and Neumann functions. x~ is an
unknown function of x differing from it very
little as long as condition (17) holds. If we
introduce a corresponding rk, through (3) we
get for Ji the equation

(d2F) (2n)
I+I —IF=0.

&dr, '& & r &

while as a function of r, it obeys Eq. (2),
d2F ( 0.2 2a)

+l ——+—lF=0.
dr' E k' r 3
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where
F=f 4

C =xpZg(xl, ).

The behavior of xq/k as a function of x/k is

shown in Fig. 5. At first, they are very similar,

but as the latter approaches 4, the former falls

back and approaches x with zero slope.
This correction brings the nodes quite well to

coincidence. One finds now the main discrepancy
in the size of the loops, the true loops increasing
somewhat more sharply with r than the approxi-
mate ones. To correct this, we introduce as our
second step an unknown factor f into the wave

function, writing

X
k

k

2

I

I
{ 2

It is clear from the purpose .of the correction
that f may be assumed to vary slowly compared
to C Substituting into (2) and using the equation
for 4, vis. ,

FiG. 5. Plotting the scale-corrected argument xf, against
the true x LEq. (23)j. xJ, must be used instead of x as
the argument in the Bessel or Neumann function to make
our approximation quantitatively correct. It is an essential
feature of the method that it does not extend beyond
x=4k.

d'C d'rp/dr' dC ( n' 2n )—+{ —+—{C=0,
dr2 dr&/dr dr ( k' r &

d'f df d'rg, /dr' dC
C+ 2—+f

dr' dr dry/dr dr

where we have introduced the abbreviation

approximation, the true wave function for a
negative energy state must differ from it on two
counts:

(a) The wave-length, obeying De Broglie's
relation, must be longer. This reasoning leads to
a change in the abscissa scale which agrees
exactly with (23).

ccording to our assumption, the first term can, ', e P e o ae wave unc ion is~b~ The amplitude of the wave function is
inversely proportional to the square root of the
classical velocity. Hence we should multiply our

(dt's) ' x wave function with a factor f which equals
f={—

I
= (24)

E dr) (false velocity at false position ) '

&right velocity at right position)

dxp p
x' )'

x.*= x=x
dx ( 16k')

(25)

Thus we get finally for I'

F=xx~~x~* '{J~(x~) cosk~+X~(xj) sinks I. (26)

It is perhaps worth while to explain the correc-
tions of this section by physical reasoning.
The function

xZg(x)

is the correct solution of (2) for zero energy.
According to the Wentzel-Kramers-Brillouin

This formula reproduces exactly (24).
It is an inevitable consequence of such

reasoning that the corrected wave function
breaks down at x=4k because this is the limit
of the classical orbit. But until the neighborhood
of that point is reached, the approximation is
greatly improved numerically. To illustrate this
fact, the Schrodinger wave function for the 2s
state is given in Table I, and the ap'proximations
(20) and (26) are compared with it.

Fitting the wave function (26) to the wave
function (15) at the point x =xo is now a straight-
forward matter. One finds

J0(x~) sin —,'xq* —J~(xq) cos —,'xq*+-,'{(x'/xq*') —(1/xq) I J~(xq) sin 2'xI,*
tan km=-

Do(xI,) sin —,'x~*—X~(x~) cos —,'x~~+ —,
'

{(x'/x~*') —(1/x~) IX~(x~) sin —,'xI,*
(27')
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xI„. and xI,*are derived from the cut-off coordinate
x=xo by the formulas (23) and (25). xo itself is
derived from ro through (15).

Formula (27) is of course less convenient to
use than (22) because the unknown k is contained
implicitly in the right-hand expression. That
expression varies, however, much more slowly
with k than the left (except in the excluded case
when x is very close to 4k) and hence the formula
is suitable for successive approximations, starting
with an approximate k on the right. One or
two steps are amply sufficient to get the answer.

Applying the formula to the case of Tibbs'
we get

k =1.153 for the 1s state
k =2.159 for the 2s state

in complete agreement with his results.

4. SOLUTION FOR OTHER STATES

radius r(, t

2n l(l+ 1)

r r2
kl Ir l/dry, gl '

( dr ) 2n l(l+1) a'

r r' k2

We notice that this expression is considerably
more involved than in the previous case. This
is explained with the help of Fig. 6, which shows
the potential for radial motion. In the actual
negative energy state the classical orbit has now
an inner limit b as well as an outer limit c which
are the two roots of the denominator above;
and the zero-energy orbit has an inner limit a,
which is the root of the numerator. It follows
from this that rI, ~ will be a complex function of
r unless the constant of integration is picked in
such a way that when

The method of Section 3 is applicable in the
same form to states of non-vanishing angular
momentum. We shall restrict ourselves therefore
to the discussion of new features and the quota-
tion of results.

Following the same reasoning as previously
we are led to an equation for the scale-corrected

then

Such a choice has the additional advantage that
it brings the first inflexion points of the approxi-
mate and the true F automatically to coinci-
dence. We find thus

(rl, ~ a) l f (r —b) (c—r) y
i— (r bq '— b r

(rl„l —a)l —al arctan
I I =kI I +2(b+c)l arctan

I I
a& arctan . (28)

a ) ( b+c ) Ec rl— 1 1

,r c,

V i& The new formula is seen to go over into (23) in
the special case when a =b =0.

No special difficulty arises in the determination
of the factor f. If we define as in (3)

and as in (25)

x~i = 2 (2argi) ** (29)

lab

dxA:l
X/„.$

— X—X
dX

41(l+1) x'
1—

x' 16k'

4l(l+ 1)
1 ——

XJg

(3o)

FIG. 6. Radial potential for a particle having non-
vanishing angular momentum which moves under the
influence of a Coulomb force.

then we get for the wave function I'":

xxIrlxk' +2l i-1(xA. l) i
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where Z2[+1(x) is a combination of Bessel and
Neumann functions of order 2l+1. It seems
logical to follow the procedure that led to (26),
that is, to substitute for Z the linear combination
(20). However, such a procedure is incorrect be-
cause the substitution of xkl for x has brought in

some constant factors. xk{, through (28), (29),
and (3), is a regular function of x right through
the inner limit point of the orbit xk[ ——2[l(1+1)]*';

the same applies to xk( as defined by (30). They
both are also equal to zero simultaneously with x,

and their ratio xk(/xk(, tends to 1 in that .imit;
but the ratio xkl/x does not do so. We find

0.0
26.8
50.0
80.0

120.0
160.0
229.2

xm.'c l

0.0
24.0
43.2
65.6
91.5

112.5
132.6

F(3~s)

0.000
0.782
1.639
0.940—1.295—2.53

0.000
0.782
1.632
0.913—1.323—2 39

respectively. Hence, if we define

[1(1+1)] )2[ k&[(((+»{[}-1 &+[

~ g2

k
Ckl = (31)

( [l(l+1)]') {k([{(1+1){&{+1

1ABLE II. Comparison of the 4d wave function with
approximation (32a) .

Xk l
lim —=

x

[1(i+1)][){k&[~(&+»{2{+1

! 1+
k

[1(1+1)]-';&{k[[(((+»{{{1—
~ e2

)

we get I' equal to

k.
F=xxk{xk1 Ck(J2( (1xk){cos k2r

which is a quantity lying between 1 and 0.8578.
Now the Bessel-like and Neumann-like functions
are characterized by their behavior at the origin
where they are to behave as

(1x) 2 1+1 (21) {(-'x)—"—'
and

(2l+1) !

2 (k l 1)!k "+-'—
++ k{ N2(+1(xk{) sin k2r . (32a)

(k+l)!
A comparison of the Schrodinger wave function
with its approximation (32a) is carried out in
Table II. The factor Ckl equals 1.424 in this
case and could certainly not be neglected.

To get our equa, tion for k we must fit (32) to
(14) at the cut-off. The result is

(k+I)!
tan kx = —Ckl

(k —1—1)!k"+'
Xk

21(Xkl)Jl+2(2Xk ) ~2{+1(Xkl)J/ —[(-;»*) +P&21+1(Xkl)J{+[(2Xk )
kl

(33a)
Xk

&2((Xk{)J(+[(2» ) —&21+1(Xk)J{-[(2»'*) +[[&2(+1(Xk[)J(+[(2Xk*)x*
kl

The factor P equals

2l+1 2l+1 1
+x" x p 4I(l+1) {k[

x2
kl

( 1 x' xk*21
X!—+ —2'

! (34)
{,x x*2 x*2)

kl kl kl

factor P tends to zero for small x and remains
finite for xk=2[l(l+1)]'*. The variables entering
into (33a) and (34) are defined in (3), (25), (28),
(29), (30), and (31).

It is an interesting accident that the factor
entering (33a), namely,

(k+1)!
'I

(k —l —1)!k"+'

In spite of appearances to the contrary, the is almost 1 for all possible values of k and l.
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For instance, for k = 2, t = 1, we find 1.011, for

k = 3, l = 1, we find 1.002 and so on. It reaches
its largest value for k= ~, l=k —1, namely,
1.074, while for /~k —2, it is smaller than 1.026.
Thus we may often neglect it entirely, and write

for Ii, apart from a constant factor

P=X'Jr&)Xk/ {J2l+J(Kraal) cos ks

+¹g+g(x~E) sin ks. }

and instead of (33a)
(32b)

Xk"'

~2l(VI;I)+I+j(2&k ) +24-1(&I E)+t k(2&—jt ) +0'J2l+1(&l't)A+s()&I' )
kl

tan kx=—
&2l(~kl)A+i(2~k*) &2l+—1(~I l)&l t(2~1*-) +k—&2l+1(~I;l)&l i )(2~L*)

kl

(33b)

If we apply Formula (33) to the 2P state
studied by Tibbs' we find

k = 2.004.

The approximate formula (21) gives

k = 2.005.

Unfortunately a check with his result does not
mean very much here because his value may lie

anywhere between 2.00 and 2.041.

It seems to the author that the elimination of
purely numerical work in quantum mechanics is
very desirable because of the greater generality
gained. The present paper makes the cut-off
Coulomb field an analytically soluble case except
for energy levels which are so close to the cut-off
in the potential energy that only an exponential
tail is situated beyond 'the cut-off radius. More
precise criteria, together with formulas to replace
(21), (27), and (33) will be given in another
paper.
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According to the phenomenological theory of quantum fields, fluctuation phenomena corre-
spond even to the lowest energy state of a system. The average value of field quantities is zero
in the case of a vacuum. This value changes, however, if we introduce a particle into the field.

I he determination of the average value of the field fluctuation leads immediately to the expres-
sions of the proper field of an electron. The calculation becomes considerably simplified by an

appropriate use of Dirac's theory.

A. INTRODUCTION

I. Purpose of the Paper

'T is well known that classical theory does not
- - represent, so far, a consistent scheme of
physical phenomena, even if we apply it to a
simple problem as the problem of the motion of

an electron. Even the value of kinetic energy of
an electron cannot be obtained from classical
physics in a satisfactory way since the value
given by the mechanical picture does not agree
at all with the value one would expect from the
transformation properties of static electromag-
netic fields.


