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A quantitative calculation is made of the entire interaction called into play when two
hydrogen molecules approach. The forces consist of three parts: exchange, quadrupole, and
dispersion (van der Waals) forces. By compounding these, it is possible to account in a funda-
mental way for the size and the shape of the molecules. Also, the interaction curves (Fig. 2)
are in reasonable agreement with empirical curves derived from second virial coefBcients.
Because of the complexity of the exchange force calculation, a simple state function of the
Wang type (but with undetermined screening constant) was used in this work to represent
the charge distribution within the molecule. Quadrupole moments are computed (Table V),
and comments are made on the relation between the molecular problem treated in this paper,
and the corresponding atomic problem (interaction between helium atoms).

' 'N the field of intermolecular forces, interest
- has chiefly centered about the long range

attractive effects which can be calculated with
relative ease. Except in the simplest cases of
atomic interaction, ' rather crude devices are in
use for estimating the short range forces of
repulsion, devices which depend in most in-
stances on empirical knowledge of the gas kinetic
sizes of the atoms. For molecules, no attempts
have apparently been made to derive the quanti-
tative aspects of the repulsive forces, despite
the fact that knowledge of them is indispensable
for an adequate understanding of such funda-
mental properties as molecular size, shape,
rigidity. Nor is it possible to determine the
position of the van der Waals minimum of the
interaction curve without a fairly accurate
picture of the repulsive exchange forces.

To obtain these forces without the tedium of
an a priari. calculation, numerous workers' have
undertaken the useful task of deriving them
from observed data, such as second virial coeAi-

cients, energies of crystal lattices, Joule-Thomson
coefficients, and the like. The relative success of
this procedure has created an attitude of satis-
faction and apparently a waning of interest in
the fundamental problem involved. Endeavor

'For He, cf. J. C. Slater, Phys. Rev. 32, 349 (1928);
G. Gentile, Zeits. f. Physik 63, 795 (1930); H. Margenau,
Phys. Rev. 56, 1000 (1939).

~ Among them are: J. E. Lennard-Jones, Proc. Roy. Soc.
A106, 463 (1924). For a full review of this work see R. H.
Fowler, Statistica/ Mechanics. M. Born and J. E. Mayer,
Zeits. f. Physik 75, 1 (1932). J. O. Hirschfelder, R. B.
Ewell, and J. R. Roebuck, J. Chem. Phys. 6, 205 (1938).
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has been shifted toward correlation of diverse
gas kinetic phenomena by means of a single set
of interaction curves, without much regard to
the basic credentials of these curves. The
present paper is a step in the opposite direction
inasmuch as it derives interaction curves from the
elements of quantum mechanics. This may entail
a sacrifice in numerical accuracy of the results,
but it should fill the gap between semi-empirical
reasoning and theoretical understanding.

In the case of molecular hydrogen, the total
interaction consists of three main types: First,
the exchange forces just mentioned which owe
their origin to the interpenetration of the elec-
tronic clouds; they are responsible for the
rigidity of the molecule. In the calculations they
appear as first-order effects, arising when state
functions of 'the proper symmetry are used. They
depend very strongly on the relative orientation
of the interacting molecules. The major part of
this paper is devoted to their study.

Secondly, there are the forces resulting from
the presence of a permanent quadrupole moment
in the H2 molecule. Their dependence on orienta-
tion is also strong, but they vanish in the mean
over all orientations. In comparison with the
other types, the quadrupole forces are small

except at distances of separation much greater
than those of interest in connection with gas-
kinetic phenomena. In the calculation, they
appear io the same formalism as do the exchange
forces, being first-order effects and associated
with the symmetry of the molecule. Their
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magnitude is a sensitive function of the concen-
tration of electronic charge about the nuclei.

In the third place, the attractive van der
Waals forces are to be included. ' As is well

known, they represent the instantaneous attrac-
tions between the electronic multipoles as they
rotate, within one molecule, in partial phase
agreement with the multipoles in the other.
These may be calculated by a second-order
approximation method and with the use of state
functions lacking the correct symmetry. In the
H2 problem, it is necessary to include in the

'treatment both dipoles and quadrupoles, ' and
it is safe to neglect the interaction of higher
multipoles.

I. EXCHANGE FORCES; NOTATION AND METHOD
OF CALCULATION

The method used in the calculation of the
exchange forces is based on the work of Slater
some of its features, as they relate to the four-
electron problem, are discussed by Glasstone,
Laidler, and Eyring. ' In order to achieve
simplicity, these authors neglect all multiple
exchange effects, thereby reducing the number
of exchange integrals from 24 to 7. Unfortunately
this curtailment invalidates all quantitative
conclusions one might wish to draw, for the
exchange integrals do not arrange themselves in

descending order of magnitude as the number of
transpositions characterizing the exchange in-
creases. They are, in fact, nearly all of com-
parable magnitude; ev'en if the non-orthogonality
between orbitals is small, exchange integrals
may well be large. Furthermore, in the case of
the hydrogen molecule, the non-orthogonality
integral has the value 0 72 and cannot be
neglected.

In order to carry through the work, it appears
necessary to use the simplest possible type of
state function for the H2 molecule. A function
similar to that employed by Wang' was therefore

'For a review of the theory of these forces see H.
Margenau, Rev. Mod. Phys. 11, 1 (1939).Further calcu-
lations dealing specifically with H2 were made by H. S. W.
Massey and R. Buckingham, Proc. Ir. Acad. 45, 31 (1938).
See Sec. V of the present paper.

4 J. C. Slater, Phys. Rev. 38, 1109 (1931).
5 S. Glasstone, K. J. Laidler, and H. Eyring, The

. Theory of Rate Processes (McGraw-Hill, 1941).' S. C. Wang, Phys. Rev. 31, 579 (1928).

( h' Ze') e'
V + (b=-,Z —b.

42m ra ) ao
(2)

The electron coordinates will be numbered from
1 to 4, so that, for instance, b(3) represents
electron 3.centered about nucleus b. If the spin
functions n, P are introduced in the usual way,
a product function like

yr=a(1)n(1). b(2)P(2) c(3)n(3) d(4)P(4) (3a)

signifies a unique assignment of electrons to
nuclei. From this product function, an anti-
symmetric Pauli determinant may be con-
structed; this, when normalized, will be written
in the form:

ian bp cn dpi. (3)

The state of the four atoms under considera-
tion is a singlet state, being composed of two
molecules in singlet states. The only functions
of type (3) which can cooperate in forming that
state are those having a total spin Z, =o, and
they are 6 in number:

4'r=
i
an

eo= ian

4'o= ian

4'4 ——
] ap

+o= lap

eo= [ap

bp cn dp),
bn cp dp[,
bp ca in (,
bn cn dP[,
bn cp dn),

bP cn dn i.

(4)

chosen. It will be seen, however, that the value
of the nuclear charge Z, which gives the lowest
energy for a single molecule, leads to erroneous
consequences in the present problem. The mean-
ing of this will be discussed in due course; we
note at present that this fact enforces the
preliminary use of an undetermined Z.

Let the four protons in the two interacting
molecules be labeled a, b, c, d. They are first
taken to be located at arbitrary, fixed points.
The symbols a to d will also be used to represent
the hydrogenic wave functions of an electron
about the nuclei a to d. Thus, for example,

b = (Zo/oraoo) & exp ( Zra/ao)—,

rf, denoting the distance of the electron from
nucleus b. We note that this function satisfies
the Schrodinger equation
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(a) (b) (c) (d)
I

I

{ab)

{ac)

(ad)

(bc)

(bd)

(cd)

Sb) S5

I
S6, S6

TABLE I. List of symbols used for (1) f(PI,p&)Hy&dr and (2) f(PI,p&)p1dr. Symbo1 for integral is given opposite the
permutation PI, {which is written in the form of cycles). Unprimed symbols refer to (1), primed symbols to {2).

I I

I

u1, S1' (abc) v1, vi' (ab) (cd) w1, m&1' (abed) z1, z1'
I

'
I I

S2, u2' (bac)
I

v1, v1' (ac)(bd)
I

mg, m2' (dcba) z1, z1'

( ) I 2, 2' ( )()I 3~3' ( )

I s, s ' (bad) I v, v. ' (abdc) I z2, z2'

(acd) I v3, v3' (acbd) I z3, z3'

(cad) (dbca) z3, z3'
I

(bcd) v4, v4'
I

(cbd)
I

v4, v4'

Of these, two singlet functions can be constructed
by known rules:7

+~ = k(+4 —+4 —+4++4) )

(5)
+a =

2 (+)—+4 —+4+%).
Between +A and O'B the Hamiltonian is to be
diagonalized, and this process leads to the
secular equation

IIA A +~A A IIAB +~A B =0 (6)
IIAB +~AB IIBB ~~BB

When the matrix elements appearing in this
equation are expanded with the use of (5), each
of them becomes. . a linear combination of ele-
ments H;; and 6;;, respectively, where the
subscripts 4,j refer to the set of functions (4).
The evaluation of H;, and 6;;proceeds as follows.

From the properties of the antisymmetric
functions and the symmetry of II it is clear that

every II;; is a simple sum of several exchange
integrals of this form. These fall, of course, into
5 classes, in accordance with the properties of
the symmetric group on four particles. It is well
to enumerate and label them by reference to the
permutation PI, characterizing the particular
integral in question.

In doing so, however, the spin functions may
be omitted from y~, for they either disappear in
the summation or cause the particular integral
to vanish. Thus, for example, we shall mean
henceforth by

) P4v 4Hq )dr

simply:

J~P&[a(1)b(2) c(3)d(4)]
)&Ha(1)b(2) c(3)d(4)dr&dr)dr3dr4)

so that when PI, is (abc), for example,

H;r=4! P„( 1)"~I q;FI—P„v;dr, (7)
)t Pg, p)IIq )dr = ' bcadHabcd dr.

where I'„ is some permutation among the four
electrons whose coordinates are contained in p;,
and p„ is -1 for .odd, 2 for even permutations.
Also, y; is written for the simple product function
of type (3a) corresponding to the P; of type (3),
and the integral includes summation over the
spins. But an integral like J'y;FIP„p,dr can
always be reduced to the form

~ I'j,y~IIq jdr

with )p) given by (3a). We see, therefore, that
7 See, for exampIe, reference 5.

In Table I we list the names which will be
given to the integrals fPl, p4H44)4dr opposite the
I'~, themselves; the latter are written in the form
of cycles.

The equality among some of the integrals is
due to the Herrnitian character of the Hamil-
tonian; this causes integrals belonging to a
permutation and to its reciprocal to be equal.
No further equalities exist unless the position
of the nuclei possesses some symmetry, but this
cannot be assumed as yet.

The decomposition of H;; into exchange inte-
grals is effected by the use of formula (7); many
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TABLE II. Matrix elements II;; in terms of exchange integrals.

q —Q2 —Q5+ Ã2

2

3

4

5

6

—Q4+ V1+V4 —Sy,

e —Q1 —Q6+ 1

—A6+ V4+ V3 —83

—Q5+ V2+ V4 —81

q—Q3 —Q4+&3

—Q2+ V1+V3 —~1

R&1+VV3 —282

E —Q3 —Q4+'N3

—Q3+V3+V2 —S2

Q1+V2+ V 1 ~3

—Q6+ V4+ V3 —2'3

q —Q2 —Q5+ QJ2

Q1+V1+V2 ~3 ~l 2~1+ IV3 —Q3+V2+ V3 —82

'N2 —283+5') 3

—Q2+V]+V3 —Z].

—Q5+ V2+ V4 —81

—Q4+ V1+V4 —Z2

& —Q1—Q6+ ~1

permutations are absent from the sum because
of the orthogonality of the spin functions. In
Table II all elements H„;(=H;,) are collected.

When the matrix elements II~~, II~~, II~~,
which enter into the secular equation, are
evaluated by means of Table I I, the subsequent
expressions result.

Hgq = 6+ui+u6 ——,'(u2+u3+u4+u6)
(Vl+V2+V3+V4) +W1+W2

+w3 —(zi+ s2 —2s3),

HBB = 6+u2+u3 —
2 (ul+u3+u4+u6)

(Vl+V2+V3+V4)+Wi+W2 (8)
+w3 —(s2+z3 —2zi),

2IIggg = &+S1+Q2+ 15+N6 —2Q3 —2Q4

—(Vl+V2+V3+V4) +Wi+W2

+W3+ 2 (zi+z3 —2z2).

Attention must also be given to 0 ~~, A~~, and
6». But these are simply related to the corre-
sponding II elements. If we define quantities
e', I, v, m, s to be identical with the unrs

primed quantities given in Table I except that the
operator II in the exchange integral is omitted,
then the b elements result from the II elements
on priming all quantities on the right of Eqs. (8).

To proceed further, it is expedient to adopt
some conventions regarding the detailed treat-
ment of the Hamiltonian operator in the four-
electron problem.

In writing the Hamiltonian we use the follow-
ing notation: Let r„be the scalar distance
between the ith electron and nucleus a, and put

e2/r„= n;, e2/r3; p; etc. ; e2——/r;; =p;; (9).
Then

$2 4

H= — g V2
2m 1

provided F~ stands for the repulsive Coulomb
energy between the four nuclei. With the use of
Eqs. (1) and (2) we now obtain

g2e2
Ha(1) b(2) c(3)d(4) = —2

ap

(1 ~) (421+P2+73+ 34) (422+423+ 664

+01+P3+P4+ V1+V2+74+ bi+ b2+ b3)

+Z p +I' a(1)b(2)'c(3)d.(4) (10)

II. EXCHANGE INTEGRALS

The exchange integrals e, N1 2'3 listed in Table I may be decomposed into elementary exchange
integrals, which will now be considered. While in the former the integrand is the entire Hamiltonian
(10), the latter contain only one of its terms. To label them both succinctly and naturally, it is
expedient to use the abbreviations (9). Thus we shall define

(ayd) —= a(1)—d(1)dri,
r, 1

e2
(abpcd) -=t'a(1) b (2)—c(1)d(2)dr idr 2,

r12
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and others in a similar manner. As to symmetry, it will be noted that

(ayd) = (dna),

(anb) = (aPb),

(abpcd) = (cbpad) = (adpcb) = (cdpab) = (bapdc).

That is to say, the order of the Roman letters on one side of the Greek letter may not be changed
if that on the other remains unaltered, but a Roman letter may be shifted freely from one side of
the Greek letter to the other, provided its order is unchanged.

The elementary exchange integrals fall into four categories, in accordance with the number of.

nuclei whose positions affect their value. All orie-center integrals, like (ana), (bPb) etc. , are of course
equal and independent of the position of the nuclei. Among the two-center integrals one may dis-
tinguish four different types, exemplified by the following specimens:

(aPa), (aPb), (abpab), (abpba)

These all occur in the problem of the hydrogen molecule and are well kriown.
Three-center integrals fall into three classes, characterized by

(aPc), (acpbc), (acpcb)

For special positions of the nuclei, they have been calculated by Gordadse, Hirschfelder, Eyring,
and Rosen, ' and by Coulson. " Since they are of rather complicated structure and, in their exact
forms, quite unsuggestive, it is important to have a quick way of estimating their magnitude.
Consider, for example, (aPc). The product function a(1)c(1) is largest in the region halfway between
the nuclei u and c; therefore, if b is far from a and c,

(aPc) =h.,e'/R, „,
where Rb „, is the distance from b to the midpoint between a and c. In a similar way,

(acpbc) = (ayb) =h.pe'/R.

(acpcb) =d „Aq.e'/R„, q,,

These approximations are quite accurate when the distances R involved in the formulas are several
times as large as the arguments of the 6 functions. The integrals do not, however, become infinite
as R—+0; they take simple limiting forms which are either two-center integrals or else very manageable
expressions easily obtainable from references 8 and 9.

For more accurate work, approximation (11) is not adequate. On the other hand, the general
forms of (acpbc) and (acpcb) which are needed in this work are not known. Their exact calculation
would seem to entail rather formidable labor. Fortunately, however, it is possible to avoid most
of it by a simple reduction process now to be described.

If the function c' is contracted more and more about its nucleus, until finally it becomes a 8 function
located at the nucleus, the integral (acpbc) turns into (ayb). Alternately, if the function ab is approxi-
mated by a 8 function located midway between nuclei a and b, the same integral reduces to the
two-center integral" (cnpc) A.q. When one distance is larger than the others —as is true in the
interaction of two molecules —these reductions can always be made and lead to nearly equal numerical
results. This we regard as a test of the validity of the reductions, and we take

(acpbc) =5L(a rb) +h,g(cnpc) j
Similar reasoning shows that

(acpcb) ,' [h.,(cnyb) +h,~(a—y—Pc)j.
8 G. S. Gordadse, Zeits. f. Physik 96, 542 (1935).' J. Hirschfelder, H. Eyring, and N. Rosen, J. Chem. Phys. 4, 121 (1936).

C. A. Coulson, Proc. Camb. Phil. Soc. 33, 104 (1937).
"uP here stands for the reciprocal of the electron distance from the midpoint. between a and b.
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The remaining integrals are known. ' To give an example of the extent to which this procedure is
reliable we consider the case in which the nuclei a, b, c are collinear, c is between u and b and the
distance c—b is three times the distance c—b, the latter being the internuclear distance in H2. The
two terms in the above expansion of (acpcb) then have the values 0.1448 and 0.1417 atomic unit,
respectively. For larger distances c—b, the reduction works still better.

All four-center exchange integrals are of the form (abpcd) Th. eir exact calculation would be
extremely tedious if it can be carried out at all. But here again the scheme just described will be
used. The reduction can be effected in two ways, and if the results do not differ beyond the tolerated
limit of error, their mean is taken as the value of the four-center integral. Thus

(abpcd) = 2[5.,-(bnyd)+AM(apbc) j.
When c and c belong to the same molecule, the two terms on the right become very nearly equal,
and each approaches ds'(e'/R) in the limit in which R, the distance between molecular centers,
is large.

We do not wish to lengthen the present paper by an inclusion of the detailed formulas for the
residual integrals, which may, if they are found useful in other molecular problems, form the sub-
stance of a later communication. As far as our present purposes are concerned, the reader will be
relieved to know that an even simpler scheme than the alternate reductions here studied, a scheme
which will be described in a later section, leads to significant results for the interaction energy of
molecular hydrogen.

When the exchange integrals e, N~ s3 are expressed in terms of their elements, certain combi-
nations often occur. These will first be singled out. We define

A = (ana) =Ze'/a„
D= —~Z e /Qo,

B.p ——e'/R. b
—(aPa),

C p e'/R——,b+ (abpab) —2(aPa),

T.b ——(apb) /A, b,

X,b=e'/R by(nbpba)/a a 2T,b. —

(12)

Here C, b will be recognized as the "Coulomb energy, " X.b as the "exchange energy" between two
hydrogenic atoms at a and b. All these expressions are functions of only R,b, the distance between
a and 6, and most of them vanish exponentially at large distances. In addition we need the following
more complicated combinations:

X,g 2[(acpbc) —+—(ad pbd) —(ayb) —(abb) 5/A. g,

g2 g2 tp2

U.b. ++—— —(bnc)/hg. (aPc)/A. . (ayb)/A——.b

Rab Rac Rbc

I
U b. =

+ (abpbc) /A, gent, .+ (acpba) /6, t,h„+(bcpca) /Aq. h...
(adpbd) —(a8b) (bdpcd) —(bhc) (adpcd) —(abc)+ +

~bc (13)
e' e' e' e' (acpbd)

U g,„+——+ + +4 —2[(ahab) + (abb) ]/A, g
—2[(cnd) + (cPd) 5/A, d,

Rac Rad Rbc Rbd ~ab~cd

(bcpab) (bdpac) (bapad) (bcpcd') (capbd) (dapcd)~ b.d=EV+ + + + + -+
~ah~bc ~aA cd ~abroad ~bc~cd ~bc~ad ~cd~ad

—L( ~b)+( +)j/~. —L(b )+(bb )j/~. —[( d)+( &d) j/~. [( 0d)+( vd) —j/~.



FORCES BETWEEN H YDROGEN MOLECULES 137

By permutation of subscripts, other functions can be constructed from this list. Not all of these
are different; for instance it will be seen on inspection that there are four different U functions
(U.b. , Upbd Usga Ubgd), three different V functions (V, bgd V„bd, Vd b,), and three different W
functions (W,b,d, Wb„d, W„ba). Only X' and U' have the property of vanishing when a reduction
of the type (11) is performed, which may be taken as an indication that they are generally small.
They disappear when the nuclei in each molecule coalesce.

The function U, b„~ has a rather interesting signi6cance. When it is "reduced, " it represents the
electrostatic interaction between two linear quadrupoles, one consisting of protons at c and 0 with
two electrons at the midpoint between them, the other of protons at c and d and two electrons at
their midpoint. We shall show later that this is indeed its true significance, and that the value of
this integral is well approximated by this quadrupole interaction.

With the use of these abbreviations, the exchange integrals take on symmetrical —even if some-
what complicated —forms, vis. :

a =4D+4(Z 1)A +—C„b+C.,+C.d+ Cb, +Cba+ C.d,

bby =A~b[4D+2(Z —1)(A + Tab) +Xob+B«+Bad+Bbc+Bbd+ Ccd+Xab]y

u2=6«[4D+2(Z —1)(A+T.,)+X«+B,b+Bgd+Bb. +B,d+ Cba+ X«],

bbb +ad[4D+2 (Z 1)(++Ted) +X d+B b+B +Bbd+Bed+ C c+bXad]y

N4 =Ab, [4D+2(Z 1)(2 + T—b,) +Xb,+Bgb+B„+Bba+B,d+ C,a+Xbg],

bbb —Dbd[4D+ 2 (Z —1)(A +Tbd) +Xbd+Bab+ Bad+ Bbc+Bca+ C«+Xbd]yb

ub —D,d [4D+2 (Z —1—) (A +T.a) +X.a+B«+Ad+ Bbc+Bba+ C.b+Xca],

sg ~db~«~b, [4D+B.d+Bba+B,d (2 —Z) (T.b+—T.,+Tb,) + (Z —1)A+ U.b, + U.b.],
s2 =&.b&bd&.a[4D+B..+Bb.+B,a (2 —Z) (T—.b+ Tbd+ T.d) + (Z —1)~+Uba+ U.ba],

V3 6«dgdk~d[4D+B~b+Bbg+Bbd (2 —Z) (T«+ T.—a+ T.a) + (Z —1)A + U«a+ U«a],

sb hb, h,dhbd[4D+B, b——+B„+B,a (2 Z) (Tb,+T a+—Tba)—+ (Z —1)A+ Ub.a+ Ub.a],

(14)

2 2
m =a.ba,d[4D+X. +X,a+2(Z 1)(T.b+ T.a)+—V.b, .a],
w2 &„&bd[4D+X„+——Xbd+2 (Z 1)(T„+Tba) + V„—, ba],

mb =6 dhb, [4D+X a+Xb.+2(Z 1)(Ta+ Tb.)+—V,a, b,],

&1 +ab~bc+cd+ad[4D (2 Z)(Tab+ Tbb+ Ted+ Tad) +Wabcd]i

s2 +«+ab+cd+bd[4D (2 Z) (T«+ Tab+ Ted+ Tbd) +Wb«d]y

sb D„hbdhb, h,a[4D —(2 —Z) (T——„+Tba+ Tb, +T a) +W„bd]

Thus far our development has been quite general. We can now afford to make specihc assumptions:
Protons e and b belong to one molecule, protons c and d to the other; the distances a—b and c—d
are equal. Functions with subscripts o,b and cd may therefore be written without subscripts, the
understanding being that they are to be evaluated for the internuclear distance of the H~ molecule.
It is also possible to distinguish different orders of magnitude among the various constituents of
Eqs. (14). All quantities without subscripts (or with subscripts rbb, cd) are large, all others smaIl.
Whether a term can be totally neglected can only be decided by inspection of the 6 functions which
multiply it. This overlap integral has the well-known simple form

d.b=A(s) = (1+s+-,'s')e —',

s being (Z/ab)R, b. The ratio 6„/h, b is therefore always fairly small, and it is safe to neglect its
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fourth power, though not the second. We are thus enabled to simplify the list (14) somewhat, as
follows:

e =4D+4(Z —1)A+2C+ C„+C„g+Cb, +Cog,

u, =6'[4D+X+ C+2 (Z 1)(—A+ T) +8„+B,g+Bt„+BM),
u~ ——5„[4D+28+2 (Z —1)A +X„+X„+2 (Z —1)T„),
N3 h,g[4——D+28+2(Z 1)A+—X~g+X,g+2(Z —1)T,g),

u, =a„[4D+28+2(Z 1)A+—Xg,+Xg,+2(Z —1)Ts.),
ug ——Agg[4D+28+2(Z —1)A+Xgg+Xtg+2(Z —1)Tpg),

Qa=Qy,

v, =gg„hp, [4D+8—(2 Z) T+—(Z 1)A+—U,s,+ U,s.—(2 —Z)(T,.+T~.)),
V& AAMA«t[4D+8 —(2 Z)T+(Z ——1)A+ U~bg+ UgM (2 Z)(TM—+T,d)),

e, =Ah„h, g[4D+8 (2 Z) —T+ (Z ——1)A+ U„g+ U .g —(2 Z) (T„+T,—e)),
p, = Ahab, &t &[4D+8 (2 Z)—T+ (—Z —1)A+ Uq, q+ Ub, q (2 Z)—(Tq—.+Tqq)),

(14b)

ut, =bP[4D+2X+4(Z —1)T+ V~, .a),

2= 783= 0)

e, =z2~„~.,[4D 2(2 Z) T—(2 —Z) (T—b.+T—,)+~.~:),
s, =~'~„,h&&[4D —2(2 Z) T (2 ——Z) (T„—+T~s) +Wj .s),
F3=0.

In N~ the term X' has been dropped because of its smallness, and in N2 to N5, the C functions are
neglected. Numerical comparison with terms retained will justify this curtailment.

The primed functions, dehned in Table I, are easily obtained from this list; for they are simply
the product of 6 functions which appears in the equations for their unprimed mates. Thus, for
example, ~'= 1, u&' ——6', v4 ——AAq. Aqq etc. We are now ready to compute the two roots E of Eq. (6).

III. GENERAL EXPRESSION FOR EXCHANGE ENERGY

Of the two solutions of the determinantal Eq. (6), the one of interest is that which will represent
the energy of two H2 molecules at in6nite internuclear distance, It is convenient, therefore, to
solve the equation 6rst of all "in zeroth order, " i.e. , with the neglect of all terms which vanish at
infinite separation.

As a preliminary, let us recall the results of the Heitler-London treatment of the single molecule
and translate them into the present notation. Here we have

gg= ~an bP~, P2= ~aP bn~,

and P~=f~&P2. The function P+ rePresents the triplet, f the singlet or normal state of the molecule.
In view of Eqs. (2) and (12)

so that

whereas

Ilab = [2D+ (Z —1)(ag+ P2) &a Pi+—p, 2+—e'/R g)ab

lp~IIy~d7=2I2D/C+2(Z 1)AW[2D+2(Z —1)T+ X—)6'}

rP+'dr =2[1~6').
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For the ratio of these, which represents the energy of the molecule, we have

Z(II2) =2D+(1wh')-'IC'+2(Z —1)Awk'LX+2(Z —1)TjI,
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(15)

where the louver signs refer to the stable state. The second part of this expression represents the
molecular energy since 2D is the energy of two hydrogen atoms of nuclear charge Ze (cf. Eq. (12)).
Wang has found the value of Z which minimizes (15) to be 1.166.

We now turn to Eq. (6), in which the II elements must be expressed in terms of the functions
(12) and (13) via Eqs. (8) and (14). Before doing this it-is well to note the elfect of subtracting.
EAAA from IIAA. From what has been said about the 6 elements it is apparent that this subtraction
merely amounts to the replacement, in II», of every term 4D by 4D —E. The same is true regarding
IIAB —BLAB and IIBB—BABB. We therefore define new matrix elements, . EAA, EAB, EBB, which
differ from the corresponding components of II merely in the substitution of

for 4D. According to its definition, 8 is the total molecular energy of the two interacting partners,
including the binding energy of each molecule. Equation (6) now reads

+AA +AB

E-AB +BB
=0 (16)

In zeroth approximation, only those parts of (14b) need be retained which bear no subscripts.
This leaves us only with parts of e, u&, u6, and uii. When these are used in (8), we find

Kgg = —E'+2C+4(Z —1)A+26'P 8'+X+ C+2—(Z —1)(A+ T) j+h4[ Z'+2X+4(Z —1)T], —
Kss —— E'+2 C+4(Z —1)A 6'[ B'+—X+—C+2 (—Z 1)(A+ T) j+LV—[ Z'+ 2X+4(Z—1)Tj, (17)—

0 0
+AB 2+AA.

On insertion of these expressions into (16) there results
0 0 ~ 0

Kgg(Kss ~Kgb) =0,

and this allows the two roots to be determined by putting
0 0 0

and I BB=~EAA.

(18)

We now show that the interaction-energy which is being sought is similarly a solution of

+AA =0

so that we need not calculate the elements EBBand EAB at all for the purposes of the present problem.
Let us put

+AA J~ +IO+~+ +~0
0

where —LB'+La represents K@g (the coefficients L, andL o are easily identifiable from (17)), the re-
mainder being small. We may then treat I- and I 0 as "large, " l and l0 as small coef6cients. Similarly

When these are solved for E', the first leads to 2E(H2) as given by Eq. (15) with the choice of the
positive signs, the second to the same equation, but with negative signs. Our interest is therefore
confined to that root of Eq. (16) which is given in zeroth approximation by the equat'ion

0
+AA —0

and we know from (17) that LV= 2L, M, = ~L, Finally,
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In solving (16), it is now convenient to write

8' =Bo'+g,

E& being the solution of (18), i.e. the energy of the two H2 molecules at infinite separation. The
determinant (16) then reads

—L~o'+Lo —Lg+ IBo'+~o

ME—p'+3llp Mg+—mE p'+m p

—~~o +~o—~g+nz~o +mo =0—ÃEo'+~o —&q+n&o'+&o

In expanding it, the squares of small terms may be omitted, and we know that only the first two
summands of each element are large. Also, E&' Lb/L——. Insertion of this causes all large terms in

the elements of the first row to disappear because I/Lo=M/M&. Expansion then gives

g=L '(lEb'+IP), (2o)

and this is simply the condition (19).We turn, therefore, to the evaluation of Xz&. When the terms
are suitably grouped, there results

2 2 . 2 2

Kgg = —(1+6')'g+[-', Eb —B—(Z —1)A](6..+A.g+hb, +Ebs)

+C.,+C,„+C„+Cbg+2A'(B. ,+B.g+Bb, +Bbg) ——',A.,[X.,+X.,+2(Z —1)T.,]
——,'A, d[X,g+X,g+2(Z —1)T.g] —',Ab. [Xb,+X—b, +2(Z —1)Tb,]

I

zhb~[X—ba+Xbq+2(Z 1)Tq~—]+A(D .hb, +6 qA~a+6 .6 q+hb, Dbd)

X[E(&—B—(Z —1)A+(2 —Z) T]—Ah„hb, [U',b, + U,b, —(2 Z)(T.,+Tb,—)]
Ab,.dhbg[U. by+—U.ba

—(2 Z) (T.g+ Tb—g) ] Ad. ,A.g[ U.—,g+ U, g (2 Z) (T.,+—T.—g) ]
6&b~&ba[Ub~a+ Ubg —(2 —Z)(Tb, +The)]+6 (AbcA~g+6«du)[EP+2(2 —Z) T]
—6'Ab, h.d[W.b,g —(2 —Z) (Tb,+T.g)] &'6,&bg[—Whee J (2 Z) (Tg +Tbtf)]+&' Vb, ,g. (21)

q is the exchange energy we are seeking; it is found by equating E» to zero.

IV. NUMERICAL RESULTS

When preliminary computations based on the
use of Eq. (21) were made, a rather curious fact
emerged. At first Z was taken to be 1, then 1.166
(Wang's value), and in both cases did g become
negat'ive at all significant distances of interaction.
In this work, alternate reductions were made as
described earlier, and careful attention was paid
to the approximations involved; the conclusion
was reached that the negative result was not
occasioned by inaccuracies in the numerical
evaluation of the integrals. To test the matter
further, the integrals constituting g were simpli-
fied by allowing the nuclei of each molecule to
coalesce. The result was then identical formally
with the interaction energy of two helium atoms.
In that problem, too, g is negative for Z= 1 and
1.j.66. It is possible to show, moreover, that the
helium interaction, calculated by means of
hydrogenic functions, is repulsive only for values
of Z above the critical value Z=11/8. Since

this appears to be a somewhat interesting feature
of the 4-electron interaction, we shall prove it in
a later section. For He, of course, the matter is
unimportant since the value of Z which mini-
mizes the atomic energy is 27/16, well above the
critical value. One would expect, then, that in

our problem Z also possesses such a critical
value, presumably in the neighborhood of 11/8.

In a sense, this is a rather sad commentary on
the adequacy of the Wang function for the
purpose at hand, " which might induce one to
look for better wave functions, The complexity
of the present calculation, however. , definitely
counsels against that undertaking. The situation
appears even more embarrassing when it is noted
that Wang's value of Z describes the polariza-

'~ A more favorable, literal interpretation of this result
would entail the consequence that hydrogen molecules,
while indeed attracting each other dynamically at nearly
all distances, are kept apart for reasons of entropy. This,
however, we do not believe to be the case.
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bility of H2 surprisingly well, " gives a good
account of its magnetic susceptibility and a
reasonable one of the dispersion forces."

But on further reflection, the puzzling aspects
fade away. The effective nuclear charge has no
definite physical significance —except insofar as
it measures roughly the concentration of the
electron cloud —and may well take on different
values in different physical problems. In partic-
ular, there is nothing unique about the Z which
minimizes the molecular energy. It happens that
in the calculations of the polarizability, the
susceptibility, and the dispersion forces the mean

square of the charge distribution is of importance,
and this would account for a common Z. The
present problem, however, has altogether differ-
ent features.

The change in Z from 1 to 1.166 which occurs
as we pass from the free hydrogen atom to the
molecule is a measure of the increased electron
concentration about each proton occurring as a
result of the repulsion by the other electron.
The term "screening, " though quite adequate
in atomic problems, loses its significance here.
Now, when two molecules interact, there is not
only one electron which tends to drive a given
electron back to its nucleus, but three. This
crude picture may be made to give a qualitative
indicati. on of the value of Z to be chosen in the
present problem: If one electron causes an
increase in Z from 1 to 1.166, three might
increase it from 1 to about 1.5. A similar result
could be argued in this way: as the two nuclei
of the H2 molecule coalesce, Z changes from 1

to 2; as the four nuclei here under consideration
are made to coalesce, Z changes from 1 to 4
(except for screening, which is neglected in both
instances). Wang's value of Z represents a
stage in the process of coalescence 1/6 on its
way toward completion; the corresponding stage
in the four-electron problem is given by Z=1.5.
This result is likely to be too large, of course,
because the distance between nuclei in . the
different molecules is greater than in H2.

"J. O. Hirschfelder, J. Chem. Phys. 3, 555 (1935).
We have computed the polarizability of H2 as a function
of Z and have found that Z=1.167 gives about the best
fit with observation.

~ H. S. W. Massey and R. Buckingham, Proc. Ir. Acad.
45, 31 (1938).

While we do not wish to ascribe much quanti-
tative significance to the present argument, we
are forced, in the absence of more conclusive
evidence, to use it. The exchange forces do not
depend as sensitively on Z as, for example, the
second-order forces. Our results will not be
changed decisively by a change in Z from 1.4 to
1.5. In the following we select one approximately
"right" value, Z= 1.428, and one "wrong" value,
Z= 1.785 for comparison. Their exact choice was
dictated by numerical convenience; the first
makes the parameter Zd/ap, wherein d is the
internuclear distance of H2, equal to 2, the
second to 2.5.

The preliminary calculations further indicate
that a certain simplification is permitted. Among
the functions occ1irring in g, there are many
which vary slowly as the nuclei of each molecule
are made to coalesce. In these we may proceed
to the limit in which R,y ——R,~ ——0. Then, if we
denote the distance between molecular centers
byR,

all X' 0,

U1

U.|,.~X(R)+B(R)+3f(R)

2e2 e2 e2 e2

Rae Rbe

W,g,g~X(R) + 28 (R)

+C(R) +2'(R) —2T(R)

2e' e' e' e' e' 4e'

d R„R,g Rg, Rgg R

The other three U functions are formed by
fairly obvious permutations of subscripts. The
new quantity M which appears here is given by

M(R) may be approximated by either 2T(R) or,
better, by T(R)+(2e'/R) —B(R/2). We finally
introduce the abbreviations Z(abc) for the
electrostatic repulsive energy between protons
a, b, and c (and similarly E(abed) for the former
+N) i
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TABLE III. Values of numerica constants used. A11
energies are stated in units Ze'/ap.

Three relative orientations of the molecules
have been treated. In

Z
Zd/cp

A
8
C
xr
Qp

1.428
2.0
0.5865
1
0.0275
.0191
.349

0.692
1.370

and obtain from (21)

g = (1+~') '{2~'(B-+&.d+A. +&bd)

1.785
2.5
0.4583
1
0.0094
.0128
.348

0.626
2.794

Case (a): both molecular axes are parallel to R,
the line joining the centers;

Case (b): one axis is parallel, the other is perpen-
dicular to R;

Case (c):both axes are perpendicular to R.

The results for g, exclusive of the term 54 V t...d,

are given in Table IV. It is perhaps worth
mentioning that in the region here of interest g
can be approximated fairly well by an expression
of the form

+C .+C.~+ C~.+ C~~

2 2 2 2+(~..+~.d+&b.+»d) (-,'Eo —& pcA)—
—

2 &ac(X,.+2KT„) ',had (Xa—d+—2pc Tad)

,'d b, (X—b,+2KTbc) pdbd(Xbd+2pc Tbd)

++(+ac+bc++ad+bd+ +ac+ad+ ~bc~bd)

&& LE,' —8+ (1 «) T pcA —X—(R)—
—B(R) —2dT(R) + (2e'/R) j

hjh. .hb, E(ab—c) +h.dhbdE(obd)

+A„h,dE(acd)+Ab, hbdE(bcd) j
+6'(Ab, A d+ A,.hbd)

X Eb'+2(1—«) T—X(R)—28(R)—C(R)

4e2
-2pcT(R)+ E(abed) +—6'U~, cd. (22)

R

For reference, we recall:

C+a'X+ 2~(A+.gb T)
EQ 2

f+Q2

The numerical results now to be reported were
based on this approximation. Equation (22) is
slightly less sensitive to orientation of the mole-
cules than (21), but the economy of labor which
it effects recommends its use despite this fault.
The values of constants are collected in Table
III. From the last entry the binding energy of
the molecule for the assumed value of Z may be
obtained, since, as may easily be verified, it is
given by. Eb'Z/2 —(Z' —1). This is —1.65 ev
for the smaller, +8.33 ev for the larger Z. In
the latter case, therefore, the hydrogen molecule
would not be stable at all.

in which b differs but little in all 6 cases, having
the value 1.55+0.10, while A varies markedly
from instance to instance. The quantity S
represents the distance R measured in units ab/Z.

V. QUADRUPOLE FORCES

We have already interpreted the last term of
Eq. (22), LA'/(1+6') O'V, b, ,d, as the quadrupole
energy on the evidence that V "reduces" to
the electrostatic interaction between the two
structures of Fig. 1 when the approximation
(11) is made. In this approximation, then, V is
given by the formula" appropriate for linear
quadrupoles,

3 2

f(8» Hp b)4R' (23)

f= 1—5 cos' 81—5 cos' 82 —15 cos' 81 cos' Hp

+2(4 COS 81 COS Ha+ S111 81 S111 Hp COS y) . (24)

Our calculation shows that this interaction
between point charges must be multiplied by the
"diffuseness factor" [6'/(1+5') j' in order to
represent the true interaction between the charge
clouds.

The present approximation is in fact suffi-

'~ See review article, reference 3.

in which Q, the quadrupole moment, is 2e'(d/2)',
and f is the function characteristic of this type
of interaction. Explicitly, if 0& and 02 are the
angles which the molecular axes make with R,
the line between centers, and y is the difference
between azimuths in a plane, at right angles to R,
then



FORCES BETWEEN H YDROGEN MOLECULES

ciently good for our purposes, but it is interesting
to point out that an accurate calculation merely
causes the term Q in (23) to be multiplied by 4/5.
A calculation of this kind has already been made

by Massey and Buckingham, "whose work was
limited to one special value of Z. Since their
result is written in a rather cumbersome form
which veils its simplicity, and our derivation is

short, we shall give it here.
Equation (23) is valid in general, provided we

replace Q by its quantum mechanical equivalent:

Q =-, pe;(r —3s, )A, .

Here r, and s; refer to the positions of the various
charges e;, and the average is a quantum one.
The sum extends over the 4 particles composing
the molecule. We take the Z axis along the
molecule. The protons will then contribute to
this sum the amount —4e(d/2)'. For the elec-
trons, &rP)«=(2xP)«+(sP)«', hence their contri-
bution to the sum is —4e((x')A„—(s')«). The
subscript may here be dropped because the
electrons are indistinguishable. In view of these
simple facts,

(d 2

Q'= —2eI ——&s') .+&x')" I.)

Frr. 1. Molecular structure and arrangement for
calculation of electrostatic energy.

&x')« ——(1+6') ' (xp')«+6 $ a5dr ~

Here (sp')«=(xP)«are averages taken over the
electron in the H atom, P and 1' are, respectively,
the x and s coordinates measured from the
center of the molecule. For the functions here
used)

ap' P 9 "f 1
~~i'abdr= e'I 1—+s+—s'+—s'+—s4 I,Z' I, 20 60 60

apP ( 2 1 ) dZ
Pabdr= e'I 1+s—+-s'+—s' I, s=—.

ZP g 5 15 ) ap

Remembering the form of 6 (cf. appendix), we
find

(x') —(s')"=—(1+~'/5) (1+~')
The mean values appearing here are not difficult
to calculate when hydrogenic wave functions
are used —they also occur in' the theory of
polarizabilities. " In general,

and finally
g2 d2

Q'= —2e—
51+a2 4

(25)

TABLE IU. Exchange energy (y) as function of
intermolecular separation (8).

R (in A) Pos. a
g (in volts)

Pos. b Pos. c

d2
(sP)« = (1+AP)—i (spP)«+ +.g) fPagdr The quadrupole moment depends on Z only

through the overlap integral 6, and in this
simple way; the factor 6'/(1+6') appears auto-
matically in the calculation, justifying our
former remarks. Collecting the results of the
present section, we write for the quadrupole
energy

Z = 1.428
6
7
8
9

10
11

Z = 1.785
6
7
8
9

10
11

2.22
2.59
2.96
3.33
3.70
4.07

1.78
207
2.37
2.66
2.96
3.25

0.358
0.102
0.0231
0.00504
0.00104
0.000200

1.390
0.426
0.100
0.0247
0.00545
0.00113

0.249
0.0602
0.0135
0.00287
0.000582
0.000114

0.754
0.192
0.0449
0.00986
0.00205
0.000451

0.150
0.0344
0.00744
0.00153
0.000302
0.0000579

0.325
0.0764
0.0173
0.00354
0.000711
0.000137

3.( +2 P 2epd4

25 &1+6' R' (26)

The function f (cf. Eq. (24)) causes Eq to vanish
when a mean value is formed over all orientations.

The quadrupole moment is listed as a function
of Z in Table V, where —Q' is stated in units eapP.

The values of Bg, given in Table VI for cases
(a), (b), and (c); are seen to be small in com-
parison with the exchange energy in Table IV.
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e' (aors '
z„., „=-16.o—

(

—);
ao L&i

(27)

they also point out that it agrees reasonably
well with empirical facts as far as they are
available.

In using this result in the present calculation
we should be guilty of employing different values
of Z in different parts of the problem. As has
been noted, there is nothing basically contra-
dictory in such a procedure because a variation

TABLE V. Quadrupole moment of H2 (in units eco) as a,
function of Z.

VI, LONG RANGE VAN DER WAALS FORCES

The dipole-dipole part of the long range forces
has been calculated for the present problem by
Massey and Buckingham using Z=1.166. As to
the dependence of these forces on orientation,
their result indicates a variation of about 50
percent as we pass from case (c) to case (a).
The corresponding variation in q is measured by
a factor 3. When compounding the various
components of the total interaction, we shall
therefore permit ourselves to neglect the de-
pendence on orientation of the long range
forces."The numerical result for the mean over
all orientations given by the aforementioned
authors is

in the best choice of Z may well be expected to
occur as we pass from one calculation to another.
Nevertheless we do not wish to leave this point
without further investigation, which will also
throw some light on the accuracy of Eq. (27).

In the first place, it is easy to obtain E .d.„for
other values of Z by use of the variation method
of reference 14. Taking Z=1.428, we find

e' (ao't 'E, = —S.4—
/

—),
ao ER)

which is almost certainly too low. Roughly,
the dipole-dipole energy is proportional to Z—'.

Perhaps the most accurate semi-empirical
method' of computing the term here in question
is to employ dispersion f values which, for Ho,
are known with considerable accuracy. For this
purpose, London's formula may be used:

3e4 A4 f'f
2 m' Ro,, hE;AE, (DE,+DE,)

where the f's are oscillator strengths and the
AB's the corresponding excitation frequencies.
For H2, Wolf and Herzfeld" find that the
dispersion curve can be represented with re-
markable accuracy by a two-term formula in
which

f] 0.69, E& ——2.7 1 X10 "erg = 0.630e'/ao,
fo=0.84, Eo=2.12)&10 "erg=0.492e'/ao

Z
Qf

1
0.284

1.166
0.252

1.428
0,200

1.785
0.137 These data yield

TABLE VI. Quadrupole energy (Bq) as function of
intermolecular separation (A).

e' (aors 'E, = —1O
aoER j (28)

S R(in A)

Z = 1.428
6 2.22
7 2.59
8 2.96
9 3.33

10 3.70
11 4.07

Z = 1.785
6 1.78
7 2.07
8 2.37
9 2.66

. 10 2.96
11 3.25

Pos. a

0.000962
0.000445
0.000228
0.000127
0.0000748
0.0000465

0.00134
0.000632
0.000321
0.000180
0.000106
0.0000662

Eq (in volts)
Pos. b

—.000481—.000223—.000114—.0000634—.0000374—.0000232

—.000672—.000316—.000160—.0000901—.0000528—.0000331

Pos. c

0.000361
0.000167
0.0000857
0.0000475
0.0000281
0.0000174

0.000504
0.000236
0.000120
0.0000676
0.0000396
0.0000248

in place of (27). This, incidentally, confirms the
author's former conjecture that the variational
Hassle method, employed by Massey and Buck-
ingham, usually gives too large an answer for
the van der Waals force. (It does not, of course,
contradict the variation principle!)

But the dilference between (28) and the
empirically better substantiated result (27) is to
be accounted for by the inclusion of the dipole-
quadrupole interaction. A method for estimating
the latter has been given. " It involves the use
of a one-term dispersion formula. To adapt it to

'7 K. L. Wolf and K. F. Herzfeld, Hundbuch der Physik
'6 This, in a sense, counteracts the simplification made (1928), Vol. 20.

in the exchange integrals leading to Eq. (22). "H. Margenau, J. Chem. Phys. 6, 896 (1938).
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FrG. 2. Interaction energies when the approximately
"right" value of Z (Z=1.428) is used. FIG. 3. Curves similar to those in Fig. 2 but with the

"wrong" value of Z (Z=1.785).

When this is added to (28), and both terms are
expressed in ev, we have

(6.38 19.4i
Ev g~ = .

~
+

~
volts,

( R' R' ) (29)

provided R is measured in A. At R=3A, the
d.-q. term contributes about —'„at R =2.5A
about -,'as much as the d. -d. term. If, therefore,
we wished to approximate (29) by means of a
single term proportional to R ' as is often done,
we should in this range of R (where the van der
Waals minimum occurs) increase the d.-d.
contribution by about 40 percent, thus obtaining

EvodoW
9.0 15.4 e' t'ao) '

volts= — —
(
—

~
. (29a)R' ap ERP

'I'his is not far from the result (27) which was
obtained by Massey and Buckingham for the
d.-d. interaction alone.

VII. SUMMARY OF RESULTS

In Figs. 2 and 3 we have compounded the
partial interaction energies represented by Eqs.
(22), (26), and (29) or (29a), obtaining a graph
which expresses the total repulsive-attractive
behavior of the molecules. Figure 2, drawn for
what we have determined to be the approxi-
mately "right" value of Z, should be about

the problem at hand, we shall take mean values
of the f's and AE's in Herzfeld and Wolf' s

expression obtaining the contribution

—31)&10 "/R' erg.

correct. Figure 3, on the other hand, based on
the "wrong" value of Z, is presented to show
the effect of this choice. In view of the uncer-
tainty in this parameter, it is difficult to estimate
the accuracy of our exchange force calculation,
but we believe it to be not greatly inferior to the
accuracy with which the long range van der
Waals forces can be obtained.

The shape of the molecule is reHected in the
relative positions of the three minima, the one
implying end-on collisions being much farther
out than that for broadside collisions. Interesting'
also is the fact that the minima are of entirely
different depths. In actual impact problems, an
average of the three behaviors here depicted will

have to be considered.
Comparison with experimental facts can at

present only be made in an indirect way.
Lennard-Jones and his collaborators" have ana-
lyzed available measurements of the second
virial coe%cient of H2. The procedure is based
on the assumption that the interaction energy
can be represented suSciently well by a single
function of spherical symmetry and of the form
(v/R") —(p/R'). It is found that the data can
be accommodated by several values of the
exponent n. The curves obtained have minima
in the region from 3.3 to 3.5A, and depths at
minimum ranging from 2.7 to 2 millivolts. If
curve b of Fig. 2 is taken to be illustrative of
the "mean" behavior, the agreement with the
results of Lennard-Jones is rather satisfactory.

See R. H. Fowler and E. A. Guggenheim, Statistical
Thermodynamics (Cambridge University Press, 1939).
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VIII. REMARKS ON THE EXCHANGE INTERACTION
OF TWO HELIUM ATOMS

The exchange forces between helium atoms
have been the subject of several investigations
in fact the Wang function used in this work has
been applied to the helium problem by Gentile.
We are here interested in only one feature of
this problem which appears to have received no
attention, namely the dependence of the forces
on the assumed value of Z.

Instead of using published results" (which
seem to be somewhat disfigured by typographical
errors) it will be found simpler for our purposes
to start anew and use our compact notation.
The ground state of a single helium atom is

represented by

&0 ——~an aP~.

This leads, by simple steps, to the energy

Zp=H'O0=2D —2(2 —Z)A+(aapaa). (30)

If now we note that

D= ——',Z' A=Z, (aapaa)=-,'Z, (31)

all in units e'ao, then (30) will become a minimum
for Z= 27/16, a fact which is well known.

In the interaction problem, the ground state
of the two atoms is described by

P= tau aP cn cPi.

Here the total energy becomes

where all functions without subscripts now refer
to the interatomic distance R, and Lio is given
by (30).

With the neglect of terms in 6', this expression
could also have been obtained —though with
more labor —by letting the distance s in Eq. (21)
go to zero. Now it is permissible to neglect 64

and hence the last row of (32). Since the function
C is always much smaller and decreases faster
than 6', the contribution to the exchange energy
comes almost entirely from the second row of
(32). The only terms inside the bracket multi-

plying 5' which do not vanish as R becomes
large are

2(2 —Z) A —2(aapaa).

If, therefore, we wish 8—220 to be positive,
we must require

(aapaa) ) (2 —Z)A.

In view of Eqs. (31) this implies Z)11/8.
The mathematical situation encountered in the
H2 problem when Z was chosen to be 1.166 is
thus explained. Whether this phenomenon has
any physical interest, as for example in the
interaction between two negative ions of atomic
hydrogen where Z is certainly smaller than the
limiting value, is perhaps difficult to say.

with
R=H/e

H= (aacc
~

H
~

aacc) —2(caac
~

II
~

aacc)
+(ccaa

~

II [aacc)

e=(1—~')'
r

i' ccdv.

-300

(0I-
~ -.200

X
-.loo

/
/

/

/

I

Thus we find

(1 —Q&) 2@= 2(1 —+2) 2+0+4/
—2h'[B+ C+X+2(2 —Z)A —2(aapaa)

2(3 Z) T+4(aap—ac)/d—7

+6'[4(2 —Z)A —2(aapaa)+4X
—4(2 —Z) T+2(acpca)/6']

"G.Gentile, Zeits. f. Physik 63, 795 (1930).

(32)

0 I 2 3 4 S 6 7 8 9 )0 J) f2
S

FIG. 4. Graph for the determination of X in terms of 5.

The author wishes to acknowledge gratefully
the computational help given him by two un-

dergraduate students, C. E. Hummel and R. A.
Peck.



ENERGIES OF THE y —RAYS

APPENDIX

A list of the more important functions en-

countered in this paper is here appended.

S=Z&/ao,
h=e s(1+S+S'/3),
8= (Ze'/a ) (1+S ') e "

Ze' | 5 3 S'&c=-—
~

s-~y---s- —ie—,
ao ( 8 4 6)

Ze' S2)
(1+s)

I
1+s+—l.

Qp

X is a more complicated function involving
Sugiura's integral. In terms of the functions
used and defined in Pauling and Wilson, "

Ze' (1 2X(s) X'(S) )x=
ao &S A(s) 6'(S)p

For calculations, the graph of X given in

Fig. 4 will be found more convenient.

"L. Pauling and E. B. &Vilson, fr. , Introduction to
Quantum Mechanics (McGraw-Hill Book Company, New
York). See p. 342 et seq,
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The Energies of the q-Rays from Radioactive Scandium, Gallium,
Tungsten, and Lanthanum

C, E. MANDEVILLE"

The Rice Institute, Houston, Texas

(Received June 10, 1943)

The energies of some p-rays have been determined by the method of semicircular focusing
of Compton recoils in a magnetic spectrograph. The results thus obtained are as follows:

Radioelement
Quantum energies (Mev)

Sc4s Ga72 +f187

1.35~0.03 1.17+0.02, 2.65 +0.06 0.94+0.02

La14o

2.04+0.04

The two quanta emitted in the disintegration of Ga72 are present with equal intensity,
which suggests that they may be in cascade. The y-ray activity of Ga" was followed for 100
hours and was found to decay with a half-period of 14.25+0.20 hr.

INTRODUCTION

~HE energies of the y-rays emitted in the
disintegration of several radio-elements

have been measured by means of a magnetic
spectrograph which has been pre viousl y de-

scribed. ' Compton recoil electrons are focused by
a magnetic field, and coincidences are then
observed as a function of IIp. The radius of
curvature of the path of the recoils is 5.50 cm.

Because of the fact that slow electrons are
heav11y absorbed and scattered from the focused
beam by the walls of' the counters and by the
argon-alcohol counter mixture which is present
throughout the magnet box, it has been found

*At present at the Radiation Laboratory, Massachu-
setts Institute of Technology, Cambridge, Massachusetts.

' C. E. Mandeville, Phys. Rev. 62, 309 (1942); Phys.
Rev. 63, 387 (1943).

advisable to employ double coincidence counting,
using the counters T& and T2 (Fig. 1, reference 1),
when making observations on quanta of an
energy less than 1 Mev. Triple coincidence
counting, with the counters 1&, T2, and T3, is
especially suitable for obtaining end points of
distributions in regions of higher energy (greater
than 1 Mev), since the gamma. -ray background
is then very small. The absorption of the slow
electrons also leads to a lower limit of satis-
factory measurement. The recoils arising from
y-rays of energy less than about 0.5 Mev are
not observable.

The treatment of the background count and
the corrections which are applied to data ob-
tained with this spectrograph have been previ-
ously outlined' and are obviously the same,


