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Zernike's problem of the propagatiori of order in a binary
crystal alloy is discussed by means of the matrix formalism
recently developed for treating cooperative phenomena.
It is proved generally that the existerice of long range order
over any temperature range implies a degeneracy of the
maximum characteristic value of the fundamental matrix
over the same temperature range. For a two-dimensional
crystal, the special form of the matrix theory developed by
Kramers and Wannier has been used to obtain explicitly
the probabilities for finding an A or 8 atom at any lattice
site if it is known that there is an A (or 8) atom at a certain
site (correlation probabilities, or intermediate range order).
The results are obtained in the form of power series valid
at low temperatures by a perturbation treatment of the
highest characteristic values and characteristic vectors.
It is seen that the maximum characteristic value is doubly
degenerate from T=0 to some finite temperature, consist-
ent with the existence of long range order at low tempera-

ture. The absence of long range order at high temperatures
is proved by showing that the maximum characteristic
value is non-degenerate at sufficiently high temperatures.
By comparing the solutions of Zernike's approximate equa-
tions for the correlation probabilities in two dimensions
with our exact solution, and his expressions for the long
range order and energy (short range order) in three di-
rnensions with those given by van der Waerden, we find

that Zernike's approximation is better for a two- than a
three-dimensional crystal. The problem of propagation of
order is generalized by an investigation of the correlation
probabilities for more complicated configurations of fixed
atoms. For example, the ordering in8uence of an adjacent
pair of disordered atoms ("dipole" ) is found as a function
of position in the lattice. It is found here, as might be
expected, that the ordering influence falls off rapidly with
the distance of the site from the dipole. Other cases are
treated as well.

'N order to interpret the diffuse scattering of
~ ~ x-rays by a partially disordered crystal alloy
it is necessary to know how the presence of one
atom at a certain lattice point affects the proba-
bility of finding the various kinds of atoms at the
other lattice points. The older theories of the
order-disorder problem, principally those of
Bragg and Williams, ' and Bethe, ' gave only the
long and short range order and did not consider
the more general problem of finding the correla-
tion proabilities for aLL distances, intermediate
as well as long and short. Experimentally, several
of these correlation probabilities were measured

by Wilchinsky' for the alloy Cu3Au, while the
problem of calculating them theoretically was
first attacked by Zernike4 in a paper entitled
"The Propagation of Order in Cooperative
Phenomena. "

In Zernike's work, the propagation of order is
described by a partial finite difference equation
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relating the probability of finding a certain kind
of atom at a given lattice point with the prob-
abilities for various atoms at the nearest neigh-
boring lattice points. However, his equation is
necessarily approximate because in order to
obtain a recurrence relation, he has to treat the
probabilities for the nearest neighboring atoms
as at least formally independent of one another.
Nevertheless, this method is so far the only really
practicable one for the three-dimensional propa-
gation problem and gives reasonable results for
the thermal properties and the correlation prob-
abilities at low and high temperatures. One of
the results of the present investigation will be to
obtain a comparison in two dimensions between
Zernike's solution and the exact solution valid at
low temperatures. In three dimensions, exact
series expansions for the long range order and
the energy at low temperatures have been given
by van der Waerden' and have been compared
with the series of Zernike. The comparison indi-
cates that Zernike's approximation is better in
two dimensions than it is in three. In one dimen-
sion Zernike's solution can be shown to be exact.
It therefore appears that the approximation

5 v. d. Waerden, Zeits. f. Physik 118, 473 (1941).
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becomes successively poorer as the dimension is
increased.

Although there was no further work directly
following up that of Zernike, a new technique has
been introduced into the study of the order-
disorder phenomenon which shows some promise
of providing a solution to the propagation
problem. Recent work by Montroll, ' Kramers
and Wannier, ' Lassettre and Howe, 8 and
Onsager, ' has shown how the statistical treat-
ment of binary alloys can in principle be reduced
to the solution of the characteristic value
problem of a certain matrix, the characteristic

' values being related to the partition function for
the crystal and the characteristic vectors to the
probability for finding various configurations of
the atoms in the lattice. It is the object of this
paper to show how these matrix methods can be
used to give at least a partial solution to the
propagation problem.

The application of the matrix theory to real
three-dimensional crystals has been held up un-

fortunately by considerable mathematical dif-
ficulties. The matrix whose characteristic value
problem is to be solved is very difficult to handle
even by perturbation methods, the essential
complication arising from the fact that all its
elements are different from zero and do not
appear to vary. in any regular manner from one
position in the matrix to the next. These difficul-
ties have so far compelled us to restrict our inves-
tigations to two-dimensional crystals, where the
general matrix theory has been developed by
Kramers and Wannier in a more tractable form.
Using a perturbation method, valid at low
temperatures, we have obtained power series for
the maximum characteristic value and for the
corresponding characteristic vectors. By inserting
these series into the appropriate formalism of the
matrix theory we then discuss the propagation
problem by giving the correlation probabilities
as functions of temperature and position in the
lattice, obtaining series for the long range order,
the short range order, and the order of inter-
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mediate range. The treatment is restricted to low
temperatures, however, the perturbation theory
at high temperatures being very complicated and
difficult to carry through.

The paper is divided into two parts. Part I
gives a brief outline of the matrix theory in three
dimensions and contains a simple demonstration
of the fact that states of Iong range order are not '

possible over a range of temperatures unless the
maximum characteristic value of the associated
matrix is degenerate over this same range. Part
II is devoted to the discussion of the propagation
problem in two-dimensional crystals.

I. LONG RANGE ORDER AND THE
MATRIX METHOD

1. Results of the General Matrix Theory in
Three Dimensions

In this section we shall collect the results of
the general matrix theory which are applicable
to the problem under consideration. The notation
is identical with that used by M.ontroll. '

Consider' a binary substitutional alloy AB
whose crystal form is simple cubic. Let the edges
of the crystal be I, 3E, N in units of the lattice
distance. The crystal can then be regarded as
made up of I- layers of &X' atoms each, with
each layer capable of 2~N distinct configurations,
corresponding to the fact that each of the 355&%
sites in the layer can be occupied by an A or a
8 atom. With the symbol o.; used for a typical
one of the configurations available to the atoms
in the jth layer, v(n;) is to represent the total
potential energy of interaction between all the
nearest neighboring atoms of the jth layer in
configuration n;, and v(n, , a;+i) is taken as the
representative of the total energy of interaction
between atoms in the jth layer in configuration
Ot; with their nearest neighboring atoms in the
(j+1)th layer in configuration n;+&. With this
notation and with the periodic boundary condi-
tions imposed by requiring layer I to interact
with layer L,"the partition function has the form,

Z= P . g exp —(v(n,)+. +v(ai, )
f~L, l

+v(ni, n2)+ ' ' +v(nri, nJ).—

+v (n i„ni) I /O T. (1.1)
'~ This restriction is not necessary, serving merely to

simplify the final formulae.
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Making the substitution

V(~*, ~;) = 2s(~')+&(~' ~ )+2&(~i)

we find that (1.1) becomes

Writing

Ag+y =Ay.

K(n, n') =exp L
—V(a, n')/kTj (1.3)

we define a symmetrical matrix K whose
2~~X2~~ rows and columns are labeled by
n, u', a", in accordancewith the 2 ~possible
configurations 0.. The characteristic values X, and
characteristic vectors Q, (r=1, 2, ~ ~, 2~~) of
this matrix 9Q are fundamental for the theory.
For, as we shall see, if we can solve the char-
acteristic value problem

(1.4)

we shall have the answer to all questions of
thermodynamic and statistical interest for the
crystal, including the order-disorder phenomenon.

A characteristic vector ili„has 2~~ components,
i'„(n), one for each configuration a. If we assume
the 'A, and g, (a) are known, the matrix element

(3) can be written as

exp I
—V(n, n')/kTj = g X,&,(0)g, (n'), (1.5)

f=l

provided that the &, are normalized to unity;

Z- C.(~)4.(~) = ~- (1 6)

Substituting (1.5) into (1.2) and applying (1.6)
one can easily prove that

II exp (—V(~' ~'+i)/kT) (1 2)
{~~) '=~

with the understanding that

value X, and its corresponding characteristic
vectors. If X, is d-fold degenerate" (1.7) be-
comes"

L
~max

In the work of Montroll, and Kramers and
Wannier it was assumed that X, was non-
degenerate for all temperatures with the ex-
ception of possible isolated points. It was first
pointed out by Lassettre and Howe' in their
papers on binary solid solutions, that the maxi-
mum characteristic value is actually doubly
degenerate for a range of temperatures beginning '

at 1=0, and they were able to demonstrate that
within this range, a separation into two phases
takes place. In the next section we shall show
directly that this degeneracy of ), is a neces-
sary condition for the existence of long range
or del .

2. Long Range Order and the Degeneracy of 2 .
Suppose that a state of long range order exists

in the AB alloy and that it is known that the
atoms in layer 1 have a certain configuration n&.

Then the probability for finding the atoms of
layer n, very far from layer 1, in a certain con-
figuration a„, should depend explicitly on the
configuration 0.~. %'e shall show that if ), is
non-degenerate, the probability for the con-
figuration a„ is entirely independent of what
configuration exists in layer 1, so that the non-
degeneracy of X, will imply the absence of long
range order.

The probability P(ai, u ) of finding simul-

taneously the configuration n& in layer 1 and n
in layer n, is given by an expression similar to
(1.2) where, however, the configurations &xi and
n„of layers 1 and n are held fixed. Using (1.5),

2'z= gz, '.
r=l

Thus the evaluation of Z, and consequently
the investigation of thermodynamic quantities
like entropy, energy, and specific heat, are
reduced to the characteristic value problem (1.4).
Since the number of layers 1. is very large for an
actual crystal, the problem (1.4) can be restricted
to that of obtaining the highest characteristic

"Although 'A, itself may not be degenerate, there may
exist other characteristic values ) whose negatives are
equal to.), . As is proved for a special case in part II, L
will be even under such circumstances. A formula identical
with (1,8) will then apply with d having an obvious mean-
ing. In the future a statement that 'A, is degenerate will
be understood to include the possibility mentioned here."It must be assumed here that the sum of the L th
powers of the remaining characteristic values is negligible
compared with )+,. „.Thus even if the ratios of the other
characteristic values to P „„are small, say less than 1 —x
with x close to unity, there are approximately 2 ~N of them
and there is no assurance that 2~N (1—x)~ is small com-
pared to unity.
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(1.6), and (1,7) we find

2M% 2MN

P(~ ~) — Q Pyn ly—L n+t—
L. it 1

X&.(nt)g. (n.)&t(n„)gt(ni). (2.1)

To discuss the long range order, n and L —n
must be taken as very large integers, the latter
condition being necessary because of the bound-

ary condition that layers 1 and L interact. This-

permits us to neglect all the characteristic
values with the exception of ),„, and if the
latter is assumed to be non-degenerate, (2.1)
reduces to

of K are close enough to zero to cause a prac-
tical, if not actual, degeneracy in X, ; that is,
there may exist other characteristic values
whose Lth powers are not appreciably less than

I
If X-,„ is d-fold degenerate, (2.1) becomes

d a

P(« ~.) =- & & 4--.(~t)4-*,.(~-)
d 8=1 t=l

X& ..t(~.)& ..t(~t), (2.3)

where the g,„.-.. are the characteristic vectors
corresponding to X, . Long range order will then
in general be possible, since P(nt, u„) no longer
factors.

P(~t, ~-) =0-*(~i)'0-*(~-)'. (2.2) II. THE PROPAGATION OF ORDER IN TWO-
DIMENSIONAL LATTICES

If P(ni, n„) is summed over all possible con-
figurations a-, we obtain the probability P(ni)
for finding layer 1 in configuration nt. Since Q-,
is normalized to unity, this summation gives
P(ni) = g .„(nt)'. Similarly, P(n„) =g .„(n )'
Thus P(at, n„) =P(nt) P(n ) The p.robability
for finding the configuration O„when it is known
that the atoms of layer 1 are in cpnfiguration cxI,

is equal to P(nt, n) divided by P(nt). This
quotient is completely independent of n&, being
just equal to the probability for finding o„when
no restrictions at all are put on the other layers.
There is therefore no long range order under
these circumstances.

A further remark" concerning the interpreta-
tion of this result must be made, in the light of
a theorem of Frobenius to the effect that if all

the elements of a matrix are positive, the maxi-
mum characteristic value is likewise positive and
in addition is non-degenerate. The elements of
the matrix K, namely, exp t-

—V(u, n')/kTj, are
all greater than zero and will evidently remain
bounded away from zero so long as 3' and N
remain finite. Consequently, for any crystal in

which the dimension L is very large compared

with the dimensions M and N, X will exceed
by far the Lth power of any other characteristic
value and states of long range order will not exist.
On the other hand, if at least one of M and N is

very large, and comparable to L in magnitude,
it may happen that some of the matrix elements

"E.W. Montroll, J. Chem. Phys. 9, 711 (1941).

As was already pointed out in the introduction,
the characteristic value problem (1.4) for three
dimensions, is very difFicult to handle. Therefore,
in the hope of obtaining useful qualitative
information which might possibly be carried over
into three dimensions, we turn to the two-
dimensional case where the corresponding prob-
lem is solvable. The matrix theory in two dimen-'

sions was developed mainly by Kramers and
Wannier' in a paper on the statistics of two-
dimensional ferromagnets.

In Section 3 we write down the matrix of
Kramers and Wannier and review the properties
of it which we shall find useful. Section 4 is
devoted to a perturbation theory of the charac-
teristic value problem, the main results of which
are to show that the maximum characteristic
value is doubly degenerate from T=0 to some
finite temperature, and to obtain power series for
the maximum characteristic value and the cor-
responding characteristic vectors valid at low
temperatures. In the remaining sections, the
solution is applied to various problems of phys-
ical interest. The long range order as a function
of the temperature is obtained in Section 5, and
in Section 6 a proof is given that an order-
disorder transition actually occurs in the two-
dimensional crystal. In Section 7 we discuss the
general problem of the propagation of order
through the lattice, showing in detail the gradual
transition. from the short range order to the
inAuence at very great distances. In Section 8
Zernike's approximation is compared with the
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Pro. j..A two-dimensional crystal on the surface of a torus.

exact solution. In Section 9, we treat the ordering
inHuence of more complicated configurations of
fixed atoms.

3. The Matrix of Kramers and %'annier

Kramers and Wannier have introduced a sim-
plification into the theory of two-dimensional
square lattices by making use of a special con-
nectivity scheme for their crystal. This scheme
can best be described as being equivalent to
having the 1attice sites regularly distributed
along a continuous line twisting its way in screw-
like fashion over the surface of a torus as in Fig. 1.

m pitches of n atoms each in this case take
the place of I layers of 3f)(N atoms each in the
three-dimensional case. For convenience the
atoms are distinguished by + and —instead of
A and 8, coordinates p1, p2, , p capable of
assuming the values .+1 and —1 being assigned
to the respective lattice sites. The configuration
of the atoms on a pitch will thus be given by a
set of n values (p„pmii&). which we denote by
e for brevity. In the magnetic case p, represents
a spin capable of two orientations; for the case
of alloys, the p, are still convenient for describing
the various configurations. The energies of
interaction between neighboring pairs are written
V(++) = V( ——) = ——,

'J and V(+ —) = -',J, so
that the total energy is expressible as

(3.1)

where the sum is over all pairs of nearest neigh-
bors. If J is positive, like atoms will attract one
another and the ordered arrangement at low
temperatures will be one in which the + and-
atoms are separated into two phases. We shall

then say that we are in the "ferromagnetic case."
The "antiferromagnetic case, " where J is
negative, will lead to ordered states at low tem-
peratures in which + and —atoms alternate on
the lattice sites.

As in the three-dimensional case, a matrix PQ

is found whose characteristic value problem is
fundamental for the statistical theory. PQ has
2"P2" rows and columns labeled by the 2" dif-
ferent possible configurations of the atoms on a
pitch, e, 0.', n", . However, the matrix is not
symmetrical, and it thus becomes necessary to
introduce right- and left-handed characteristic
vectors, say A, and 8„, where

KA, = X,A, and B~gg =X~B„. (3.2)

With proper normalization the A, and B~ can be.
made to satisfy orthogonality conditions.

B„A,= Q B„(n)A,(n) = 8~,. (3.3)

It actually turns out that the analogue of the
matrix (1.3) in the three-dimensional case, is not
K, but the rith power of K. Thus one finds, upon
expressing the matrix element (ai tK"

~ n2) as a
bilinear combination of the components A, (n2)
and B,(n&).

2" V(A2) +V(Ai, A2)

g Z, "A,(n,)B,(n,) =exp
q=1 kT

(3.4)

where v(n~) is the total energy of interaction
between the nearest neighboring atoms of pitch 2

and v(ai, n2) is the energy of interaction between
the pitches 1 and 2. This relation, just as (1.S),
plays a fundamental role.

By repeated use of (3.4) and (3.3) one finds
for the partition function, the expression

2"
Z=g l,"- (3.S)

and it appears, by comparison with (1.7), that X"

is the analogue of the X of the three-dimensional
case. The advantage of this result of Kramers
and Wannier is that now X has a meaning which
is independent of the size of the crystal, the
logarithm of X, being essentially the free energy
per particle. The variation of the properties of
the crystal as it becomes infinite in two directions
can therefore be studied conveniently by looking
at ~max.
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To write the matrix K as a square array, it is
necessary to arrange the 2" configurations
n = (g„p2p&), in some definite order. The
method chosen by Kramers and Kannier is
the following: . for any configuration, e.g. ,

++ ++—+, one replaces every + by a 0
and every —by a 1 (giving in our example
00110010), reads the resulting number in the
dual number system and takes that as the order
number of the configuration. For the configura-
tion above the order number is 50. It proves con-
venient to separate the configurations into two
classes in accordance with the sign of p,„. The
co'nfigurations of the class p, =1 consist of those
with order numbers 0, 1, , 2" ' —1 and are
arranged in that order. The remaining half of
the configurations belong to the class p,„=—1 and
are arranged in the order 2"—1, 2"—2, , 2" '.
The reason for the arrangement is the following.
Configurations n and cx in corresponding places
in the two classes have order numbers which add
up to 2"—1 and are conjugate to one another in
the sense that 0. can be obtained from 0, by
changing every + to a —and vice versa.

Arranging the rows and columns to correspond
to the arrangement of the configurations in the
two classes, and introducing the new variable X
and the functions a and P by

J
~ —s2K P —s—2K

2kT

(3.7)

I being the identity matrix of order 2" ', we have

where

V~(X) = cx1

pa
'

(3.9)

V (K)=

where blank spaces indicate zeros. gg(X) is
easily seen to be reducible. Thus, with a matrix
H defined by

the matrix PP has the form

A1
1

0, 1

~& I

00 j

I P1
K(&)=

j n1

l

00 )

P1 I

P1
P1 I

00
P1

A1

00

We shall call V+(X) the "plus V matrix" and
V (X) the "minus V matrix. "The characteristic
values and characteristic vectors of PQ(K) fall
into two classes. If g+(X) and g (X) are right-
handed characteristic vectors of V~(K) and
V (X), respectively, corresponding to the charac-
teristic values X+(K) and X (IC), the associated
characteristic vectors of K(X) are3.6

0+(&) 0+(&)

0
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B+(&)= II 4+(&) 0+(&) II

B-(&)= II 0-(&) —0-(&) II.

(3 &&)

The components are arranged in the order of the
two groups p,„=1 and p„= —1. Similarly, if
P+(&) and P (X) are the left-handed charac-
teristic vectors of V+(X) and V (IC), the cor-
responding vectors for K(X) are

V matrix can be written

-U—+(0) (4 &)
1 P 1

O'P P

As a final property of PQ(X) which should be
mentioned, there is a simple device by which one
can treat the antiferromagnetic case once the
ferromagnetic case has been discussed. In the
former case, the interaction energy J is negative
and the parameter E is therefore negative. In
the ferromagnetic case, X)0. If R is a permuta-
tion matrix which changes every alternate atom
on a pitch from + to —and vice versa, it is
readily verified that

U+(p) =
10

10

U+(P) can be expanded in the form

10
10

RHK( —K)H 'R '

V+(1~) I
o

o I
-v (It)

(3.12) 01
01

so that the characteristic values of gg( E)arc- '

h+(X) and —X (K). The characteristic vectors

A+( —K), etc. , are obtained from A+(E), B+(X),
~ ~ by permuting the components according to R.

The problem with which we are now faced is
that of finding the characteristic values and
characteristic vectors of the plus and minus V
matrices as functions of the temperature.
Kramers and Wannier have neglected the minus
V matrix in their treatment, but this is unim-

portant for the discussion of the thermal proper-
ties. We are, however, interested in the de-
generacy of 'A, and'shall find in the next section
that the maximum characteristic value of V is
equal to the maximum characteristic value of V+
in the limiting case of an infinitely large crystal.

4. Solution of the Matrix Problem for
Low Temperatures

01
01

10

01

01

10

01
01

10

(4.2)

For the low temperature ferromagnetic case,
IC is very large and positive, so that the param-
eter P=e 'x is very small, approaching 0 as the
temperature tends to zero. It then becomes
possible to carry out an expansion in powers of P.
Thus, by defining a new matrix, U+(P), the plus

U+(0) =Uo+PU~+O'U2 (4.3)

If there are n atoms per pitch, these matrices will

have 2" ' rows and columns corresponding to

Defining the constant matrices Uo, U~, and U2

by (4.2) we may write for brevity
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, =A.P+PXI+P X2+. +P X„+

&=2ti ..=&0+p&I+P It12+ +p It„+
(4.4)

, Inserting (4.4) into the equation U+(p) g= Ziti,

and equating coefficients of like powers of P, we

find a set of equations for the X„and ItI„:

0)

1)

+0/0 = lioit10,

+02|11+Ulgo l10$1+~1$0
(4.5)

2) U0$2+ +1/1+ U2$0 lioit12+~1$1+~2$0,

P) +02(y+ Ulgy —I+ +22t10—2 P~ gy O0)—

The characteristic vector Itio corresponding to
Xp ——1 evidently has only one non-vanishing com-
ponent, that corresponding to configuration
number zero. We therefore take ilto(0) =1 and

itIO(n) =0 for 12= 1, 2, ~ 2" ' —1. Thus for Itio

and its adjoint vector, go, we have

4,=II1 o o II.

Since UIito
—=0, the equation for ItII and XI is

U02(II = ItII+ X IOtIO.

Taking the inner product on the left with the
vector Olto and noticing that ItIOUO ——go, we find
that XI= 0. The vector Itii then satisfies the
equation UOQI= QI. It is clear, however, that we
are at liberty to choose ittI and all the remaining

the configurations 0, 1, 2, , 2" ' —1 which all
have p =1.

Our procedure will consist in obtaining power
series in the parameter P for the maximum
characteristic value ),„and corresponding
characteristic vector 2|I,„of the matrix U+(p).
It is evident that Up has a single non-degenerate
characteristic value of unity and a 2" ' —1-fold
degenerate value of zero. Therefore, X,„will be
well separated from the other characteristic
values at low temperatures and will be an ana-
lytic function of P in the neighborhood of P= 0.
One will thus be justified in trying series ex-
pansions for X, and ItI, of the form

ItI„orthogonal to ItIO, saving the final normaliza-
tion of g until the end. With this restriction,
QI must vanish identically.

Multiplying the equation for itI2 on the left by
ilto, we find in this case also that X2=0. To find

ot12 we must therefore solve the equation

0
4(1)—4(2)
4(2) —0(4)

C(i) —4(2i)

( 0) 4 q(2„—2 1) q(2„ I 2) ( )

4(2" ')

4(2" '+p)

q(2n —I 1)

0

0
Uoitlo ——

0
0

0

(4.8)

Equation (4.7) is of the type (I—Uo)it=),
where g is a known vector and 2II is to be found.
The entire perturbation procedure consists in
repeatedly solving equations of this kind. The
method used is the following. Since the com-
ponents 2" ' 2" '+1, . 2" ' —1 of (I—Uo)ilt
are identical with those of g, they are obtained
immediately from the corresponding components
of g. The remaining half of the components of ilt

are obtained with the help of those already
known. For example,

g(2" ' —1) =it1(2" ' —2)+((2" ' —1)

e(2"-'-2) = e(2"-'-4)+&(2"-'-2)

etc.

(I—Uo) Ib ——U22tIO,

where I is the identity matrix.
Denoting the components of It 2 by itI(n)

(n=o, 1, 2, , 2" ' —1), we find for (I—Uo)bio
and U22tio the vectors
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Since the component number 1 of 4ti2 vanishes
we see that X4= 0. Q, is then to be found from the
equation (I—Uo) itt4

——Uiift&. The non-zero com-
ponents of Uiiti2 are

(U,4(i,)(2" ' —1) =1, (U, itig)(2" ') =1.

The non-zero components of iti4 are therefore

arising from the connection with the component
2 ', and. Q4(1) =1 arising from the connection
wltll $4(2) .

From (4.9) we then find "A4=$4(1) =1. The
vector g4 therefore satisfies the equation

(I—Uo) &4 =Ui&4+U24t2 —&o.

However, U~go ——0. Since

(Uiif,') (2) = (UiC) (2" ' —1 2) = iti(22+1)

we find for the non-vanishing components of
Uiitt4 the following:

and
(Ui44) (o) = (Uie4) (2" ' —1) =1

(Ui44)(2" ' —1)= (Uie4)(3 2" ') =1
Therefore,

iti4(2"—' —1)=1, iti4(3. 2"-') =1
and from this

A component of even index j is coupled di-

rectly to the component of index —,'j and indi-

rectlyto thosewithindices ~j, —,'j. . . if jisalso
divisible by 4, 8. . . . One continues to follow
the even components j/2" until further division

by 2 is no longer possible.
Applied to Q2, the procedure gives Qi(2" ' —1)

=1 and Q~(n) =0 for n=0, 1, 2, , 2" ' —2.
Multiplying the equation for $4 on the left by
go, we find X& ——4ti4Uig2. In general, from the fact
that Q4 is orthogonal to the other 4ti; and that
$0U2=0, we find X, = QOUig, i. However, since

QOUi ff0 1 0 ' ' ' Off,

we have
(4.9)

This pert'urbation procedure was carried as far
as the 12th power of P and gives for the maximum
characteristic value of the plus V matrix'

&+= (1+-P'+2P'+5P'+ 14P"+44P"+ ).
p (4.10)

The convergence of this series will be inferred
later on. More complete series for iti+ will also be
given later together with the characteristic
vectors of the minus V matrix. However, up to
terms of the order P', the non-zero components
of the approximating vectors are given in Table I ~

The expression (4.10) for X+, if carried out
completely, would. essentially give the free energy
per particle for an infinite crystal (i.e. , one for
which n= ~). For any finite crystal the cor-
responding series will agree with the limiting one,
(4.10), up to a certain power of P, after which
they will differ. It is not difficult to see from the
perturbation procedure that the agreement will

persist to higher and higher powers of P as I
increases. The only reason for a difference
between the limiting series and the one for
finite n, is that at some stage in the calculation
two or more components of a vector which are
labeled differently actually become identical. For
example, in the case n = 5 the component number
3 of the fourth approximating vector iti4 does not
have the value 1 as one would find by the above
methods, but actually has the value 2. This
comes about because the component labeled
2" ' —1 is also the component number 3. Because
of these coincidences the components of the
approximating vector iti, and hence also the coef-
ficients P„ for a given n, will eventually differ, as
r increases, from the itt, and X, for larger values
of n. However, these coincidences can be post-
poned by taking larger and larger values for ri,
so that at any fixed stage r in the approximation
a given component of iti, or the value of X, will

be the same for all sufficiently large finite
problems.

The same type of perturbation procedure is
applicable to the problem of the minus V matrix.
Carried as far as terms of the order P" we find

that its maximum characteristic value 'A is

Q4(3.2') =1 (0=1 n —4), $4(3) =1;
finally Q4(2" ' —1)=1.

' The terms up to P" of this series were previously ob-
tained by Bloch, using a different method. F. Bloch, Zeits.
f. Physik 61, 206 (1930).
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TABLE I. The approximating vectors 4t(4 to 4t(4.

4t(O
Component Value Component Value

4t(s
Component Value

4tt4
Component Value

5
Component Value

2n —1 1
2~ k=1 ~ ~ n —3
2n-2 ]
2n —2

3
3.2~ k =1 ~ ~ n —4
2" 3—1

3.2n 3

2" '—1

1

2~ k=1
72~ k =1 ~

2n —4

2n —2

2n—1 21(:

2n —1

- n —2
~ n —4

2

1

1

1

1

3
~ n —3 1

2

identical with X+ for suAiciently large n. More-
over we find to this approximation that the
components of the vector 4|( are identical with
those of 4t(+ except for characteristic differences
in sign. For any finite value of n, the charac-
teristic values X+ and t will differ. However,
experience with the perturbation method leads
us to believe that as n becomes increasingly
large, the difference between )+ and ) is post-
poned to higher and higher powers of P, so that
in the limiting case of an infinite crystal the
degeneracy between X+ and 'A will be expected
to hold as far as the series converge. Really to
give a proof of the degeneracy, one would have
to devise some inductive argument of the type
given by Lassettre and Howe" to show the
degeneracy of the maximum characteristic value
of the matrix for the three-dimensional problem.

To find the left-handed characteristic vectors

B+ and B the problems of obtaining the left-
handed characteristic vectors of the plus and
minus V matrices are treated by the same per-
turbation methods. The same series for X+ and 'A

are found as previously and the equality, except
for characteristic sign differences, of the com-
ponents of P+ and |I is also observed.

For a proof of the convergence of the series for
'A+ and P we refer to the work of van der
Waerden. ' By a consideration of the probabilities
for finding polygons of various lengths enclosing
atoms which are not ordered with respect to one
another, he calculates the long range order and
the energy of the crystal at low temperatures,
obtaining series identical with ours. Although
his method would be very cumbersome for

'~E. N. Lassettre and J. P. Howe, J. Chem. Phys. 9,
801 (194i).

d log (PX+)
EJ+EJP—

dp

XJ+NJ{4—P'+12P'+ 36P'

+120P)"+448P)s+ . ).

(4.11)

This is the same as the series for the energy which
is given by van der Waerden and from his proof
of its convergence we see that the logarithmic
derivative of PX+ is analytic in the neighborhood
of P=O. The logarithm of PI(+ is therefore ana-
lytic at P=O and hence the same is true of PI(+
itself.

5. The Long Range Order

The probability P(nt, n,) of finding simul-
taneously pitch 1 in configuration n&, and pitch r
in configuration 0., is given by an expression
analagous to (2.1) of Section 2. Using (3.3),
(3.4), and (3.5) one finds

P(n), n,) = (~—) ) n,) (m—v+1) ns 4 s

XBs(n))A4(n)) B,(n„)As(n, ). (5.1)

In the ferromagnetic case, for sufficiently low
temperatures, we have found the maximum

treating the general propagation problem, it is
more powerful than the matrix method in the
respect that it provides simple convergence
proofs. From the convergence of the series for
the energy we can conclude that the series for
)+ and X also converge. The energy is obtained
from the partition function, or from the partition
function per particle, by

8 log Z d log X+
jV— =NJP

()(I /O T) dP
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characteristic value to be two-fold degenerate.
Therefore, for two pitches far enough apart so
that r —1 and m —r+1 are large integers, we
have

Jet +
A+=(20+0+) '

it+

B+=(2~+x+)-'ll~+, ~+l1

(5.3)

In the same way, the normalizing factor for the
minus vectors is (2P Q ) '. However, the series
expansions show that P hatt

= P+g+. It also turns
out that B+(a)A+(n) =B (u)A (n) and that
B+(u)A (n) =B (n)A+(u) Using . these relations,
multiplying out (5.2), and summing over the
first half of the configurations, we obtain for I'
the expression

(5.4)

It can be verified without very much difficulty
that this same expression remains valid if the
two + atoms under consideration do not neces-
sarily occupy corresponding positions in the two
distant pitches. I' is therefore the chance of
finding simultaneously two + atoms very far
apart in a ferromagnetic crystal. In the absence
of long range order, I'= ~.

If the crystal is antiferromagnetic, this prob-
ability will of course depend on the odd or even
character of the number of steps between the
two atoms. Instead of a degeneracy in X, , we
have, from (3.12), X+(—X)= —X (—X). The

-P(ai n.) =2{B+(ni)A+(n.)+B-(ni)A-(n. ) }

X{B+(a,)Ap(ai)+B (n,)A (ni)I (5 2)

Let us now ask for the probability of finding
two + atoms simultaneously, one in a given
position in pitch 1 and the other at a given place
in pitch r. In particular we might ask that the
two end atoms of the separate pitches be both +.
Then the probability I' in question is obtained
by summing P(u&, n, ) over those configurations
consistent with having + atoms at the end of
the pitch. These comprise the first half of all the
configurations, namely, the ones numbered from
Oto2" ' —1

From (3.10) and (3.11) the normalized forms
of A+ and B+ are

total number of atoms in the crystal, mn is even,
however, since there are as many + atoms as
—atoms. Thus, X+(—K)""=X (—X) ", and the
effect is the same as though there were a real
degeneracy. Also, from (3.12), we see that the
characteristic vectors P~( —K), Q~( —E') are
obtained from P~(X), i{t~(X) by permuting the
components in accordance with a certain per-
mutation matrix R. The components of P~(X)
and g~(X) are permuted in the same way,
however. Consequently the inner products of
the vectors are invariant; that is, for example,

and
0+(&) 0-(&)=0+(—&) 0-(—&)

0+(&) 0+(&)=0+( &) 0+(—&—).

where k is, say, the smallest number of steps
between the two + atoms entering into the
definition of P. If k is even, the two + atoms form
an ordered pair, and I' exceeds ~. If k is odd, the
pair of + atoms is not ordered, and I' is less
than —,'.

To make connection with the usual long range
order S we shall obtain an expression for I' in
terms of S and compare with (5.4) and (5.5).
For an antiferromagnetic alloy, one divides the
sites of the crystal into two groups, n and P sites,
the former being occupied exclusively by +
atoms at the zero of temperature and the latter
by —atoms. At a finite temperature one denotes
by r the probability that 3;n atom be right, or on
a site which is appropriate to it, and by m the
probability that a + or a —atom be wrong,
that is, be on a site not appropriate to it. The
long range order S is then defined by writing m

and r in the form

~=-,'(I-S), .=-,'(1yS). (5 6)

In terms of S, the probability, I', for finding
two atoms, of which one is +, and which are
correctly ordered with respect to one another is
given by

1 (1+S)' 1 (1—S) ' 1

} =-(1+s). (5.&)2( 2 ) 2( 2 I 4

Carrying out the computation for I', we find an
expression

(5.5)
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This can be seen as follows. If one takes the
factors in order, the first -,'is the chance that an
a site is selected for the first atom of the pair,
which we may take as +.- The chance of getting
a + atom on this site and also of getting the
right atom at the distant site, is then ~(1+S)'.
If the site chosen originally is a P site, the two

atoms of the pair would both have to be wrong
from the point of view of the o: p—sites in order

to be correct with respect to one another. This
would give the factor -', (1 —S)'. In the same way
the probability for finding two distant atoms
which are not correctly ordered with respect to
one another, is ~(1—S')

From (5.4) and (5.5) it therefore follows that
the long range order S is given in terms of the
characteristic vectors by

S= 0+0 /0+0+- (5.8)

0+4- = I+ (&—2)P'+ (3~—7)P'

(1 17
+

I
-n2+—n-30 IPB+ ". (5.9a)

i

The product P+Q+ is gotten in the same way.
Its table differs from that of P+Q only in that
all the signs of the P+(a)Q+(n) are positive.
Otherwise the numerical values are the same as
for the P+(n) g (n). Making the appropriate
changes we find

y+g, =1+nP4+(3n+1)P'

1 21
+ I

-m'+ —n+4 Ips+. . . (5.9b)

The computation of S up to terms of order P'
is given in Table II. All configurations a which

give the same series expansion for P+(n)g (a),
to terms of order P', are grouped together and
listed in the first column. The number of con-

figurations in each group is given in column two.
The third column gives the coelKcients of P', P',
p', and P' appearing in the series for P~(a) Q (n).
To obtain p+Q, we must sum P+(n)Q (~) over
all n from 0 to 2" ' —1.This is conveniently done

by multiplying the coefficients in the third
column by the number of configurations in the
second column and then adding. The results are
indicated in the last column. We have

Both P+g and P+g+ depend on the size of the
crystal, n, but their quotient, which is the. long
range order, must be independent of n for very
large n. Performing the division, we obtain to
terms of order P"

S= 0+0 /0+0+-=1 2(0—'+48'+17''

and

+76P"+357P"+ ) (5.10)

&= ~(1+S') =
2 0' 4—f3' —16P'—

—68/" —307P"' — . (5.11)

This same series for S was found by van der
Waerden and a proof. was given that it is con-
vergent for P(-,'. The question of the actual
radius of convergence of the series is still open,
however. A highly probable conjecture can be
made in the light of the investigations of Kramers
and Wannier. On the basis of an important sym-

metry property of the plus V matrix, they are
able to show that if it is assumed that the crystal
can have only one point of singular behavior,
that point must be given by

P.= K2 —1 =0.414. (5.12)

As we shall prove in the next section, there is no

long range order at high temperatures. It there-
fore seems very probable that the point P, = 0.414
represents the Curie. point for the transition from

order to disorder and that the series for S has
radius of convergence 0.414. A real proof of this

fact and an investigation of the limiting value of

S(P) as P approaches P, from below, would be

very much desired, however.

' R. Peierls, Proc. Camb. Phil. Soc. 32, 477—481 (1936).

6. Proof That an Order-Disorder Transition
Actually Takes Place

Although the location of the transition point
between states with finite long range order and
those with no long range order has not been
rigorously obtained by the matrix method, it is

easy to give a proof that such a transition really
occurs. Such proofs. have been given by Peierls"

-and van der Waerden' using the properties of
polygons enclosing regions of disordered atoms.
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TABLE II. The calculation of P+Q

0
2k

3 2k

2&+2k
7.2k

2n —1

1

3
7
2k+1
2" 3 —1
2n 2 —1
2n —1 2k

2n —1

Configuration,
A

k=1 ~ .n —2
k=1 n —3

3 n 2 6

k=1 ~ n —4

k=2 n —2

k=1 ~ ~ n —3

Number
in group

1

/ n 2

n —3
k =1 j—2 ~3(n —4) (n —3)

n —4
1

1

1

1

n —3
1

1

n —3
1

0+(~)4-(~)
pO P4 PO PO . PO

1

1 2 5
1 6

1

1

4
1 3 8

1 7

1

1
—1

—1 —7
—1

—1 —3 —8

n —2 2n —4
n —3

Sn —10
6n'—18

—,'n' ——,"n+ 6
n —4

8
7
1

n —3
—1
—7

—n+3
—8

n —2 —,'n'+-'~n —30

iii -. iii
iii iii
iii iii

V+(o)"=

iii iii
iii 111

V+(0) =

1 1 1 1 1
—1 —1 —1 . —1 —1. —1

1 1 1 1 1 1

From the point of view of the matrix theory all 'V (0) have the forms
that is necessary is to show that for sufficiently
high temperatures the maximum characteristic
value of K(K) is no longer degenerate.

For high temperatures K(= ,'J/IoT) tends t—o

zero and both a and p tend to unity. Thus for
very high temperatures the matrices V+(K) and
V (K) are practically

(6.2)

—1 —1 —1 . . —1 —1 —1

1 1 1

(6.1) V+(0)' consists entirely of ones while V (0)' has
alternate rows of ones and minus ones. Since the
matrices are of rank one, their characteristic
equations reduce to the form

V (0)= 1 1
—1 —1

X'"—(trace V~(0)") .X'" '=0. (6.3)

—1 —1

Taking a finite problem for which the matrices
are of the order 2", one finds upon successive
multiplication that the rth powers of V+(0) and

The trace of V4. (0)" is 2". Therefore the charac-
teristic values of V+(0)" are 2", 0, 0, , 0 and
hence the maximum characteristic value of V+(0)
is 2 and all the rest are 0. The trace of V (0)"
vanishes, however. As a result all of its charac-
teristic values and hence all the characteristic
values of V (0) vanish.
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This proves that for su%ciently high tem-
peratures the maximum characteristic value of
K is non-degenerate and that there is therefore
no long range order.

7. The Propagation of Order

The principal advantage that can be claimed
for the matrix method is that it provides a solu-
tion not only to the problem of the long range
order, but also'to the more general problem of the
propagation of order throughout the lattice. For
example, suppose that a certain site in the
crystal is known to be occupied by a + atom.
We can then investigate how this knowledge
affects the probability for + (or —) atoms at all
other sites and see the gradual transition from
the strong short range influence of the fixed +
atom to the weaker long range influence which
is described by the long range order. This is the
problem originally proposed by Zernike. More-
over, using the matrix method we can investigate
the propagation of order for more complicated
initial configurations consisting of several atoms.
Thus we shall find the ordering effect of a pair
of fixed atoms, of combinations of three, four
atoms, and so on, in each case observing the
change from the short to the long range effect.

Zernike's Problem The Transit. ion from Short to

Long Range Order

If the expression (5.1) for P(n~, n,) is summed
over all configurations n„one finds for the
probability of a configuration n&, in pitch
number 1

P(ag) =

At low temperatures and for ferromagnetic
crystals, the twofold degeneracy of ),„ leads
to the expression (dropping the subscript 1)

P(~) = k(B+(~)A+(~) +B-(~)A-(~))

=B+(u)A+(n). (7.1)

two kinds of atoms, + and —.Thus if we make
a transformation which takes a configuration 0.
into one n obtained from it by changing all +
atoms to —atoms, and conversely, we find
from (3.10) and (3.11) that B~(n) =B+(u) and
A+(n) =A+(n), so that P(o.) =P(a). This sym-
metry is evidently necessary, since + and
atoms have been treated equally from the start,
the energy of interaction between a pair of +
atoms being equal to the energy of interaction
of a pair of —atoms.

Any question concerning the probability of a
certain disposition of atoms on lattice sites all in
one pitch is answered by summing P(u) over. all
configuration a consistent with the restrictions
proposed. We shall, therefore, always have to
deal with the expressions of the type

Z- +(~)4+(~) 0+4+

20+4+ 24+4+
7.2

where the prime indicates that the summation
is to be taken over the configurations allowed by
the restrictions, and V is the sum of P+(n)Qy(n)
over the suppressed configurations. The sum Vis
generally easier to carry out than the direct sum
over the allowed configurations.

Let us now apply (7.2) to the investigation of
the ordering influence of one atom on its neigh-
bors in the same line of the crystal. Let P(+ &r2),

P(+&r3), , P(+&r~) P' be the probability of
finding a + atom at a site conveniently called 1
and then an atom rightly ordered with respect
to it at a distance of one site away, two sites
away, . . . , (p —1) sites away, respectively. We
can write P(+&r„) as equal to the probability
for finding a + atom at the site 1 in the lattice
multiplied by the probability that the right atom
is found p —1 sites away when it is already known
that a + atom exists at site 1. The latter corre-
lation probability we denote by C(+&~r~) and
take it as a measure of the ordering influence of
a single + atom. Of course

This is in marked analogy with the quantum
mechanics, where the probability density is pro-
portional to the wave function multiplied by its
complex conjugate. From (7.1) we can also see
that the theory is entirely symmetrical in the

"This r notation is used so as not to distinguish between
the ferromagnetic and antiferromagnetic cases. The calcu-
lations will be made for the ferromagnetic case, but it will
be shown that the results are valid in the other as well.
For the ferromagnetic case, r~, for example, would be +2,
while for the antiferromagnetic case it would be —2.
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These correlation probabilities are easily cal-
culated from a table of values of P+(n)Q+(n)
similar to that given in Table II. For example, if,
in (7.2), we make the restriction that the last two
atoms, numbers n —1. and n —2 are both + we
have the conditions necessary for the calculation
of C(+4~ ro). Similarly, for C(+&~ro) we would
hold the atoms n —1 and n —3 fixed as +.We find

C(+,
~
ro) = 1 —2P' —6P' —18P'

60P4o 2 24P4o

C(+ 4
~
ro) = 1 —2P' —8P' —30P'

—112P»—430P»—

C(+ 4
~
r4) = 1 —2P' —8P' —32P'

—134P» —576P~2—

C(+4
~
ro) = 1 —2P4 —8P' —32P'

—136jP4o —612P"—

(7.4)

C(+g
~
ro) =1—2P' —8P' —32P'

136p'o 614p4o

C(+ g
~
rp) = 1 2P' 8P—' 32—P'—

136P'0 —614P»—

For p ~6 we see that to terms of the order P",
C(+ ~

~
r„) becomes identical with the long range

correlation (5.11). Denoting the long range cor-

and C(+~~ r„)=C(+~~ ro) to terms of order p"
for p=7.

The correlation probability, C(+ &
~
r„), has its

maximum value of unity at the absolute zero of
temperature (P = 0) and for finite temperatures
(p & 0) falls off monotonically as one goes further
from the central site at which the + atom is
situated. Examining the sequence (7.4) we find
that the coefficients of the various powers of P
increase monotonically in absolute value until
they reach a certain limit, the approach to the
limit being rapid at first and then slower at the
end. For the lower powers of p this approach to
the limiting value occurs earlier in the sequence
than it does for the higher powers. Thus, from
(7.4),

C(+~~ro) &C(y4~ro) &C(+~~r4)

& C(+~ ~ro) & C(+~~ro) & . . (7.5)

relation by C(+~~r„) we have

C(+~lr-) = l(1+&) (7.6)

In this approximation the long range effect is
already attained five sites away fro'm the central
atom. This holds of course only for those tem-
peratures for which terms of order higher than
p" can be neglected. As the temperature in-
creases the transition to the long range limit
takes place only after one goes considerably.
further from the central site.

The correlation probability C(+ &
~
ro) is closely

related to the average energy of the crystal. Thus
if Q, stands for the probable number of right
pairs of atoms each having an energy of inter-
action ——,'J and Q for the number of wrong
pairs of atoms each having an energy of —,'J, we
have for the average energy

&= —
o JQ.+oJQ-.

Remembering that for a crystal containing X
atoms there are 2N pairs of nearest neighbors,
we find

Q =»C(+~lro) Q-=»I1 —C(+intro) I

and

This series for 8 has been given before in (4.11)
and was obtained there from the expansion of
the maximum characteristic value X+. The
present method is based on the characteristic
vectors and the agreement between the two
provides a check on the internal consistency of
the results.

It is not necessary to confine oneself entirely
to atoms on the same line with the fixed + atom.
For in virtue of the screwlike construction of the
lattice, the atom at the end of the pitch, n —1,
is situated near the atoms 0, 1, 2, ~ ~ at the
beginning of the pitch, as shown in Fig. 2. We
can find the inHuence of a fixed + atom at sites
on the next line by applying (7.2) with the re-
strictions that atoms n —1 and 0, n —1 and 1,
n —1 and 2, etc. are to be successively held
fixed as + atoms. The notation C(+'~r„) suggests

E=XJj 1 —2C(+,
~
ro) I

NJ+ 1VJ(4P—'+ 12P'+ 36P'

+120P'o+448P"o+ ~ ). (7.7)
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n 2 n-I

Frr. 2. The n sites of a single pitch.

C(+'
l rs) = 1 —2P4 —SP' —26P'

gSP10 326P12

C(+'lrs) =1—2P4 —SP' —32P'

—124P"—484P"—

C(+'
l
r4) = 1 —2P4 —SP' —32P'

136P'o —S94P
(7.8)

C(+'I rs) = 1 —2P4 SPs 32Ps

—136P"—614P"—

C(+'
l
r s) = 1 —2P' —SP' —32P'

—136P~o —614p»—

This sequence has the same properties as the
sequence (7.4). A comparison of the two shows
that

C(+ ~lrs) & C(+'lrs) & C(+~ lrs)

& C(+'
l rs) & C(+ ~ l r4) & C( '

l r4) & (7.9)

itself for the correlation probabilities. The results
are

the smaller powers of p by applying the condition
for monotonic decrease with distance.

It should be pointed out that the expressions
found for the correlation probabilities are valid
for antiferromagnetic crystals as well. As we see
from (3.12), the vectors B~(—Z), A~( —X)
applicable in this case have components which
are identical except for the order with those of
B+(X) and Aa(X) appropriate to the ferromag-
netic case. The permutation matrix R, carrying
the one set of vectors into the other, carries each
configuration into the one obtained from it by
changing the sign of every alternate atom in it.
Thus for C(+ ~ l+s), calculated in the ferromag-
netic case, we summed over all the configurations
for which atoms n —1 and n —2 were both +.
The permutation matrix R carries these con-
figurations into all those for which the atoms
n —1 and n —2 are, respectively, + and
Therefore C(+~l+s), as calculated in the ferro-
magnetic case, is equal to C(+~l —s) for the
antiferromagnetic case.

8. Comparison with the Results of Zernike

Carrying out Zernike's method for treating the
propagation problem, we find in the case of two
dimensions for the long range order and the cor-
relation probabilities

S= 1 —2P4 —8P' —20/'

—48P"—122P"—

indicating again a monotonic decrease of the cor-
relation probability as the distance from the
fixed atom increases.

The correlation probabilities (7.4) and (7.8) do
not constitute a complete solution of Zernike's
problem since there are many distances between
pairs of atoms which are not included. However,
this is as far as one can go without a knowledge
of the entire spectrum of characteristic values of
the V+ matrix. This is because the expression for
I'(aq, n,), where r is a small integer, cannot be
simplified to the point where only the maximum
characteristic value of V+ enters. Nevertheless
the range of distances covered by (7.4) and (7.8)
is fairly complete and for those that are left out,
one can get good estimates of the coefficients. of

C(+ ~l rs) =1—2p' 6p' 11p' —— —

C(+&lr,) =1—2P4 —8P' —14Ps-

C(+ g
l
rs) = 1 2p4 8p' 1—6p' —— —

C(+glr4) =1—2P' —SP' —18P'—

C(+~
l
r„)= C(+ql r4) p=S (to terms

(8 1)

of order Ps)

Comparison with (5.10), (7.4), and (7.8) shows
that Zernike's approximation at low tempera-
tures is valid up to terms of the order P'.

In three dimensions we make use of the series
for S and C(+ ~ l rs) found by van der Waerden. s

The comparison with Zernike is given in (8.2).
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van der Waerden:

S= 1 —2P' —12P"+14P"'—90P"

+192P"—792P"j
Zernike:

5= 1 —2P'+6P'+

van der Waerden:

C(+ g
~
r2) = 1 —2p' —10p"+14p"

—70P"+176P"—626P"+

(8 2)

for the correlation probability

C(+ 1«2
~
«;) =P(+ v 2«,)/P(+ i«2)

Application of the methods of Section 7 gives

C(+ p«2
~
r3) = 1 —P' —4P' —17P'

—70P»0 —291P"—

C(+ ~«2
~
«4) = 1 —P' 5P' —24P—'

—109'»o —487P» —.
Zernike:

C(+i
~
«2) =1 2p'+—6p'+

Zernike's method therefore seems to be better
in two dimensions than it is in three. This can
perhaps be understood from the following consid-
eration. The essential approximation in Zernike's
diff'erence equation comes from the assumption
that the probabilities for the atoms forming the
nearest neighbors of a given atom, are inde-
pendent of one another. Although no two of the
atoms at these surrounding sites are nearest
neighbors, the probabilities for them are not
independent because of the possibility of inter-
action through intermediate atoms. The mag-
nitude of the correlation will in some way be
connected with the number of short paths of
inHuence between the two atoms. In three
dimensions, the correlation will presumably be
greater because the number of available paths is
certainly much greater than in two dimensions.
We might therefore expect the approximation to
get poorer as the dimension is increased. In one
dimension, where the assumption of Zernike is
least serious, it can be shown" that his, solution
is actually exact, although the method of de-
riving the equation involves an approximation.

9. The ordering Inhuence of More Complicated
Configurations

Next to a single + atom, the simplest initial
arrangement to consider is an ordered pair of
adjacent atoms, +&«2. Denoting by P (+~«2«;) the
probability for finding a plus atom at a given site
and two atoms rightly ordered with respect to it
at sites adjacent and (j—1) steps away, we have

"A. Nordsieck (unpublished).

C(+g«2~«q) =1—P' —5P' —25P'

121P'0—580P

C(+ ~«2
~
r6) = 1 P' S—P' —25P'—

—122P"—599P"—.

(9 1)

C(+,r,
~
«7) = 1 —P4 —SP' —25P'

—122P"—600P"—

and to terms of order P»2

C(+&«2I r~) = C(+i«a~ ry), p 8.

Thus, as expected, an ordered pair of atoms is a
more effective ordering inHuence than a single
atom. The sequence (9.1) shows the same kind
of approach to the long distance limit as do the
sequences (7.4) and (7.8).

It will be interesting to compare the correlation
probabilities for the ordered pair + ~r2 with those
for the ordered pair +'r2 where the atoms are
separated by a distance V2 times the lattice
distance. (See Fig. 3.) By imposing, in (7.2), the
condition that the atoms n —1, 0, and j—2, of a
single pitch be held fixed as + we find the prob-
ability P(+'r&r;). Dividing this by P(+'r&) gives

Fro. 3. An ordered pair of atoms separated by a distance 42
(in units of the lattice distance).

Comparison of (7.10) and (7.4) shows that in
general

C(+g«2~«~) &C(+g~r; g).
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F1G. 4. The shortest path of inAuence from site 1 to site 5
when site 2 is occupied by a known atom.

C(~'ro
l
ro) = 1 —P 3Po 14Po

—62P~o —269P12—

C(+'ro
l ro) = 1 —P' —4P' —20P'

—96P"—447P"—

the correlation probability C(+'ro
l
r;). The result

is

relation probabilities arising from a single atom,
we should find that the correlations for a dis-
ordered pair will be smaller than those for a
single atom. We shall denote such a disordered
pair, or "dipole, " by +&m&. The correlation
probabilities C(+~wolr;) can be obtained from
results already given. Thus, expressing the
identity

P(+ swor;) +P(+ i roy, ) =P(+ ~r—,)

in terms of correlation probabilities, we have

C(+il r,) —C(+ il ro)C(+carol r;)
C(+,w, )r;) =

1 —C(+ ~ I «o)
(9.3)

C(+'r.
l ro) =„1 P4 4P—o —21Po—

10)Pio 532P&o

C(+lyo
l
yo) = 1 —P4 —4Po —2 1 Po

(9.2)

Here r; means right with respect to the + atom
at site 1.

From (7.4), (9.1), and (9.3) we have then

C(+ ~wo
I yo) =

o (1—P' —3P' —8P' —22P' —. )
—108p"—550p"—.

C(y~wol r.) = ', (1-—P'-8P'-40P'- "),
C(+&yo

l yy) = 1 —P —4P —21Po

108p'o —551pu—

and to terms of order P"

C(+carol r„) =C(+'rolrr), P=8.

C(+,wolro) =-'(1

C(+awol «) = o(1

C(+, wlro, ) = -,'(1

and to terms of order p'

po 15po . . .)
(9.4)

po . . .)

~ ~ ~

The comparison of (9.1) with (9.2) shows that
the pair +'r2 is a more effective ordering influence
than the pair +~r2, that is

C(+'ro
l r,))C(+ y

l «;) .

The reason for this can be easily understood. In
the diagram of Fig. 4 let us consider the corre-
lation probability at site 5, perhaps, for an
ordered pair of atoms at sites 1 and 2 and then
for an ordered pair at 1' and 2. With the atom
at 2 held fixed; the shortest path of influence
from 1 to 5 consists of six steps and is shown by
the dotted line. However, for the atom at site 1',
the shortest path of influence consists of only
five steps. Thus, if site 2 is occupied by a known
atom, placing a properly ordered atom at site 1'
will be more effective at 5 than placing an ordered
atom at site 1. We should, therefore, expect
C(+&rolro) to be larger than C(+,rolro)

If the correlation probabilities arising from an
ordered pair of atoms are greater than the cor-

C(+awol re) =o P=&.

These series show that at large distances the
correlation probability arising from a dipole,
+&m», approaches the value —,'. The dipole there-
fore has no ordering influence at all at large
distances, since the probability of finding a +
or a —atom at a given lattice point when the
dipole is not present is also equal to —,'. The atoms
of the disordered pair thus have the tendency to
annul each other's ordering effect, the cancel-
lation being complete at infinite distance.

Many further examples of sequences of cor-
relation probabilities could be given. Instead,
however, we shall give in Table III a list of
correlation probabilities for a line of the lattice
from which all other correlations can be obtained
by suitable combination. The table gives the cor-
relation probabilities as a function of position in
a line of the lattice for a sequence of initial con-
figurations beginning first with one fixed +
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atom, teen an ordered pair of atoms, then 3, 4,
5, 6, etc. . . . consecutive ordered atoms.

For each fixed initial configuration, the cor-
relation pI ~bability decreases monotonically with

TABLE III. Correlation probabilities for the atoms in one
line of the lattice.

gl0

distance and tends to a limiting function at very
large distance. This is the behavior exhibited by
the sequences (7.4), (7.8), (9.1), (9.2), and (9.4).
However, there is also an approach to a limit for
sequences like

C(+1~ ro), C(+ 1ro
~
ro), C(+ 1roro

i r4),

C(+1 r lr+1)

C(+, lro)
C(+ i
C(+ i
C(+ i
C(+ i
C(+ i

r,)
r4)
rf,)
re)
r;)

C(+,r, l r,)
C(+1rolr4)
C(yorolro)
C(+1rolr, )
C(+ 1r4

l
r 4)

C(+ 1ro l ro)

—2

1 —2
1 —2
1 —2
1 —2

1 —2

—1
—1
—1

1 —1

1 —1

1 —1

—6
—8
—8
—8
—8
—8

—4
—5
—5
—5

—5

—18
—30
—32
—32
—32
—32

—17
—24
—25
—25
—25
—25

60
—112
—134
—136
—136
—136

70
—109
—121
—122
—. 122
—122

—224
—430
—576
—612
—614
—614

—291
—487
—580
—599
—600
—600

These probabilities show the ordering inHuence
at a site immediately adjacent to stretches of
ordered atoms of different lengths. The correla-
tion appears to increase as the length of the
ordered stretch increases. For stretches of six
or more atoms, however, the correlation prob-
abilities are identical, to terms of the order p".
We can conclude, then, that to this order of
accuracy the correlation probability at a point
immediately. adjacent to a completely ordered
half-line, r „r 2r &+0 is given by

C(+,roro l r4)

C(+ 1ror4
l
r 4)

C(+ ir2r3

C(+ ir2rs

C(+ ir2r3

C(+ ir2r3

r, )
r7)
rs)
rg)

C(+1 ~ r4
l ro)

' C(+i r4~r, )
C(+1 r4l ro)

C(+1 r4l ro)

C(+, . r4
l ro)

C(+1 . r41rlo).

1
—1

1 —1
—1

1 —1
1

—3

4

4
4.

—1 —3
1 —1 —4
1 —1 —4
1 —1 —4
1 —1 —4
1 —1 —4

—11
—17
—18
—18
—18
—18

—10
—16
—17
—17
—17
—17

—50
78
89

—90
—90
—90

—38
65
76

—77
—77
—77

—241
—376
—451
—469
—470
—470

—170
—286
—360
—378
—379
—379

C(r „.r or 1+o
~

r 1) = 1 —P' —3P' —10P'

37pM 149p12 . . . (9 5)

In the same way, the correlation probabilities
for sites 2, 3, 4, 5, steps away from the
ordered half-line are given by.

C(. ."' 1+o~r,) =1—p' —4p' —i6p

64' ~o 264P

C(r „r1+ol ro) =1—P —4Po —17Po

C(+1 ro lro)
C(+1 ro l ro)

C(+1 ~ ro l ro)

C(+ i 4 ~ 4 rg ( rg)

C(+1 ro l r1o)

C(+ . -r tr„)

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

—3

4
—4

4

—10
—16
—17
—17
—17
—17

37
64
75
76
76

—150
—265
—339
—357
—358

76 —358

—75p" —338p"—

C(r „r1+o~r4) =1 P' 4P' 1—7P'— —

—76P~o 3$6P»

(9.6)

C(+1 r, I ro)

C(+1 ro l ro)

C(y1 r, l ro)
C(+1' ' 'ro lr1o)
C(+1 . rolr»)
C(+1 ro l r„)

1

1 —1

1 —1

1 —1

1 —1

1 —1

—3

—4

—10
—16
—17
—17
—17
—17

—37
—64

75
—76
—76
—76

—149
—264
—338
—356
—357
—357

C(r „.r 1+o~lro) =1—P' —4P' —17Po

—76P"—357P"—

To terms of order p"

C(r „.r 1+olr ) =C(r „r1+olro) —p=6.
C(+ i
C(+ . . .r
C(+," r,
C(+, - "r,
C(+l. r7
C(+i+ ~ or

rs)
rg)

rio}
rii)
ri2)
ri3)

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

—3

4

—4

—10
—16
—17
—17
—17
—17

—37
64
75
76

—76
—76

—149
—264
—338
—356
—357
—357

For the long range effect of the ordered half-
line we therefore have the expression

C(r „r1+o
~
r„)= 1 P' 4P' 17P'— — —

—76P"—357P"— . (9.7)
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Comparing (9.7) and (5.10) we obtain the inter-
esting result that

C(r „r,+o~r„) =2'(1+S). (9.8)

The explanation of this identity would seem to
be that the constraint of keeping an entire half-

line ordered provides sufhcient knowledge to
decide which sites in the lattice are 0. sites and
which are P sites, in the sense of Section 5. The
probability for finding a right atom ~ould then
be given in terms of the long range order by (9.8)
or (5.6).
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Statistics of Two-Dimensional Lattices with Four Componentsf

J. ASHKIN AND E. TELLER
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We have conside'red a two-dimensional square net consisting of four kinds of atoms supposing
that only nearest neighbors interact and that there are only two distinct potential energies of
interaction, one between like and one between unlike atoms. In extension of a method due to
Onsager it is found that for the case where like atoms attract one another a simple "reciprocity"
relation exists between the partition functions at pairs of temperatures "reciprocally" related
to one another. As one temperature T tends to zero, the other T* tends to infinity. If one
further assumes that only one "Curie" transition point exists, the relation between T and T*
enables one to locate the Curie temperature. Predictions can be made concerning the nature
of the transition point with results similar to those of Kramers and Wannier. The reciprocity
relation for the case of attraction between like atoms is found to be not valid for the case where
unlike atoms attract one another.

INTRODUCTION

'N a recent paper on the statistics of two-dimen-
~ ~ sional ferromagnets, Kramers and Wannier
have given a treatment of a model for cooperative
phenomena. They discovered an important prop-
erty of their system which expressed itself in the
form of a simple symmetrical relation between
the partition functions Z and Z* at pairs of
temperatures T and T*, related in a certain
symmetrical way. Any knowledge of the partition
function Z at temperature T implies an equiva-
lent amount of knowledge about Z~ at the related
temperature T*.The relation between T and T*
is a one to one relation; T decreases monotonically
if T* increases so that T—+0 as T*—+~. There is
only one temperature at which T= T*.Assuming

t Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Faculty of
Pure Science, Columbia University, New York, New York.
Publication assisted by the Ernest Kempton Adams Fund
for Physical Research of Columbia University.' H. A. Kramers and Gr H. Wannier, Phys. Rev. 60,
252 (1941).

long range order at T=O and absence of long
range order at T= ~, one will expect a Curie
point. If the Curie point is the only temperature
at which Z becomes singular, this temperature
must be the one at which T and T*become equal.
Furthermore, one finds that the types of singu-
larities which might occur at this transition are
restricted by the relation between Z and Z*. For
example, if one assumes that there is no latent
heat at the Curie point, the specific heat must be
either continuous through the transition or infi-
nite on both sides of the transition temperature.

Onsager'has been able to obtain the reciprocity
relation discussed above from a more direct con-
sideration of the form of the partition function.
Moreover, his ingenious methods appear to lend
themselves readily to generalization. Onsager
proceeds by giving two formally different ex-
pressions for the partition function at a tempera-

This method has not yet appeared in print. We are
greatly indebted to Dr. Onsager for his permission to
make use of it.


