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Comparing (9.7) and (5.10) we obtain the inter-
esting result that

C(r „r,+o~r„) =2'(1+S). (9.8)

The explanation of this identity would seem to
be that the constraint of keeping an entire half-

line ordered provides sufhcient knowledge to
decide which sites in the lattice are 0. sites and
which are P sites, in the sense of Section 5. The
probability for finding a right atom ~ould then
be given in terms of the long range order by (9.8)
or (5.6).
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We have conside'red a two-dimensional square net consisting of four kinds of atoms supposing
that only nearest neighbors interact and that there are only two distinct potential energies of
interaction, one between like and one between unlike atoms. In extension of a method due to
Onsager it is found that for the case where like atoms attract one another a simple "reciprocity"
relation exists between the partition functions at pairs of temperatures "reciprocally" related
to one another. As one temperature T tends to zero, the other T* tends to infinity. If one
further assumes that only one "Curie" transition point exists, the relation between T and T*
enables one to locate the Curie temperature. Predictions can be made concerning the nature
of the transition point with results similar to those of Kramers and Wannier. The reciprocity
relation for the case of attraction between like atoms is found to be not valid for the case where
unlike atoms attract one another.

INTRODUCTION

'N a recent paper on the statistics of two-dimen-
~ ~ sional ferromagnets, Kramers and Wannier
have given a treatment of a model for cooperative
phenomena. They discovered an important prop-
erty of their system which expressed itself in the
form of a simple symmetrical relation between
the partition functions Z and Z* at pairs of
temperatures T and T*, related in a certain
symmetrical way. Any knowledge of the partition
function Z at temperature T implies an equiva-
lent amount of knowledge about Z~ at the related
temperature T*.The relation between T and T*
is a one to one relation; T decreases monotonically
if T* increases so that T—+0 as T*—+~. There is
only one temperature at which T= T*.Assuming

t Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Faculty of
Pure Science, Columbia University, New York, New York.
Publication assisted by the Ernest Kempton Adams Fund
for Physical Research of Columbia University.' H. A. Kramers and Gr H. Wannier, Phys. Rev. 60,
252 (1941).

long range order at T=O and absence of long
range order at T= ~, one will expect a Curie
point. If the Curie point is the only temperature
at which Z becomes singular, this temperature
must be the one at which T and T*become equal.
Furthermore, one finds that the types of singu-
larities which might occur at this transition are
restricted by the relation between Z and Z*. For
example, if one assumes that there is no latent
heat at the Curie point, the specific heat must be
either continuous through the transition or infi-
nite on both sides of the transition temperature.

Onsager'has been able to obtain the reciprocity
relation discussed above from a more direct con-
sideration of the form of the partition function.
Moreover, his ingenious methods appear to lend
themselves readily to generalization. Onsager
proceeds by giving two formally different ex-
pressions for the partition function at a tempera-

This method has not yet appeared in print. We are
greatly indebted to Dr. Onsager for his permission to
make use of it.
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ture rand at a temperature T~. He is then able
to produce a transformation between T and T*
which brings the first form of Z(T) into a simple
relation with the'second form of Z(T*).

In this paper, Onsager's methods have been
extended to the study of two-dimensional square
lattices containing four kinds of atoms in equal
abundance. In addition to the assumption that
only the interaction of nearest neighbors are im-

portant, the further assumption is made that
there are only two distinct energies of interaction,
one between like and the other between unlike
atoms. It must not be supposed that this re-
striction reduces the problem to that of a crystal
with only two kinds of atoms, for in the four-
component lattice the c priori probability of
finding a given kind of atom at a lattice point is 4

and not -,'.
The detailed investigation will show that for

the case where like atoms attract one another a
simple symmetry or "reciprocity" relation, in the
sense of Kramers and Wannier, exists. The rela-
tion does not exist, however, if like atoms repel
each other. One can understand this result by
using the following qualitative consideration. At
low temperatures, for the case where like atoms
attract one another, minimum energy is attained
when the atoms separate into regions consisting
exclusively of like atoms; at high temperatures
the atoms should be randomly distributed on the
lattice sites. One might, therefore, expect a
transition point where the long range order
disappears. The situation is different when unlike
atoms attract one another. Using the letters
A, 8, C, D to denote the four kinds of atoms, if,
as is assumed, the unlike pairs, A —8, A —C, A —D,
etc. , attract and have the same energy of inter-
action, there are many different states of mini-

mum energy, and from the presence of an A atom
on a given site, one can draw no conclusion about
the occupant of a distant site. Therefore, there is
no long range order at low temperatures and no
reason to expect an order-disorder transition.

1. FIRST FORM OF THE PARTITION FUNCTION

Consider a two-dimensional square lattice con-
sisting of four kinds of atoms A, B, C, D. Suppose
that only nearest neighbors interact and that the
energies of interaction between the various pairs
of nearest neighbors are given by the following

scheme:

Pairs
A —B A —C A —D

t' ~ ~ (Z=E II'exp
i

— iII'exp (—
kTi & kT)

(Xg' p I

— III' p) —
I (2)

kT) ( kT)

where the numbers of factors in the various prod-
ucts depend, of course, on the configuration c.
Since each pair of adjacent lattice sites con-
tributes a factor to one of the four products in
(2), we have, recalling the definitions of u, x, y;
and s',

Z=Q I g' (uwxayas)j,
c' all pairs

Energy

The reason for splitting the six pairs of unlike
atoms into three groups of two equivalent pairs
each will appear later. Eventually, c', ~", ~"' will
be taken as equal.

The first form of the partition function is given
in terms of four auxiliary functions of the temper-
atures I, x, y, and s defined by the relations

exp (—e/k T) =u+x+y+s,
exp (—e'/kT) =u —x+y —s,

exp ( e"/k T) =—u —x —y+ s,

exp (—e"'/kT) =u+x —y —s.

By a "configuration" denoted by the general
letter c, we shall mean any particular distribution
of the A, . 8, C, and D atoms on the various
available lattice sites. The partition function Z,
by using the grand canonical ensemble, is defined
by

Z= P, exp ( Z,/kT), —

where B. is the total energy associated with the
configuration c, and the summation is taken over
a11 possible configurations. Since B, is a certain
linear combination of t, c ~", 4"', with integral
coefficients, Z can also be written as
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FAC TOR (x)(y) (-xXy) (-x)(-y) (x) (-y)

Fia. 1. An ineffective combination of lines.

where the product for each configuration is taken
over all pairs of adjacent sites. This product can
be evaluated by the following procedure: (i) for
each pair of adjacent lattice sites, we choose a
number which is either u, x, y, or s; (ii) examining
the pairs of atoms assigned by the configuration
c to the pairs of adjacent sites we attach the
proper + or —signs to the x, y, or z factors
chosen in (i) and multiply together the u, &x,
&y, &s factors for this choice; (iii) we repeat the
procedure of (ii) for all possible choices made in

(i) and add the results together, the sum giving
the required product in (3) for the given con-
6guration c.

The choice indicated in (i) can be specified in a
more geometrical way if we draw in the lattice
connecting lines labeled with an x, y, or z between
all pairs of adjacent lattice sites for which an x, y,
or z is selected. No connecting line is drawn be-
tween a pair for which the letter u is chosen in (i).
In this way the choice in (i) is equivalent to a
"pattern" of x, y, and z lines running through the
lattice. Any configuration c of atoms in the
lattice may be adopted for any pattern of lines p.
For a given pattern p, the choice of signs in (ii) is
determined by the configuration c. Therefore, the
partition function may be written in the form of
a double sum, summations being carried out over
all conFigurations c, and over all patterns P.

z {rr rr ~.rr ~y rr ~ I
c patterns

The number of factors in each of the four products
depends on the pattern p alone. The only effect
of the configuration c is to inHuence the distri-
bution of + and —signs.

There are many patterns, however, which do
not effectively contribute to Z. In investigating
the combinations of x, y, and z lines of a pattern
which can intersect at a lattice point, we find
that, under certain circumstances, there is a
mutual cancellation of the four contributions to
Z arising from a given pattern and four configu-
rations which differ among themselves only in the
identity of the atom at the lattice intersection

point in question. For example, suppose that at a
point a single x line and a single y line terminate.
For any configuration, the contribution to Z of
a pattern containing this combination of x and y
lines intersecting, will evidently have a factor
(&x) (&y) arising from these intersecting lines.
Let us consider this factor for each of the four
configurations obtained from some arbitrary
initial one by successively changing the identity
of the atom V at the point of intersection, keeping
the identities of all other atoms fixed. Looking at
the de6nition of u, x, y, z for the signs, we have
(Fig. 1) an ineffective combination of lines. The
sum of these contributions vanishes. The same
result is found for other initial con6gurations
which place other atoms at the points 1 and 2.
We conclude, therefore, that any pattern which
contains the combination x y at a point, does not
effectively contribute to Z.

A different result (Fig. 2) is obtained for the
combination of intersecting lines x y z. All these
factors are of the same sign; their total contribu-
tion does not vanish. The same conclusion is
reached for other atoms at points 1, 2, and 3.

Examining in this manner all the various com-
binations of lines which can intersect at a point,
we find that for those patterns which are effective
for Z, "effective patterns" for short, the combi-
nations of intersecting lines must be among the
following types:

xx
yy
z z

xxxx

zzzz

xxyy
xxzz
yyZZ.

ATOM V A Q C P

FACTOR (xXyX-z) (-xXy)Q) (-x)(-y)(-1) (xX-yXx)

Y A

Fi(". 2. An effective combination of lines.

Figure 3 gives an example of a typical effective
pattern.

The effective combinations listed above have
the property that the signs of their contributions
to Z remain unchanged however one changes the
identity of the atom at the point of intersection.
From this we can prove that the contributions to
Z of a given effective pattern p, are positive for
all con6gurations of atoms c, and therefore are all
equal and independent of c. This is evident if we
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consider that the contribution for a configuration
of A atoms on all lattice points is surely positive,
and that successive changes in the identities of
the atoms at separate lattice points preserve the
sign.

If N is the number of lattice sites, the total
number of configurations is 4~. Confining the
summation to effective patterns and using the
result of the previous paragraph, we can write as
the final expression for the first form of the
partition function

Z —4N Q ~2M—(l+m+n)~lymsn
eff. patt.

where I, m, n, are the total lengths (in units of the
lattice distance) of the x, y, s lines, respectively,
in one of the effective patterns contributing to
the sum. Since there are 2X pairs of nearest
neighbors when N is a large number arid the
factor u is chosen for all pairs of adjacent sites
not included in. the pattern, I appears to the
power 2N (i+m+ I—)

2. SECOND FORM OF THE PARTITION
FUNCTION

The second form of the partition function is

obtained by a geometrical procedure different
from the one just used. For a given configuratio,
let us pick out all pairs of unlike nearest neigh-

bors. Then, for each such pair, let us draw a
separating line midway between the two atoms,
this separating line being perpendicular to the
line joining the pair and of length equal to the
lattice distance. These separating lines will, from
their definition, form the boundaries between
regions in the lattice consisting of A atoms alone,
8 atoms alone, etc.

r = r

A ~

op
3

po
3

~ p
4

FIG. 4 (left}. An impossible combination of lines.
FIG. 5 t,'right}. A possible combination of lines.

Let us define four functions of the temperature
n, P, y, 6 by

&=exp
t

— !, P=exp!
kT~ E kT)

(y=exp! — !, 8=exp! — ! (6)
kT) E kT)

and proceed to label the boundary lines ac-
cording to the following scheme in accordance
with the fact that the energy between an A —8 or
C—D pair is t.

' and so on.

Pairs of
unlike atoms

Label of
separating line

A —8 A —C A —D
C—D B—D 8—C

P y 8.

In this way, each configuration has associated
with it a pattern of P, y, b lines. These patterns
are not entirely arbitrary, however. For example,
we cannot have a single P line and a single y line
terminating at a point. In Fig. 4, a 8 atom was
assumed at 1, and the atoms 2 and 3 written
down in accordance with our labeling scheme.
The result is a contradiction, since the atoms at
2 and 3 are not separated by any line and must
therefore have the same identity. ' On the other
hand, the combination P y 8 is possible, as Fig. 5
shows. If the identity of atom 1 is specified, the
identities of atoms 2, 3, and 4 follow uniquely.

Examining all the cases, we find that the o'nly

possible combinations of P, y, h lines which can
intersect at a point are among the following
types:

L L L7, 7 x X

FIG. 3. A typical effective pattern.

3 The argument holds only for the interior of the two-
dimensional crystal. The resulting reciprocity relation is
proved, therefore, only for the case where surface effects
may be neglected.
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A

'5

!

!
A P B

the same energy; that is, we take L =~ =~ . As
a consequence x =y = s and P =y =8. For con-
venience we shall write the energies ~ and e' in
the form

(9)

C g B

L, ,J
B 2t' P P P P C

2 S

and instead of the temperature, introduce as the
new independent variable the quantity 8 defined

by
8=exp (!d/kT) =n exp (!l!/kT) (1.0a)

Fro. 6, P, y, 8 pattern identical with the x, y, z
pattern of Fig. 3.

From this it can be concluded that, except for
effects at the edges of the lattice which can be
neglected when the lattice is very large, the
patterns of p, y, 8 lines are geometrically identical
with the effective patterns of x, y, s lines of the
previous section. Figure 6 shows a pattern of
P, y, 8 lines identical with the pattern of x, y, s
lines of Fig. 3.

It is evident that each effective, or allowed,
pa, ttern of P, y, 8 lines is associated with exactly
four distinct configurations. For if we give the
identity of a particular atom in the lattice, the
identities of all other atoms follow uniquely from
the P, y, b pattern. The four configurations arise
from the four possible identities of this particular
atom. The energy of each of these configurations
1S

E,= I 2N —(/+ 2!2+n) I +21 +2m +2n 2"(',7)

where f, 222, I are the respective lengths (in units
of the lattice distance) .of the P, y, 8 lines of the
associated pattern. Remembering the factor four
and the definitions of n, P, y, 8, we can write the
partition function as a sum over patterns, instead
of configurations, giving

Z 4 P ~2N —( 1+m+ n) P lym8 n

eff. patt.

The next step is to compare the expressions (5)
and (8).

3. THE RECIPROCITY RELATION

We now introduce the assumption that all

pairs of unlike nearest neighbors interact with

We also define three new functions of the temper-
ature U, I, g

U=u exp (!t!/kT),

X=x exp (P/k T),

s=1/8=P exp (!f!/kT).

(10b)

Then from (1), (9), (10) and the equality of x, y,
and s, it follows that

X=-', [8—(1/8)],

U=!L8+(3/8)].
(12)

Let us now consider the partition function at
two temperatures T and 1* which are, so far,
unrelated to one another, writing Z=Z(T) in the
form (5) and Z*=Z(T*) in the form (8). For
f+222+n we shall write t. Using (10) to express
u, x, n, Pintermsof U, X, 8gwe hvae

Z —4N Q ~2N —t~!
eff. patt.

=4N exp ( 2N@/kT) U'N —P (X/U) ', (13)
eff. patt.

Z2C —4 Q !242N !P2!!—
eff. patt.

=4 exp ( 2N!f!/kT*)8*'" —Q (!i*/8*)'
eff. patt.

=4 exp ( 2N@/k T*)8*'N Q— (1/8") ' (14)
eff. patt.

exp $((a !t!)/kT]=—u+3x

=exp ( !k/kT)(U+3X—),
(11)

exp L(—&u
—!t!)/kT]=u x—

=exp ( @/kT)(U —X). —

The quantity p. can evidently be eliminated from
these equations and one finds for U and X as
functions of 0, the expressions
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By a "reciprocity" relation between Z and Z*
we understand the following. There shall exist a
transformation T*=F(T) between the tempera-
tures T and T* having the two properties (i) if T
is carried into T* by the transformation, the
transformation also carries T* into T; that is, if
T*=F(T), then T= F(T*), (ii) for this transfor-
mation there shall exist a simple function G(T)
whose form is readily obtained without explicity
evaluating the partition function and which is
such that

restricted to very large crystals. Writing X=Z'~~
and performing the Xth root we have

exp (2@/kT*)X*=(4UX) ' exp (2P/kT)X. (20)

Using (12), (17), and (20) one may verify the
expression

exp (2p/kT)X = (4U*X*) ' exp (2@/kT*)X* (21)

obtained in'a formal way from (20) by inter-
changing starred and unstarred quantities. From
(20) and (21) the symmetrical relation

(U*X") ~ exp (2P/kT*)X*
15

f(8) =48""'"/L(8'+3) (8' 1)j'—
4 (8) =f(8)~(8)

the reciprocity is also expressed by

AI oreover, with the possible exception of the =(UX) ' exp (2@/kT)X (22)
points T=O and T= ~, G(T) shall have no
singularities for real temperatures. If these con- readily follows. This has the form of a reciprocity
ditions are satisfied one can conclude that if relation.
Z(T) has a singularity at T, Z(T*) will have a If we define functions f(8) and P(8) by
corresponding singularity at T~.

A comparison between (13) and (14) suggests (23)
that the transformation between T and T~ is the
one given implicitly in the condition

8*'= U/X. (16)
4(8*)=4(8). (24)

We shall verify that (16) leads to a reciprocity
relation in the sense previously described.

Writing U and X in terms of 8 we see that (16)
is equivalent to

8*'= (8'+3)/(8' —1). (17)

Solving for 8' gives

8'= (8*'+3)/(8*'- 1),

The relation to be derived is most simply ex-
pressed in terms of the Nth root of Z, hereafter
denoted by X. This quantity may be regarded as
the partition function per particle. In taking this
Nth root, however, we shall replace 4"~by unity.
To this extent, and to the extent that effects due
to the edge of the crystal are neglected, our
method of deriviag the reciprocity relation is

so that the transformation from T into T* is of
the required type.

Substituting (16) into (14) and comparing with
the expression for Z in (13) we have

~ exp (2X@/kT*)Z*='(U/X)~ P (X/U) '

= (4UX) ~ exp (2Ng/kT)Z. (19)

The f(8) defined here plays the role of G(T)
of (15). Since its only singularities are at 8= ~
and8=1or T=Oand T= ~, thisrequirementon
G(T) is also satisfied.

In the formal procedure outlined so far it has
not been specified whether like or unlike atoms
attract one another. For the case where like
atoms attract one another, we have e' greater
than e and hence co&0. The quantity 0 is therefore
greater than unity and from (17) 8*' is positive
and also greater than unity. Thus the transforma-
tion (17) is entirely consistent and the reciprocity
relation (22) is valid.

However, for the case where like atoms repel
one another, the energy e' must be less than the
energy. e, or co must be negative. Consequently
8& 1. From (17), 8*' would then be negative and
would not correspond to any real temperature T*.
The conclusion is, therefore, that for repulsion
between like atoms no reciprocity relation, in the
sense defined above, is found.

It has been pointed out in the introduction that
long range order at low temperatures exists if like
atoms attract but not when they repel each other.
Therefore, in these two cases, an essentially
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di8'erent behavior of the partition function at
low temperatures is to be expected while no such
difference at high temperatures is anticipated.
Thus it is reasonable to find that a correlation
between behaviors at high and low temperatures
found for the one case does not hold for the other.

It must not be supposed that no relation of the
form (15) can exist for the case of repulsion be-
tween like atoms. In fact an infinite number of
such relations is possible. As an example, suppose
T and T~ al'e related by TT*= To'. Let
G(T) =Z(TP/T). Then we can evidently write

G(T)Z(T) =G(T*)Z(T*)

But now no conclusion about Z(T) can be drawn
since the form of G(T) remains unknown as long
as that of Z(T) is not known.

Returning to the case of attraction between
like atoms we see that from (1'I) T* is a mono-

tonically decreasing function of T. As T increases
from 0 to ~, T~ decreases from ~ to 0. There is
only one 'temperature, which we shall denote by
T., for which T= T*.From (17) this occurs at

8, =exp (o&/kT, ) =v3.

The interval from 0 to T, is mapped by the
transformation upon the interval from ~ to T,.
Knowledge of ) on one of these intervals is
equivalent, by (22), to knowledge of it on the
other. If X has any singularity at temperature T,
it will have the same type of singularity at T*. If
it is assumed that only one singularity exists, it
must then occur at temperature T„which we
shall now call the critical temperature.

In Eq. (25) the quantity o) is half the difference
between the energies of interaction between like
and unlike atoms. The critical point for the two
component system of Kramers and Wannier is

given by

8.'=exp (2co/kT, ) =1+42, (26)

AE= 2cVco8.(d log—P/d8)e, +o,

AC = ((o/k T.')AE.
(2&)

Thus, if the energy is discontinuous, so is the
specific heat. If AB =0 the specific heat is either
continuous or becomes infinite at the transition
temperature in such a way that the difference in
its values at T and T* tends to zero as T tends
to T,. This is about as far as one can go with the
reciprocity relation alone.

where ~ has the same significance as in our case.
It will be noted that, for the same numerical
value of co, the transition occurs in our case at a
temperature lower than the transition tempera-
ture of Kramers and Wannier by the ratio of
In (1+@2) to In 3 or by a factor of about 0.8.
This may be due to the fact that in the four-
component system the a priori probability favors
disorder more than in the two-component system
so that long range order breaks down at a lower
temperature. This consideration gives support to
the view that 8, corresponds to the "Curie point. "

The existence of the reciprocity relation (22) or
(24) enables us to make certain limited state-
ments concerning the nature of the hypothetical
transition point. These conclusions are identical
with those of Kramers and Wannier for lattices
with two components. The energy 8 and specific
heat C are given in terms of X by

E= Nd log X/—d(1/k T) = X~8d log —X/d8,

C=dE/d T= ( a&8/k T') (d—E/d8).

From (17) and (24) we find for the possible
discontinuities in 8 and C at the critical point


