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On Applications of the X-Limiting Process to the Theory of the Meson Field
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The X-limiting process introduced by Wentzel and Dirac for the interaction'of an electron
with an electromagnetic field is applied to the interaction of a heavy particle (nucleon) with
the meson field. One obtains in this way a more precise and relativistically invariant form of
the theory which, in its classical interpretation, avoids all divergences of point sources. It is
shown that the pseudoscalar and vector theories with a coupling constant f of the dimension
of length have in this form the character of a weak coupling theory with no stable isobars
existing for pf((1. The higher approximations for the interactions between nucleons are inves-

tigated for the example of a Rosenfeld-Mgller mixture with the results that they are finite as
long as the nucleons are treated to be at rest and small in comparison with the f' approximation
for distances of the nucleons from each other sufficiently larger than f.

I. INTRODUCTION in the deuteron in contradiction to the experi-
mental facts.

One had the impression that the results of the
perturbation theory are actually valid in a wider
range than would follow from the model of the
extended source. In the present paper' it is
shown that this is understandable and can- be
formulated more precisely with the help of the
so-called "A,-limiting process" which was applied
in the case of the electromagnetic field by
W'entzel and Dirac in order to avoid the classical
singularities of the self-energy of a point electron4

in a relativistically invariant way. In Section 2

it is shown that this limiting process can be con-
sidered as the result of a natural generalization
of the model of an extended source with respect
to the reality conditions of the field variables in

the momentum space, and that the main physical
content of this formalism, which has the further
advantage of preserving the relativistic invari-
ance of the final results, ' can be characterized as
making the constants of inertia of the degrees of
freedom of the nucleon's spin and the isotopic
spin equal to zero. These latter constants were

HE previous form of the theory of inter-
action of a meson field with heavy particles

(protons and neutrons, which are both called also
"nucleons" ) suffered from the deffciency of a
fundamental character in that the range of
validity of the perturbation theory with respect
to the coupling constant of this interaction could
not be stated without introducing new assump-
tions about the size of the nucleons. Since the
higher approximations are divergent for point
sources, one tried first to assume extended sources
with a certain finite radius a. It turned out,
however, that for the pseudoscalar and vector
theories which alone give the right spin de-

pendence of the nuclear forces, the perturbation
theory never holds for values of a and of the
coupling constant f with the dimension of length'
which are required by experience. On the con-
trary, for sources small in comparison with the
Compton wave-length p ' of the meson and for
a«f, the different approximation of strong
coupling has to be applied. These strong coupling
theories, however, had consequences in contra-
diction to experiment. ~ Because of the existence
of stable isobars with higher values of spin an
charge, the highly charged nuclei should b
unstable; moreover, the magnetic moment of th
proton and the free neutron should be just equa
apart from their sign and should nearly cance

' In the following we use the natural unit where one puts
A=c=1.

'W. Pauli and S. Kusaka, Phys. Rev. 63, 400 (1943),
where other literature is referred to.

' A short abstract of the contents of this paper was given
in Phys. Rev. 63, 221A (1943), No. 25.' Compare the literature quoted in the author's report
in Rev. Mod. Phys. 15, 175 (1943).

~ In the present paper we do not give an explicit proof
for this relativistic invariance, which can be done for the
Hamiltonians of the type used in Section 3 with the help
of Dirac s formalism with several time coordinates in a
way similar to Dirac's proof for the case of electrodynamics.
Compare also J. M. Jauch, Phys. Rev. 63, 334 (1943) where
the application of the X-limiting process to the problem of
the magnetic moment of the nucleons is treated.

332



THEORY OF THE M E SON F I EL D 333

defined by Bhabha' in his classical theory of
neutral vector mesons, and he proposed also to
assume their values equal to zero for the actual
particles of nature. ' The discussion of the clas-
sical model shows that no stable excited states of
the nucleons exist in this theory if pf((1, a con-
dition which certainly is fulfilled in nature and
which characterizes the theory here discussed as
a weak coupling theory in a more precise form.

The Hamiltonians for the interaction between
nucleons and meson field given in Section 4 do
not contain anything new and are only prepara-
tion for the investigation of the interaction
between diferent nucleons in higher approxima-
tions treated in the concluding Section 5. We use
here the important method of successive canon-
ical transformations which is due to Stueckelberg
and Patry, ' and we are particularly interested in

the special mixture of a pseudoscalar and a vector
meson field introduced by Rosenfeld and Mpller'
which seems to be in better agreement with the
empirical form of the nuclear forces than other
assumptions about the meson field. While Rosen-
feld and Mgller themselves merely guessed that
the higher approximations for the nuclear forces
would be relatively small if the distance r be-

tween the nucleons is larger than the coupling
constant f mentioned above, Stueckelb erg'0

showed that the higher approximations diverge
for all distances r if the model of a point source
is used because these higher approximations
contain terms proportional to a ', where a is the
radius of the nucleon. This result is in agreement
with the later investigations from the standpoint
of the strong coupling" theories in which the
stable isobars of the nucleon play an essential
role.

In Section 4 we resume Stueckelberg's inves-
tigation of the Rosenfeld-Manlier mixture in order
to apply the )-limiting process to this problem.

~ H. J. Bhabha, Proc. Roy. Soc. Al'78, 314 (1941).
~ It is an interesting question whether the X-limiting

process can be generalized relativistically invariant in such
a way that this constant is given an arbitrary value dif-
ferent from zero and that divergences of theory are still
avoided. My attempts to find such a generalization have
not been successful.' E. C. G. Stueckelberg and J. F. C. Patry, Helv. Phys.
Acta 13, 167 (1940).

'C. Mgller and L, Rosenfeld, Kgl. Danske Vid. Sels.
Math. -Fys. Med. 1'7, No. 8 (1940)."E.C. G. Stueckelberg, Helv. Phys. Acta 13, 347 (1940)."R. Serber and S. M. Dancoff, Phys. Rev. 62, 85 (1942).

For this purpose the use of the momentum space
instead of the ordinary space in the description
of the field variables is convenient, and it also
simplifies the calculation itself. The result is the
re-establishment of Rosenfeld and Manlier's orig-
inal condition r))f for the validity of the per-
turbation theory at least as far as the order of
magnitude is concerned. It is true that the
numerical factors in the higher approximations
tend to diminish this range of validity of the f'
approximation, but it has to be remembered that
the other point of view, which is used in the
above calculations and according to which the
nucleons are considered to be at rest, restricts
the validity of the results to r)&3EI ', where M '
is the Compton wave-length of the proton, which
is practically of the same order of magnitude
as f It i.s therefore questionable whether the
exact form of the higher approximations with
respect to f' has any significance, and we merely
stress their order of magnitude and the circum-
stance that the X-limiting process is sufficient to
make them all convergent so long as the nucleons
can be assumed to stay at rest.

2. THE 2-LIMITING PROCESS AS A GENERALI-
ZATION OF THE EXTENDED SOURCE MODEL

Choosing as the simplest example the inter-
action of neutral pseudoscalar mesons with a
heavy particle (nucleon) at rest in the origin of
the coordinate system, we start with the well-
known Hamiltonian

+(4x)~f U(x)a" ~qdx, (1)

where the real quantities s.(x), p(x) are canoni-
cally conj ugate pseudoscalar fields; natural units
with 5 =c= 1 are used, p is the rest mass of the
meson in these units, f the coupling constant with
the dimension of length, -', e the spin of the nu-
cleon, and U(x) the source function normalized
according to

I'U'(x)d V=1.

If brackets mean the Poisson symbols in the
classical interpretation, and the commutators
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The Hamiltonian written in the momentum

(3) space is given by[pp(x), p(x') j= [7r(x), pr(x')]=0,

[n.(x), pp(x') j= 6 (x —x');

[~;, a;]= 2~—„
i, j, k cyclic permutation of 1, 2, 3,

II=-,'~t {P(k)P(—k)+kpPq(k)q( —k) }dk
(4)

Z

+ )t v( —k)(r kq(k)dk, (10)
x&2 ~and for the time derivative F of every observable

Ji holds the equation of motion where

multiplied by the imaginary unit i in the then equivalent to the simple statement
quantum mechanical interpretation, we have in
both cases

F=[II, Fj. kp ——+(k'+ p') l.

(12)

where a star denotes the conjugate complex. It
is, however, remarkable that the reality of the
Hamiltonian (and also of the total momentum)
holds already, if the weaker conditions,

pp(x) =(2v.) l) q(k)e'" *dk,

(6a)

In order to fulfill the conditions that U(x),In quantum theory tT&, a-&, 0-3 are the well-known
eject, qt'xj have to be real, the quantities p(kj,

spin matrices, while in the classical theory we
q[kj, v(kj have to fulfill the reality conditions

can assume o to be a unit vector.
For the purpose of our generalization it is con- q(-k) =q*(k), P(-k) =P*(k),

venient to pass from the ordinary space to the
momentum space with the help of the Fourier
transformation

pr(x) = (2') ')I P(k) e '" "dk,

q(k) = (2pr)
—

& q (x)e '" *dx,

p(k) =(2pr) 'JI p(r)xe'~ *dx

(6b)

v(k) q(- k) =v*(-k)q*(k),

v(k)P(k) =v*( —k)P*(—k),

P(k)P( —k) =P*(k)P*(—k),

q(k) q(- k) =q*(k)q*(-k),

v(k) v(- k) =v"(k)v*(-k),

(13)

q(k)=q(k)v( —k), P(k)=P(k)v(k) (14)
Lq(k), q(k') ]= LP(k), P(k') j=0,

[P(k), q(k') 7 = b(k —k').
(7) which satisfy reality conditions analogous to (13),

q( —k) =q*(k), P( —k) =PP(k)
We further introduce the Fourier-transformed
function v(k) of U(x) according to and by using the real quantity

are fulfilled. The latter conditions are simplified

The rule (3) for the brackets is then equivalent by using the new variables
to

U(x) =(2pr) P~jv(k)e'" *dk,
G(k) =G*(k) =v(k)v( —k).

The Hamiltonian in the new variables is
(g)

(14a)

v(k) = t U(x)e-*" "dx.

The different choice of the normalization factors
in (8) is convenient because the condition (2) is

II=-,')t [G(k) g-'{p(k) p( —k)+kp'q(k)q( —k) }dk

Z+—I e kq(k)dk. (15).~J
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The value of the brackets is which in the momentum space can be written

Lf (k), q(k') ]= G(k) b(k —k'). (16) '1 r dk
& '=—

I G(k)—. (20)
The new form of the Hamiltonian makes it
evident that models with din'erent source func-
tions s(k) belonging to the same function G(k)
are equivalent, and that only the latter function
has a physical meaning. According to (9) one has
always

G(0) =1,
while the particular case G(k) =const. =1 cor-
responds to a point source.

Whereas according to the stronger reality con-
ditions (13) of the usual model of an extended
source, G(k) is necessarily positive, the renounce-
ment of the reality of the field variables in the
ordinary space has led us to the weaker condition
that G(k) has to be real only.

It has to be shown that the particular choice

G(k) = cos (Xoko 2 ' k) (18)

has the remarkable property that an originally
Lorentz invariant theory remains so if Xp, 2 is
simultaneously transformed as a four vector.
Finally, one has to carry through the so-called
"X-limiting process, " namely, (Xo, 2)—+0, which
eliminates the particular choice of the X vector
from the final results and which makes all di-
vergences of the classical model disappear pro-
vided that the four vector Xp, 2 is always time-
like, that is, if

Xp') 2'. (19)

G(k) =cos Xoko=cos {Xo(ko+po)'*}. (18a)

'l he X-limiting process avoids the (classical)
divergences of the point-source model without
introducing in the final results a finite extension
of the source and without destroying the rela-
tivistic invariance of a theory.

In earlier papers we defined for the model of
an extended source the reciprocal of its radius

gaby

As long as one has only to consider a single
coordinate system, it is permissible to put 2=0;
hence

It is remarkable that the limiting process applied
to the quantity a ' gives zero:

Lim a '=0;
Xp o0

(21a)

while for the original model of a finite source,
the transition to a point source, namely, G(k)~1
means always a '—& ~. Some physical conse-
quences of the result (21a) are given in the next
section.

3. APPLICATION TO THE CLASSICAL THEORY
OF PROTON ISOBARS (FREE GYRATION)

As is well known there exists in the classical
interpretation of the theory, under certain con-
ditions for the value of the coupling constant and
for the source function, the possibility of a con-
tinuum of energy values for a heavy particle
surrounded by its own meson field due to the
presence of a free gyration of the field and the
spin or isotopic spin of the heavy particle. This
type of periodic motion was interpreted by Op-
penheimer and Schwinger" as corresponding to
discrete energy values in the quantum-theoretical
treatment in which the total charge and the
total angular momentum of the system have
discrete values which are in suitable units integers
and half-odd integers, respectively. They proved
also that in the case of a strong coupling the
treatment according to the correspondence
principle agrees with the more rigorous quantum-
mechanical treatment in the case of the charged
scalar and the neutral pseudoscalar theory. " It

"Compare for the evaluation of the integral, J. M.
Jauch, Phys. Rev. 63, 334 (1943), Appendix."J.R. Oppenheimer and J. Schwinger, Phys. Rev. 60,
150 (1942).

'4 1he quantum-mechanical treatment in the case of the
charged and symmetrical pseudoscalar theory was given
hy S. M. Danco8 and W. Pauli, Phys. Rev. 62, 85 (1942).

Maintaining this definition of a ' also in the
case of a non-positive G(k) without any longer
connecting a with the dimension of the source,
we find for the particular choice (20) for G(k)"

2c-' =— I cos {Xo(k'+y') l }dk = p Ji(hop). (21)
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is the purpose of the following computation. to
investigate the conditions for the existence of
such excited states (isobars) of the heavy particle
if the X-limiting process is applied. It will be
sufhcient for it to give the classical treatment of
the neutral pseudoscalar theory for the results
in this case are typical also for more general
cases.

We start with the equations of motion which

one obtains according to the application of the
general rule (5) to the Hamiltonian (15) if one

inserts for I'" the quantities j(k), 42(k) and the
components o.» o2, o.3 of the spin of the heavy
particle using the bracket expressions (4) and

(16). In this way one obtains

ctcI(k) =p( —k),

hence

and

clp(k) 2f—= —kppg( —k) — G(k)a k,
xV2

clpcI k
+kppg(k) = G(k)a k,

Bt' mv2

&22f
a = —

~ [42XkjcI(k)dk.

(22)

(23)

We suppose a free gyration of the spin around
the x3 axis, according to

crc = (1 —C') & cos cpt, a.2 = (1 —C )& sin cpt,

(24)
03 ——C,

particle. In the following we shall therefore
assume that the condition (26) holds.

By inserting the expression (25) for j(k) in
the right side of (23), the integrals can be sim-
plified under the assumption that G(k) is
spherically symmetric; that means that it
depends only on the absolute value k of the
vector k, In this case we obtain the following
relation connecting the frequency ~ with the

'
values of C

~oo 1
cp = f'C—

i G(k) ———k4dk. (27)
3m ~ p k'+ p' —aP k'+ p,

'

Before we discuss this relation we write down the
analogous expressions for the energy and for the
angular momentum. The latter is given by

L= —pr ~LXXVCp]dX+-2'a,

or in the momentum space by

L=)I [G(k)] 'P(k) Xk dk+-', a. (28)
cl j(k)

8k

It is in an integral of motion for a spherically
symmetrical G(k) a specialization which has
already been mentioned. Inserting in the ex-
pression (15) for the Hamiltonian and in (28)
for the angular momentum, the value (24) for a,

Bq( —k)
(25) for j(k) and — for P(k) one obtains for

Bt
the energy

C being a constant between —1 and +1. Insert-
ing this in (22) we obtain

pf (1—C')'*
cI(k) = G(k) (kc cos cdt+k2 sin cdt)

7IV2 k +p cv
where

2G)
k4dk, (29)

k'+tc2 (k'+tc" cp'')'- —-

+ kp . (25)k'+ p,
'

oo k4
Lp= ——i~ G(k)— dk

3' p k +p
(29;2)

In the case
(26)

the denominator in (25) is always diA'erent from
zero and the field 22(x) in the x space decreases
to zero for large distances from the heavy par-
ticle. In the other case m') p' the field in large
distances has the form of a spherical wave and
describes free mesons not bounded by the heavy

is the self-energy of the nucleon corresponding to
the ordinary static solution (C=1, cp=0). The
corresponding expression of the angular mo-
mentum, which in our problem has the direction
of the pep axis (I.2 I2=0, I 2 I.) is—— ——

2f2 +oo k4
I.=—cp(1 —C')

i G(k)— — dk+-,'C. (30)3' J (k2+~2 ~2)2
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(33a)

1 1 3
L =- —f'(0(1 —C') ———(p' —o)') & +—C.

3 8 2 2
(34)

00 2 p
Qo

G(k) kidk, a—' =— G(k)dk, (31)
0 7f ~o For periodic motions the energy of' which

depends only on the amount of the resulting
angular momentum, the frequency co is given by
the general mechanical relation

and another part which converges for a point
source G(k) —+1. In the latter part we shall insert
G(k) =1 which is allowed both for the X-limiting
process and for an extended source [G(k)
positive] with dimensions small in comparison
with p, ', that is, pa«1. We shall restrict our-
selves to these two cases. It has to be emphasized,
however, that in the former case for which our
formulas will also hold, pa is in no way small.
Using

cd =dZ/dI. . (35)

Introducing the auxiliary Function of the fre-
quency

W= coL (2—20),— (36)

this relation is equivalent to

d W/d(o =L. (37)

The integrals occurring in (2'7), (29), (30) may f'( p'
be evaluated in the following way. We split the +0='

I
+ +& ~I~6E a

integrand into one part without denominator,
containing the integrals

2 p" dk —(~2 ~2)—
8'~0 k +p, —0)

2 (" dk
1(~2 ~2)—t

(k'+ p' —co')'

and its specializations for co=0, one finds with
the help of the indicated method,

2 p k4 p'
G(k) dk =X——+p',

Ã&p k+p, c

2
GO

W= —a) C+—(1—C') ——p'+ (p' —cu') & (38)
2 6 'C

and we note that according to (32) this can also
be written

1 ( 1 —C') co
W= —

idI C+—
2 ( 2C ) 4C

(38a)

From (38) one derives

The latter form can be checked easily in our
case. We obtain first

G(k) dk + +(P ~d ) ~ dW —dC ~ f2C ~&+(~2 ~2)t
0 k +p co c 2 3

k42 f' 1 3
G(k) dk =-—-(p' —(u') '*.

(k2+ ~2 ~2) 2 a

1 3
+d(o —C+—f'(u (1 —C') ———(p' —(u') l

2 3 6 2

2 (v'
f'C ——[~' ——(~' —~') '1,

3 c

L =Z,+—(1—C')
6

Equations (27), (29), (30) get in this way their The factor of dC vanishes according to (32),
final form whereas the factor of dv is equal to L, according

to (34); hence the relation (37) is proved.
The terms proportional to 1/a in the condition

(32) for the frequency can easily be interpreted.
By inserting (25) in (24) it follows that the terms

f2 proportional to 1/a in the equation of motion
for e are

ii = ——,'f'a —'[o, ii]+ (39)
CO

+~& (~& (d&) k 3~&(~& ~2) k (33) On account of the linear connection between
a j(k) and ir [Eq. (22)] Eq. (39) holds generally,
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and not only for periodic motions as would
appear from its derivation. Bhabha" in his clas-
sical treatment of the neutral vector mesons
called the expression on the right-hand side of
(39) the mechanical spin inertia term. The
result a ' =0 of the X-limiting process means
therefore that this process makes the spin
inertia disappear; hence this process is in ac-
cordance with Bhabha's conjecture that for the
real particles of nature the inertia terms will

always be zero.
We add the remark that for G(k) =cos Xpkp,

not only a ' does tend to zero together with Xo

but also N defined in (31), and according to (33a)
the self-energy of the nucleon then becomes
Eo ',f'I"'———w-hich is small in comparison with
the proton mass for the actual value of the
coupling constant (fp)'

We now turn to the discussion of whether Eq.
(32) for co has a solution for —1~C~1and ~ &p.
We carry through the discussion for two cases.
First we assume a small extended source cor-
responding to a positive G(k) and to pa&(1. In
this case it is sufhcient to retain the terms pro-
portional to a ', and we obtain for the frequency

3 6

2f'C

which can be fulfilled in the intervals in question
for

(fu)'& 2 (uo) (40)

With the same approximation we obtain from
(33), (34), (38):

W= .,'"L=L Eo, L=1/2-C, —

3Q
(0= L)

f2

3Q8—L = L, '-'

2f'

(41)

'5 See reference 6, In our units Bhabha's constant E is
connected with our a ' by E/I= '-,f'a '.

The condition ~ (p implies an upper bound for L.
This is the old result of Oppenheimer and
Schwinger which in the case of a strong coupling
(fp)'»pa agrees with the quantum mechanical
result if we put L'=/(1+1) with a half-odd
integer / which is not too large.

The second case we want to discuss is the
result of the X-limiting process with a ' =0.

Putting x=~/p Eq. (32) has here the form

1 —(1 —x') i

—1=$(f~)'C-

which has solutions for 0~x~1 and —1~C~1
only if

v l(f~)'&I, (42)

where y is the maximum of the function
[1—(1 —x') l]x ' in the interval 0—=x=—I which
is only slightly larger than 1. This is not fulfilled
in nature, where (fp)' —,', . Therefore in the
theory based on the X-limiting process there does
not exist a free gyration corresponding to a
stable excited state of the nucleon with the actual
value of the coupling constant, a result stated
in the introduction.

The theory of the scattering of a free meson
can be treated in a similar way with this classical
model. We do not give, however, this calculation
in this paper because it contains nothing new in

comparison with the analogous computation of
Bhabha. " The quantum theory of the meson
scattering, especially the comparison of the
results of the theory based on the P -limiting
process with the theory of Heitler and Peng, "
needs further investigation.

4. THE HAMILTONIAN FOR A MIXED PSEUDO-
SCALAR AND VECTOR FIELD IN INTER-

ACTION WITH SEVERAL NUCLEONS

We must now generalize our Hamiltonian by
including the isotopic spin, assuming the presence
of several heavy particles and considering a
mixture of a pseudoscalar meson and a vector
meson. In the following we describe the nucleons,
not with the help of a wave field in ordinary
space and second quantization, but with the con-
figuration space. The coordinates of the nucleons
are denoted by z~ where capital Roman indices
enumerate the different nucleons and run from
1 to N if A nucleons are present. As in the last
section we introduce in the interaction energy

"H.J. Bhabha, reference 6, p. 333 ff. One has to identify
his constant gP/I with our f' and his constant P with our
a '. The X-limiting process makes P =0. The total scattering
coefficient of the meson by the nucleon is identical with
Bhabha's expression (82), p. 337, if one substitutes for
sin~ 8 its average -', and includes a factor 2 which is due to
the difference between the pseudoscalar theory here con-
sidered and the vector theory treated by Bhabha.

"W. Heitler and H. W. Peng, Proc. Camb. Phil. Soc.
38, 296 (1942); W. Heitler, Proc. Camb. Phil, Soc. 3/, 291
(1942).
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of the nucleons with the meson field first a
general source function U(x) which degenerates
into a 8 function for a point source and which
will later be specialized according to the 'A-limit-

ing process which re-establishes the relativistic
invariance of the theory.

The total Hamiltonian of the system consists
of three parts IIq, IIy, EIM which describe the
pseudoscalar mesons, the vector mesons, and the
nucleons, respectively. For the sake of sim-

plicity we neglect the interaction of the longi-
tudinal vector mesons with the nucleons, and
retain only the interaction of the transverse
vector mesons and the pseudoscalar mesons. If
we denote by a, p the Dirac matrices and put as
usual

ZP(l; Sy = ZC12A3,

ZA] 412&3 )

(43)

Z-{ -'+(v .)'+ ' -'}d

and denote with r (+=1, 2, 3) the components
of the isotopic spin, one has according to Kem-
mer' and Bhabha" for the "symmetric" theory

In the limiting case of a point source, the theory
is relativistically invariant, y being a pseudo-
scalar and p together with rpo ——p 'v m a four
vector. ~ is canonically conjugate to p and
canonically conjugate to t' according to the
bracket: expressions (u, P=1, 2, 3; i, k=1, 2, 3)

[x.(x), yp(x')] = b.pb(x —x'),

[ -(x), ~~'.(")3 = '-s', .'(x-") (47)

and the brackets of all quantities belonging to
different nucleons are zero. With the help of
these relations one obtains the equation of
motion of all quantities by application of the
general rule (5).

As was shown by Kemmer, the terms of the
Hamiltonian quadratic in the coupling constants
are not unique, but there exist the two possi-
bilities to choose for them

Moreover, the components of the isotopic spin
have the same commutation rules as the com-
ponents of the ordinary spin, namely,

[r~, rq]= —2rq,

+(4')'fz l' g U(x zg)r."—
J ~, . 2~fs') Q U(x —zg) U(x —z )rs~r spy'gad»

A, B, a

or
(0

U(x z~) U(x —z~)—rr. (z"ss )d»
X{s"v p. yg"n. —}d»

+2nfs' " P U(x. —zg) a ABa
ABa

X U(x zB) ra —ra 75 Y5 d»+~ (44) for the pseudoscalar meson, and

1
IIr=,'

~ P ~.'+—(v ~.)'
p2

+(vXt'.)'+g't' ' d»

+ (4gp)lfr l g U(x zg)r"—
A, a

X{s" (&Xq4) —y".~ Id»

+2' v' 2 U(x —zg) U(x —zs)
A, B, a

Xr "r &P'P'(s" ~ s )d» (4$)

8
IZgr=p n".——+Mp"

i BZA
(46)

"N. Kemmer, Proc. Roy. Soc. A166, 127 (1938);we are
interested in his cases (c) and (d) and in the interactions
proportional to his constants fq and gd."H. J. Bhabha, Proc. Roy. Soc. A166, 501 (1938).

2nfr2)l Q U(x —zA)U(x zn)r ~r s(y"—y )d»
A, B, a

or

2' fv' 2 U(x —zg) U(x —zs)
A, B, a

Xr "r P"P (s" s )d»

for the vector meson. The differences between
these two alternatives are relativistic invariants
in the limit of point sources. "There is no c priori
reason for one possibility or the other because
both can be derived from a Lagrangian without
explicit terms of the second order in the coupling
constant with suitable independent variables.

"With the help of quantized wave functions P(s) and
f+ =- f*P, p, v = 1, , 4, s4 = iso, these invariants can be
written Z„Pp+ip&p„p)' and 5 PP+ip„p„pj2, respectively.

pgv
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The particular choice in the expressions (44) and
(45) of these terms has only the a posteriori reason
that it gives simpler results for the potential
energy between two slowly moving nucleons,
which in this case does not contain terms of the
type 5(» —SB). This situation, which has been
noticed by different authors, does not seem
entirely satisfactory.

The form of the Hamiltonians II8 and IIy as
integrals over the momentum space is given by

and (15). Of course it is possible to define new
quantities analogous to Eq. (14) of the preceding
section which make it evident that only G(k) has
a physical meaning. This will not, however, be
necessary for the following.

The part of Hy which describes the free n~esons
can be simplihed by the canonical substitution

pp'=p ——k(k p)+—k(k q),
k' k2

Hs ——-', )t+.Ip (k)p.(—k)+ho'g. (k)g (—k) Idk

fs r

+ g v( —k) exp (ik zA)r."

q'= q ——k(k q) ——k(k. y),
k' pk

with the inverse formulae

X (i(sA k)g (0) -ygAp. (k)ldk

fs
+ t Q exp [ik (zA —zB)1G(k)

4g2 eJ A, B, e

X& A& B+ A+ B (49)

~v=-')"Z p (&) p-( —&)

1
p=p' ——k(k p') ——k(k q'),

k2 k2

1
q=q' ——k(k q') — k(k p').

k' pk

One obta&ns rn thjs way

Ifr =
k)"Z I p-'(&) p«'( —&)

a

+kPq. '(k) q, '( —k) Idk

—(k. q.(k))(k q.(—k)) dk

+—t P v( —k) exp (ik zA) r "
x&2 ~

v
+ ~~

'Q s( —k) exp (ik zA)

Xr„A isA [k q.'(k)]

X Iis".[kXq (k) j—yA p.(k) Idk

f 2

+ ~" 2 «p[~k (zA —zB)jG(&)
4g2 J a, a~

X r Ar BPAPB(sA. sB)dk (Q))

The functions p (k), g (k) and y (k), q (k) are
here defined as in Eq. (6), and they satisfy the
canonical relation

—v". p'(&) —,k(k. p'(&))
k'

p——k(k q'(k)) dk
k'

V2

+ ~ p exp [ik (zA —zB)jG(k)
4~2 0 A, B, rz

X r Ar BPAPB(sA. sB)dg+. . . (50')

[p (k), gs(k'))=8 pb(k —k'), In this paper we shall deal particularly with

[p .(p) p .(p~)j g g, .g(p p&) the nuclear forces derived from the so-called
Rosenfeld-Mgller mixture, which consists of a

and reality conditions analogous to (13). The pseudoscalar and a vector meson with equal
functions s(k) and G(k) are again given by (8) coupling constants. For the sake of simplicity
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we shall assume also that the rest masses of the
two kinds of mesons are equal ~ This may not be
so in reality, but the purpose of the calculations
carried through in the next section is not to
compute the exact form of the nuclear forces,
but merely to show the conditions for which the
higher approximations of the perturbation theory
regarding the nuclear forces are relatively small.
For this purpose it may be sufhcient to choose a
simpler model than the actual case. Further sim-
plifications arise from the approximation where
the mass of the nucleon is considered infinite in
comparison with the meson mass, or in other
words where the recoil energy of the nucleon in
all intermediate states can be neglected. In this
case the four-component wave function of the
nucleon can be reduced to a two-component wave
function in a representation of the Dirac matrices
where P is diagonal, the two smaller components
being negligible. All matrices which anticommute
with P, as for instance 75 and y, can be neglected.
The four-component spin matrix s can be re-
placed by the two-component spin matrix e, and

P can be put equal to unity. The part IX~ of the
Hamiltonian is then unnecessary, and putting in

our case

f8 =fr =g/p,

where g is dimensionless, one has

clearly if one applies the canonical substitution

q"= ('/p) {[kxq']+kq},
p" = —i(g/k') {[ x p']+kg },
q" = —(i/~)(k q'),

0"=i(~/k')(k p'),

(55)

with the inversion

q' = i (—p/k') {[kX q"]+kq" },
p' = (i/p) {[kXp"]+kP" },

q =i (p/k') (k q")

0= —(i/~)(k p").

(55a)

Moreover, the new functions fulfill the same
reality conditions as the old ones. This substi-
tution is convenient for the reason that the
interaction energy depends only on q" but not
on g". Because of the relation

P-(k) P-( —k) +p-'(k) p. '( —k)

+ko'[q-(k)q ( —k)+q. '(k) q-'( —k)7

k'
=—Lp-"(k) p-"(—k)+P«"(k)P«"( —k)]

p2

kp p+ [q."(k) q-"(—k)+q-"(k)q-"( —k)]

II=~s+~v = ', Z{p.(k)p. (—k-)

+p.'(k) p.'( —k)+ko'[q. (k)q. ( —k)

+q.'(k) q.'( —k)]}dk

g r~

+
~ P v( —k) exp (ik z~)r "is"

-7fV2p J A, a

{kq (k) +[kX q '(k) ]}dk

+—l P exp [ik (z~ —z~)]
4~ p 8 A~B'a

XG(k) r "r (s" ss)dk+ . (54)

As was shown by Stueckelberg " the simple
properties of this particular mixture appear more

"E. C. C. Stueckelberg, see reference 10; the transforma-
tion is made there in the ordinary x space.

the field described by the new scalars p ", q„"
does not interact with the nucleon and can be
split off. W'e do not write it down any longer, and
we omit the double prime again in the following
final result:

1 p k'
H IP p. (k) p. (---k)

2 p,

k o2p2

+ — q. (k) q ( —k) dk
k'

+ ~ Q v( —k) exp (ik zg).

X r "(r" q (k)dk

g2

+ P exp [ik (zg —zs)]
4m'p' », a

XG(k) T T (v+'v ) (56)
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5 THE NUCLEAR FORCES EETWEEN NUCLEONS Mdller injxture the condjtjon (60) js fulfille for
AT REST IN HIGHER APPROXIMATIONS
FOR A ROSENFELD-M}tlLLER MIXTURE

OF MESO NS Wl = — v k exp —1k zA
pr42 &

The method of Stueckelberg to find the inter-
action energy between nucleons consists of the
use of successive canonical transformations which
eliminate step by step the field variables. The
neglect of the motion (recoil energies in the inter-
mediate states) of the nucleons is permitted as
long as the distance between the nucleons is
larger than their Compton wave-length M '.

Writing

H =Hp+gHg+g'H2 (57)

to express the dependence of the Hamil tonian on
the coupling constant, we perform first a canoni-
cal transformation

where H' is the Hamiltonian in the new variables.
While the middle term e'~He '~ holds only in
quantum mechanics, the last form holds both in
classical and quantum mechanics. We first
assume lV proportional to g according to 8'= g 8"~

and arrange the result again in a power series of g
II'=Hp+g {[W, Hp]+I' '}

1
+g' —[Wi, [Wi, Hp]]+ [Wii, Hi]+IIp

2!

+g' —[Wi, [Wi, [Wi, Hp)])
31

+—[Wi, [Wi, Hi]]+[Wiii, Hp] + . (59)
2f

We choose lV& in such a way that H& is just
canceled, namely,

[Wi, Hp] = II1—(60)

and obtain

Ii'=e'~IIe 'r=II+[W II]
1

+—[W, [W, II]]+ . , (58)
21

g2—[Wi, Hi]=—
2 4g~ A, B, a, P, i, j

B~A. ~B

k'
X t exp [pk (zA —ze))G(k) dkj 2 2

+ v(k')v( —k) exp [i(k —k') zA]
A

OIi, Pj
k"

P.;(k') ge;(k) dkdk' . (62)
kp

Here the coefficient . . is an abbreviation for
ni, Pj

[r A~, A r A~jA]
OIi, Pj

A A
2o;;f'1 p 2b;—;r e (63—)

(With the nOtatiOn r1p — rpi=rp ' ' ' pip — Opi

=—op, ). Because of the particular choice of
H~ a certain cancellation occurs between the last
term in (62) and Hp since

k' 1

p,
' kp'p' kp'

with the consequence that in the limit of point
sources, G(k)~1, no interaction of the type
6(sA —ss) appears in the result. We get finally

for the part II2, p which is independen. t of the

field variables —generally in the symbol H, „
the first index is equal to the power of g with

which it is multiplied, and the second index

denotes the degree in the field variables —the

k'
X 7 AipA p (k)dk.

k 2~2

The term —,
' [Wi, II1]which occurs in IIp' consists

of two parts of which one is independent of the
field variables while the other is bilinear in this
variable. One finds

H'=Hp+g'{ —,'[Wi, Hi]+Hp }
G(k)

+g'{-p'[Wi, [Wi, Hi]]+[Wi, FIp]}+ . (61) g IIp, p 2 ra
4& w, a~ k +p

For the Hami ltonian (56) of the Rosenfeld- Xexp [pk (z, —zs)]dk.
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For A WB it is always allowable to put G(k) = 1. in this way for A =B
If we use A

2m2 ~

1 t exp [ik (zg —za)] exp ( pr~—a)
dk=, (64)

k2+ 2 yAB for A &8

=0
AZ

(67a)

Vga gQa —r r rr e [exp ( pr~a)/r~—a]. (65)

For A =B we obtain the self-energy the value of
which in the limit G(k)~1 is given by

9 I1
i~~~= —g'( ——p ),

2 ka )
(66)

if, according to quantum theory, P r z = (e")z=3
is inserted. For the case of the X-limiting process
we have to put a '=0; hence

9
t/'AA = ——g2P

2
(66a)

In the discussion of terms of higher order in g
we are mostly interested in the terms linear in

the field variables, the lowest order of which is the
third. These terms are according to (61), (62)
given by

I
g'FI3 i ———3 AB

(2zr') ''
g, a, , ui

where

G(k)
X exp [ik (zg —za)]dk

kp'

k'2

X jI exp ( ik' zg)— v(k')p;(k')dk',
kI2 2

p P,

r~a= ~z~ —za~ being the distance between the

two nucleons an. d take into account that every

pair A, B occurs twice in the sum P~ a we find

for the potential between two different nucleons

A, B as far as it is proportional to g', the well-

known result

S'3 =——
(2zrz) i g, a .„nz
G(k)

X exp [zk (zg —za)]dk
kp'

k"
Xjt exp (ik' zz) v( —k')g;(k')dk'. (68)

kp p,

This transformation gives rise to a part H6, p of
the new Hamiltonian which is contained in

FIp" ———,'[Wp, Iip, &]. One finds"

AB CD
gPIip, p=pgP Z . . F'c~f~afcD (69)

A B CDai AZ tXZ

with the definitions

1 t G(k)
f,&»

'——exp [ik (zg —zi,)]dk,
2 2~ ko'

(70)

k'
F~»= — ~ G(k)—

2~2 J k 4~2

Xexp [ik (z~ —za)]dk. (71)

AB = 2 I (o p~o P o—(~ol a) r.a
0!Z

+o a(r wr a r x a) I (67b)

where (i, j, k) and (n, P, y) are cyclic permuta-
tions of (1, 2, 3).

These new linear terms in the field one has

now to transform away by a new canonical trans-
formation of the type (58) with the help of a
lV=g'g 3 which satisfies the condition

[Wp, Fip] = Ii, , —

and is given by

AB A
BoB.

p, ; ai, Pj

For the limiting case of a point source the

(67) integral f~a was evaluated above as

fAB exp ( IJua)/r~a for A WB, —
(72)

f~~=& ' »—In the case A =8 one has to hermitize the right
side by taking the arithmetical mean of the two

orders of the factors . . and 7 p"0.;A. One finds
,

Oi, pj
"Compare E. C. C. Stueckelberg, reference 10, formulas

(2.10) and (2.11).
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In a similar way one finds

'1'he result (69) means in general a, three- and
four-body interaction besides the two-body inter-
action. In the case of only two particles present
the expression (69) gives an additional potential
energy given by

g' 3 exp ( 2prAB)—
t/'Ag =—CALi

2 r2p AB

2 ) exp ( 3a,rAB)—
+dAaf 1—

prAB) r
(74)

where A AB and

AB AB AB BA
cAB =p, dAii =p, (75)

QZ AZ ~, 'z AZ cxZ

and where we put again a '= 0 according to the
X-limiting process.

The evaluation of cA~ and dA~ with the help
of the expression (67) gives, with convenient
abbreviations, sAB=(llA'Era) rAB=Q r "r

c» ——8 f3(3—sAB)+3(3 —rAB)+4sAarABI, (76)

dAa = —8 f (3 sAB) rAB—
+SAB(3—rAa) 4sAarAB}." —(77)

"E.C. C. Stueckelberg, see reference 10, Eq. (3.12}gives
in both eggy and dA~ an additional term —64(3—sA~) (3—rAg)
which I have been unable to confirm and which seems to
be erroneous. This additional term causes also an over-

II
estimation of the numerical value of U~g by Stueckelberg.

j. ( 2
FAB —

f
1 —

} exp ( Ii—rAB) for A WB,
2p E prAB~

(73)1) 2q

2p E pa)

For the ground state of the deuteron one has
v-A~= —3, sA~=1, cALf

——3.32, dA~ ———3.32, and
U"/U small for 3(2g)'/(pr)'«1 as was indicated
in the introduction.

While in the classical theory the only terms of
the 6nal Hamiltonian which give rise to an inter-
action between nucleons are those which are
independent of the meson field, it is different in

quantum theory. In this theory it is not possible
to put simultaneously p (k) and g (k) equal to
zero, and terms in the final Hamiltonian which
are either bilinear in the p (k) or bilinear in the

g (k) give in general a finite contribution to the
nucleon interaction due to the zero-point energy
of the field oscillators. There exist such terms of
the order g4 which are generated by a g'S'2 which

eliminates g'H2 2 given by the first term of (62),
and which are computed by different authors. It
is interesting that this interaction energy of the
order g4 disappears again according to the new

theory of Dirac, where mesons of negative energy
are introduced in the intermediate states. This
theory brings forth a greater similarity with the
classical theory than the older form of the
quantum theory, and particularly all eff'ects due
to the zero-point Huctuations of the field oscil-
lators are canceled in the new theory. It would
be possible to check this new theory if experi-
mental tests for or against the fourth-order terms
of the interaction energy were available.

On the other hand this new hypothesis of
negative-energy mesons was not necessary in

order to make the theory convergent in. the ap-
proximation where the heavy particles are treated
non-relati vistically. In this approximation the
convergence could be achieved with the X-limiting

process alone.


