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Bacher. 14 It seenis that the lines observed by
Bacher did not appear in this discharge and none
of those that did appear were favorable for such a
calculation. Any estimate based upon these lines
would be too large to be significant.

"R.F. Bacher, Phys. Rev. 43, 1001 (1933),

In conclusion I wish to acknowledge the kind-
ness of Professor H. C. Urey in supplying me
with the sample of enriched nitrogen; further-
more, I wish to acknowledge my indebtedness to
Professor F. A. Jenkins for his stimulating direc-
tion of my work.
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The theory of elastic vibrations in solid circular cylin-

drical rods of homogeneous isotropic materials is rede-

veloped from the general equations of elasticity with the
following general results: 1. For any mode of vibration the
ratio of the velocity of any elastic wave traveling along the
rod to the velocity co of shear waves is the same for any two
rods whose Poisson ratios are equal and whose ratios of
circumference to shear wave-length are equal; 2. If the
velocity of propagation for any particular mode remains

less than co as the frequency or radius is increased indefi-

nitely, this velocity approaches that of Rayleigh surface-

waves; 3. If the velocity of propagation for any particular

mode remains greater than c& as the frequency or radius
is increased indefinitely, this velocity approaches co in the
limit; and 4. A considerable simplification is introduced into
the method of computing dispersion curves for any mode.
This investigation not only generalizes and extends the
work of D. Bancroft on elongational waves but further
includes the computation of an exact table of dispersion
curves for the flexural mode of vibration. The dispersion
curves for magnesium are compared with the experimental
results of Shear and Focke. Excellent agreement between
theory and experiment is obtained for the first elongational
and flexural branches.

INTRODUCTION

HE last few years have seen much progress,
from both experimental' and theoretical' '

viewpoints, in the study of the phenomena asso-
ciated with the vibrations of rods, particularly
dispersion at high frequencies. Without ex-

ception, the exact theoretical treatments take
as their starting points the solutions of the
general dynamical equations of elasticity ob-

tained originally by L. Pochhammer' for i»fi-

nitely long rods. The most complete of these
discussions is that of D. Bancroft, ' who has
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' S. K. Shear and A. B.Focke, Phys. Rev. 5V, 532 (1940).' D. Bancroft, Phys. Rev. 59, 588—593 (1941).
' E. Giebe and E. Blechschmidt, Ann. d. Physik 11, 905

(1931);18, 417-485 (1933).
4G. S. Field, Can. J. Research 5, 619—624 (1931); 8,

563—574 (1933); 11, 254—263 (1934).' L. Pochhammer, J. f. d. reine u. angew. Math. (Crelle)
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calculated a table of velocities of elongational
waves as a function of the ratio of the diameter
of the rod to the wave-length for a wide range of
values of Poisson's ratio.

An examination of experimental data reveals
the existence of several types of rod vibrations
often occurring either in conjunction with or to
the exclusion of the elongational mode. This
suggests the extension of the theoretical treat-
ment to higher modes of vibration, to obtain
dispersion curves for the associated elastic waves.
Such calculations will be extremely useful in the
future study of the stability and interaction of
various modes of vibration and the study of the
vibrations of a bar of finite length. The present
article gives a general treatment of the problem
of the propagation of longitudinally-traveling
waves along a solid circular cylinder of infinite
length, and presents a simplified method for the
exact calculation of dispersion curves.

Kith a few important exceptions the quan-
tities used in the analysis are similar to those
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introduced by Bancroft. I he symbols denoting
them are compared with Bancroft s in Table I.

THEORY AND CALCULATIONS

We choose solutions of the diA'erential equa-
tions of motion in the form of expressions for the
components of the displacement vector u which
represent a wave traveling along the axis of the
rod (the { axis), and which are single-valued
functions of the cylindrical coordinates r, 0, p.

By imposing the boundary condition on these
solutions, that the stress vector vanish at the
lateral surface, we find the infinite set of secular
equations, defining c/cp as a function of Tp,

Symbol

d=2c

C

Cp

&0

TABLE I. Comparison of notations.

Description
Bancroft's
notation

diameter of rod
(1 —2o)/(1 —o); o = Poisson's

ratio
velocity of the wave v

velocity of shear-waves oI 2(i+ ) j»
= (~/~)»

'(~/~o)' x
frequency v/L
number of shear wave-lengths yavL2(1+o) j»/vp

in a circumference=md'/cp
v pI (2z —i)/2zj» ka
7 pf(az —i) /2z j» ha
Vp'(S)/~p(&)
V'(&)/A(r) = —8/~o(&) ~(&)

l3' r' p—r p' — }J-p(X)—VJp'(X)
{ 1 —~)

2P{xJp'(x) Jp(x)—}, {P' —x'}Jp(x) —xJp'(x)

0=
l3 {XJp'b') Jp(X)—}.

yJp'(x) 0Jp(x), (1 —z) xJp'(x)

(1)
{2P'—x'}Jp(x) —2xJp'(x), P{xJp'(x) —Jp(x) }

where P takes on any integral value, and in this way determines the mode of vibration. This form
naturally suggests the introduction of the Op functions (cf. Table I), by dividing (1) by Jp'(x) Jp(y).
After some manipulation, (1) becomes

P' —1 —x'(z —1)/(2z —1), 2(P' —1)Op(x) —x' P-"—1 —x'

P' —28p(x) —x', zOp(x) —1 (2)

Opb), p2 (1—z) 8p(x)

As has been recognized by Field and Bancroft,
the function c/cp of rp defined by the secular
Eqs. (1) or (2) is not always single-valued, but
in certain cases may have many branches. This
is true in particular of the elongational and tor-
sional modes, obtained when {8=0.However, it
is not the case for the flexural mode, whose dis-
persion curve consists of just one branch. It
should be pointed out here that there is some
experimental evidence for the existence of the
higher branches of the elongational or torsional
modes (cf. Figs. 2 and 3).

In order to discuss the calculation of the dis-
persion curves obtainable from this set of
equations, it is necessary first to investigate
some properties of the ep functions.

As a consequence of the recursion relations
satisfied by the Bessel functions Jp($) the Op

functions satisfy the non-linear recursion rela-

tions
$2

LOp(() (3)
2(0+1)+LOp+i(&) —(0+1)3

From' this, it follows immediately that we can
develop the functions into the infinite continued
fraction

Op(k) ~ ~ ~ ~ ~ ~

2(P+1)+ 2(P+2)+ 2(P+n)+ (4)

which can be shown to converge to

k~{Jp'(f)/J p(~) }

for all real and imaginary values of P. It is seen
that the value of the function Op($) for a par-
ticular P can be approximated as closely as we
wish by taking a large enough number of com-
ponents of the continued fraction expansion (4).
This computation proceeds very quickly on a
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(C/Co) min (Tp) min

C 1
d— lS—

(C/CO) TP = oo CP TP T0

0.00 0.855557 7.33337 0.8740320 —0.2173949

0.10 0.881559 9.05149
0.15 0.893279 10.1115
0.20 0.904174 11.3470
0.25 0.914277 12.8025
0.30 0.923626 14.5362
0.35 0.932264 16.6270
0.40 0.940233 19.1850

0.89310
0.90223
0.91099
0.91940
0.92742
0.93501
0.94220

—0.172540—0.151562—0.131860—0.113543—0.0967458—0.0815527—0.0679408

0.50 0.954375 26.4389 0.9553125 —.0.04535197

modern high speed calculator; to calculate H&(P)

correct to nine places, it is only necessary to
perform twelve successive divisions for values of

} $
~

as large as 5.0.
For both real and imaginary arguments we

have, when
~ $} is small,

Hp(t) =P '8/—[2(P+1)]
and, for any f, as P becomes large,

Ht (5) =P'
When $ is imaginary,

Hz(5)
=' i—E i-

when
~ P~ takes on large values, while for P real,

Hp(() =g cot 7( ', (2P—-1)T]—,

as
~ & ~

becomes great.
From the approximate expressions for the

Op functions, it is easy to show by substitution
into (2) that, when the frequency or the rod-
diameter is small enough so that 7 p is very small,
we have the approximate secular equation

0 ='ao(s, n, P) +ai(z, n, P)r0 +a2(s, n, P)ra', (5)

in which

ao = 8zP(P+1) (P' —1) Iz( —2)+1},
ai —— 4z(P+ 1)—I s(n —2) (2P —1)—(2n —3) (P —1) },
ag ——(2s —1) I s(n —2) —(2n —3) },
for the velocity ratio c/co as a function of ro Fof.
higher modes of vibration, p is very large, and
the velocity becomes accordingly

c= coL2 (1 —o) ]l,
when 1p is small. As far as the author is aware,
waves of this velocity have never been observed.

TABLE II. Minimum velocity ratios and asymptotic be-
havior of elongational wave dispersion curves.

On the other hand, if, as 7 p is increased inde-
finitely, the wave velocity of some mode of
vibration remains less than cp, then this velocity
c is obtainable from

(1—s)'= (1 —ns) '(1 —2s) *'. (6)

This equation is identical, except for a change in
notation, with the equation for the velocities of
Rayleigh's surface waves in an infinite medium. '
Similarly, if c remains greater than cp for some
mode, it is seen that this velocity must approach
cp in the limit as the product of frequency and
rod-diameter approaches infinity. To apply these
deductions, then, it is necessary to determine
which modes have velocities greater or less than
cp as 7 p becomes large. Hence, we find the largest
root, ro, of the equation obtained from (2) by
letting s—+~, i.e. , c—+cp, vis. ,

rp' (P—1) Tp'

I+—(2P —3)LP
—Hz(y) ]

4 LP+1) 2

+P(P'-1)LP-Hz(y)], (~)

where y'=ro'(n 2)/2. —Then if the slope of the
dispersion curve in the (r p, c/cp)-plane is negative
at this root, the velocity becomes less than cp,

and conversely.
When P is set equal to zero in (2), the secular

determinant factors into the product of two
expressions, which, when set equal to zero in
turn, give the equations of the dispersion curves
of torsional and elongational waves, respectively.
These become identical with the equations given
by Bancroft for these modes if we introduce the
change of notation indicated in Table I. How-
ever, Bancroft's results and calculations for
elongational waves may be extended as follows.
By taking the asymptotic expansion for p(P),
& imaginary, valid for large }&},we find near
Tp= ~ that the elongational curve has the slope

d(c/co)

d(1/rp) „„
(1-z) '- (1-z)'

(8)
(1—2s) &

I n/2+ (1—s) 4 —2 (1—z) }

where s is determined by (6).
'Lord Rayleigh, Proc. I.ondon Math. Soc. 1'7, 4—11

(1885).
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TAor. E III. Flexural wave dispersion curves for various values of Poisson's ratio.

o' =0.00 0.10 0.15 0.20 0.25 0,30 0.35 0.40 0.50

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

0.0000000
.3555010
.4775240
.5576783
~ 6160680
.6608194
.6961910
.7247312
.7480972
.7674272
.7835359
.7970260
.8083570
~ 8178838
.8258888
.8326003
.8382070
.8428650
.8467108
.8498592
.8524131
.8544618
.8560860
~ 8573530
,8583318
.8590708

0.0000000
.3640608
,4889918
~ 5710290
.6307710
.6765492
~ 7127362
.7419508
.7658980
.7857478
.8023430
,8163020
.8280960
.8380912
.8465730
.8537732
.8598770
.8650388
,8693870
.8730310
~ 8760632
.8785662
.8806110
~ 8822620
.8835750
.8846020

0.0000000
.3681160
.4944082
.5773082
.6376520
.6838712
.7203908
.7498658
.7740240
.7940542
.8108092
.8249200
.8368642
.8470120
.8556530
.8630212
.8693030
.8746530
.8791982
.8830460
.8862868
.8889990
.8912502
.8931022
.8946062
.8958110

0.0000000
~ 3720349
.4996310
,5833474
~ 6442482
.6908618
.7276680
.7573562
.7816770
.8018392
.8187060
.8329180
.8449620
.8552120
.8639628
.8714494
.8778620
.8833530
.8880520
.8920648
~ 8954793
.8983722
.9008090
.9028468
.9045352
.9059189

0.0000000
.3758288
.5046750
.5891622
~ 6505770
.6975420
.7345922
.7644502
.7888910
.8091400
.8260740
.8403432
.8524408
.8627478
.8715628
.8791232
.8856208
.8912110
.8960212
.9001572
.9037082
.9067470
.9093398
.9115390
.9133930
.9149430

0.0000000
.3795038
.5095520
.5947667
.6566550
.7039325
.7411860
.7711738
.7956950
.8159908
.8329519
.8472390
.8593510
.8696760
.8785152
.8861100
.8926532
.8983020
.9031842
.9074062
.9)10556
.9142062
.9169202
.9192510
.9212442
.9229395

0.0000000
.3830692
.5142708
.6001742
6624978

.7100500

.7474712

.7775522

.8021174

.8224248

.8393790

.8536492

.8657432

.8760512

.8848820

.8924768

.8990318

.9047048

.9096252

.9138980

.9176120

.9208400

.9236438

.9260752

.9281788

.9299930

0.0000000
.3865318
.5188420
.6053962
.6681200
.7159128
.7534670
.7836090
.8081858
.8284742
.8453910
.8596158
.8716620
.8819258
.8907188
.8982860
.9048250
.9104942
.9154230
.9197190
.9234680
.9267438
.9296070
.9321100
.9342960
.9362010

0.0000000
.3931709
.5275762
.6153268
.6787528
.7269328
.7646630
, 7948402
.8193600
.8395332
.8563025
.8703660
.8822500
.8923618
.9010172
.9084667
.9149098
.9205070
.9253888
.9296608
.9334112
.9367120
.9396230
.9421950
.9444688
.9464833

Further, an extended analysis shows that the
elongational curve for a certain n has a minimum
lying on the locus defined by

and reduce the resulting secular determinant of
order three to one of order two by the pivotal
method, there results the equation,

where

TO (
(2s) ~ & y(x) —z) @(x)—s 0=

$(y) (1—2z) + (1 —s) I 2$(x) +x' },
—3$(x) —x' (12)

b'= y'(x) —2s+-', rp's. 4(y)(I —2z) —s, —(I —s)rP (x)+s

Correspondirig to each point (rp, s) on this
locus, there is a dispersion curve defined by a
particular n which has this point as a minimum.
n is obtained from

I —s )'
s &y(x) —s)

(10)

Table II gives the values at 70 ——~ of the velocity
ratio c/cp, and the slope, [d(c/cp)/d(1/rp) 7, cal-
culated from (6) and (8) for various values of &r,

Poisson's ratio. Also included in this table is a
list of coordinates, calculated from (9) and (10),
of the minima of those elongational curves
characterized by these same values of ~.

Let us now turn to a consideration of the
Rexural modes of motion. If we give P the value
unity in (2), define

jk(g) = 8,(P) —1,

of the dispersion curve of the flexural waves. It
is possible to show that, for a given value of
Poisson's ratio, this curve has contact of the
first order, but not higher, at 7p= ~ with the
lower branch of the dispersion curves of the
elongational waves, characterized by the same
value of 0. Equation (7), with P = 1, gives a good
approximation to the flexural wave dispersion
curves provided To is not too large.

Table III, accurate to six places, is the result
of calculating, by (12), c/cp as a function of rp

and o. for flexural waves. It should be emphasized
again that the units used in the construction of
this table are not the same as those in Bancroft's
table for elongational waves. Conversion formulae
between the two forms of tables are easily ob-
tained from the list of symbols given in Table I.
Bancroft's units are convenient if Young's
modulus F. is known accurately; the units Tp and
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l. 4

1.2

o =.50
o =.40
cr =.50
cr = .20
o'= . 10
o'= .00

=.50
=,40
=.30
= .20

. )0
= .00

C

Cp

.2

o' = .50
o'= .40
o =.50
o' = .20
o =. 10
r= .00

~ 2 4 .5

I + &p

.6 .7 .8 1.0

F . 1. Th o etical elongational wave dispersion curves (upper family) and flexural wave dispersion cu e
(lower family) for various values of Poisson's ratio.

c/cp are more convenient to the expenmenter &f

the shear modulus is known accurately, or if
the constant velocity co of torsional waves is

obtained from an experiment. co constitutes a
natural reference velocity at any frequency at
which an experiment on the propagation of
waves in rods is being conducted.

Figure 1 shows the comparison in the units of

(rp, c/cp) between the family of elongational
wave dispersion curves computed by Bancroft,
and the flexural wave dispersion curves presented
in Table III. For convenience, the variable

rp/(1+rp) is plotted as abscissa, rather than 'rp

itself. This serves to emphasize the minima of the
elongational curves as well as the slopes at
p p ——pp. Note the universal point, c/cp ——1.4142

ro = 2.6038 - -, at which all the elongational
curves are tangent. This point is quite helpful in
obtaining rough estimates of the shape of curves
in the elongational family. It appears from this
figure that the flexural curves have very slight
maxima for certain large values of 7.0. A calcula-
tion of these maxima would be interesting to
carry out.

COMPARISON WITH EXPERIMENT

For the purpose of comparing theory and
experiment, Shear's data' for two magnesium
rods (machined sticks) with diameters equal to
5.895 mm and 4.615 mm, and two silver rods
(hard-drawn) with diameters 5.009 mm and
4.061 mm, were recomputed in the units of r~
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and c/cp. For magnesium, cp was chosen as
30.97 X 10& cm/sec. , while for silver, cp was taken
as 15.78)& 10' cm/sec.

Figure 2 shows the data for the magnesium
rods compared with the theoretical curves for
~=0.25. It is seen that both the flexural and
elongational curves agree well with the data for
both rods except for a few isolated points, which
probably lie on curves corresponding to higher
order modes of vibration.

Figure 3 illustrates the effect of non-isotropy
resulting from the hard-drawing treatment of the
silver rods. The data for both rods are compared
with the theoretical curves for r =0.39 and
o.=0.49. The flexural mode agrees best with the
choice 0.=0.49 for the theoretical curve whereas
the choice o.=0.39 for the theoretical curve is

2.0

I, 5—
C

Go

.39
A

I.OI— ~49
0 .—

0. 5

0 DIAMETER OF ROD = 5.009 mm

X DIAMETER QF RQD ~ 4.061 mm

EMP I R I GA L CUR VE S
THEORY FOR cr *.39, .49

I
l

2
~o

Fir. 3. Experimental data for hard-drawn silver rods com-
pared with the theoretical curves for 0.=0.39 and 0.49.

2.0 .

1.5—

G

Co

I.O--

0.5 0 DIAMETER OF RQD = 5.895 mm

X DIAMETER OF ROD = 4. 615 mm

TI-IEQRY FOR r = .25

F&rG. 2. Experimental data for magnesium rods compared
with the theoretical curves for ~=0.25.

closer to the empirical curve for elongational
waves, denoted by the dashed line A. However,
this latter agreement is not at all as good as it is
for the flexural branch; it appears that no choice
of 0. can bring about agreement in the shapes of
the curves. This difference in shape, then, is one
of the effects of non-isotropy which would have
to be derived from a theory of non-isotropic rod
vibrations. The dashed empirical curves 8, C,
and D are likely due to the presence of higher
modes of vibration.
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