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Forms of the beta-decay interaction are sought which are totally symmetric and totally
antisymmetric to the interchange of any two of the particles involved in the emission, It is found
that there is no symmetric interaction and one antisymmetric. The antisymmetric interaction
allows transitions without change of parity and with a change of nuclear spin of either 0 or ~1,
including 0~0. First forbidden transitions entail a change of parity and hi=0, &1 or &2.
Second forbidden transitions are characterized by hi= +2, &3 and no change in parity. The
contributions of electron-neutrino states of definite angular momenta are presented explicitly
as an aid in the study of the influence of the nucleus on the light particle waves. The influence
of the Coulomb field is discussed.

I. INTRODUCTION Teller selection rules are less stringent than the
Fermi rules in that they allow hi =0, &1 (except
0~0), whereas the Fermi rules allow only hi =0
(including 0~0). Interactions that give G-T
rules are the tensor and the axial vector inter-
actions.

Allowed transitions are defined as those transi-
tions that are independent of the small com-
ponents (i.e. , the particle velocity) of the Dirac
waves for the nuclear particles and in which the
electron and neutrino waves have no node
through the nucleus. The shape of the allowed
beta-ray spectrum is the same for any one of the
five possibilities of interaction listed above. It
may be slightly different for linear combinations.
Only in forbidden transitions will the spectra of
the five possibilities be different.

Uhlenbeck and Konopinski' have compared
the shapes to be expected from each of the five
invariants with the experimental results on Na'4,

P", and RaF. Their conclusion is that there is
evidence against all these interactions taken
singly except the tensor interaction. I t is possible
that actually none of these interactions is suf-
ficient by itself to explain the experimental
results but the tensor interaction cannot be
excluded at present because of the great flexi-

bility of this interaction which contains several
unknown matrix elements. It is also possible that
a linear combination of the five possibilities will

account for experiment although no one taken
singly is able to do so.

N the first paper describing a field theory of
- - beta-activity Fermi' drew an analogy with
electromagnetic theory and assumed the inter-
action to be the scalar product of a four-vector
constructed from the wave functions of neutron
and proton with a four-vector constructed from
electron and neutrino waves. It is well known
that besides the four-vector one can construct
from products of two wave functions an axial
four-vector, a skew-symmetric tensor, and two
scalars, one of which changes sign under reflection
and is commonly called a pseudoscalar. Invariant
products of any of these five covariant quantities
with the corresponding contravariant quantities
formed from electron and neutrino wave func-
tions present a fivefold infinite manifold of
choices for an interaction between heavy and
light particles. The experimental material that
may make possible a particular choice of an
interaction consists of (1) the selection rules
obeyed in beta-emission and (2) the shape of the
beta-ray spectrum, particularly the shape of the
spectra in forbidden transitions.

An alternative choice of interaction has been
proposed by Gamow and Teller' who noted that
the selection rules imposed by the four-vector
interaction were inconsistent with the beta-
activity of ThCC'. The same violation of Fermi's
selection rules appears to be made in the beta-
activity of He' and kindred nuclei. The Gamow-
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' E. Fermi, Zeits. f. Physik 88, 161 (1934).
2 G. Gamow and F. Teller, Phys. Rev. 49, 895 (1936).

3 E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 00,
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The supposition that a particular one of the
five invariants discussed might be a complete
description of fact is a kind of extension of
Fermi's analogy to electromagnetic theory. It is

what we would reasonably expect to obtain if
beta-decay occurs in two steps, i.e. , the proton
emits a meson which then creates a positron and
a neutrino. In this description one would natu-
rally form covariant quantities with proton and
neutron waves and contract them with the
analogous light particle functions. The analogy
with electromagnetism then leads to the hope
that one of these covariants is enough. If, on the
other hand, the beta-process is not analogous to
radiation theory in this sense, linear combina-

tions of the five invariants are as acceptable
possibilities as the invariants taken singly.

It is the purpose of this paper to present the
theoretical predictions of a particular linear com-

bination of the five invariants. The basis on

which this combination is chosen is as follows:

The beta-process is considered to be an essen-

tially four-particle process, and the requirement
on the interaction is that it shall be either totally
symmetric or totally antisymmetric to the
interchange of role of any two of the participating
particles.

II. THE INTERACTION

The symmetry properties of the interaction
between fields of the four particles are most

easily determined if the beta-process is described

as the simultaneous creation of neutron, proton,
electron, and neutrino. Since all these particles
have spin —,k, this description can be permitted

by assuming the Dirac wave equation and the
hole theory extension of that equation for all four

particles. A hole in the theoretical neutron sea

of negative energy is then the experimentally

observed neutron. In negative beta-emission

such a neutron hole is filled at the same instant
that a proton appears to take its place in the
nucleus and electron and neutrino are created.
Positive beta-emission is then a simultaneous

disappearance of four particles: a proton of

positive energy and "neutron, " electron, and

neutrino of negative energy. In this description

it is evident that symmetrization of the inter-

action producing beta-activity is identical with

symmetrization of an invariant product wave
function of four particles of spin one-half.

Four particles of spin -,'k cannot form a totally
symmetrical state that is invariant to Lorentz
transformations. This may be seen at once with
the aid of the calculation rules of Van der
Waerden's spinor calculus. 4 If two of the four-

wave functions have dotted indices and two
undotted, the invariant forms are not sym-
metrical because of the skew-symmetry of the
2-operator. If all indices are undotted (or all

dotted), the symmetric invariant vanishes be-

cause of the identity:

)I2 «Ss+ XX yS+ PX ) V —0

The symmetrization in this discussion is re-

stricted, of course, to space and spin coordinates.
If isotopic spin were introduced, symmetrization
would have no significance.

There is one and only one totally antisym-
metric invariant wave function constructed of
the four Dirac P-functions, vis

+1 C 1 4'1 tt'1

+2 C'2 $2 4112

x(x) =
+2 C'2 4'2 42

+4 C'4 sf4 44 s

Different Greel- letters are used to distinguish
between particles and, in the following, + shall

stand for the neutron wave function, C for the
proton, P, electron, and @, neutrino. All are taken
at the same point in space, x. The subscripts in

Eq. (1) refer to the four components of a Dirac
wave equation, the particular form of which is

immaterial as long as it is the same for all par-
ticles. That x is an invariant is readily seen from

the fact that the determinants of the matrices
that represent Lorentz transformations are
unity'. Let S be the unitary matrix that repre-

sents a certain Lorentz transformation:

(2)

This S applies to all four wave functions in the
determinant, Eq. (1), so if we write

4 B. Van der Waerden, Gottingen Nuchrickten (1929), p.
100.



BETA —DECAY THEORY 419

then the new antisymmetric wave function, x', is

x = fS Df = fSI X fD f

= fD
f
=x, Q.E.D. (3)

a unitary operator 0 such that

For the sake of definiteness the numerical sub-
scripts in Eq. (1) will be assumed to refer to the
four rows and columns in their usual order in the
e and P ma. trices in the familiar form of Dira. c's
equation:

k 8
i ———(e, p) —Pmc /=0.
c8t

If we consider the wave functions in Eq. (1)
to be quantized, i.e. , as operators, the form of the
interaction between fields of the elementary Dar-
ticles becomes:

f
H'=g~ Lx(x)+x(x)*]dx,

where g is the "Fermi constant" having dimen-
sions of energy times volume, and x(x) gives rise
to the disappearance of four particles at the
point x; x(x)s gives rise to their appearance. The
transitions induced by II' are between states of
equal energy and therefore the probability of
beta-emission is given by the well-known formula

P(E)dE=2~h 'fH' f'p„(w —E)p, (E)dE. (6)

In Eq. (6) p„(w E) is the densit—y of neutrino
states of energy w Eand p, (E) the—density of
electron states of energy B. The energy released
by the nucleus is m'.

An obvious difference between the form of this
theory and that of preceding ones is that FI' is
an integral over products of + and C or over
products of +* and 4*.This is only a formal dif-
ference from the customary method of calculating
matrix elements which contain +* and 4 to-
gether, etc. , but it will be convenient all around
to introduce 8* in place of + in Eq. (1).Then the
physical interpretation of Eq. (5) will be the
usual disappearance of a neutron when proton,
electron, and neutrino are created or vice versa.

The replacement of + by +* at the same time
that positive and negative energy levels are
exchanged has been studied by Furry' and
Pauli. These authors have shown that there is

~ W. H. Furry, Phys. Rev. 51, 125 (1936);54, 56 (1938).
W. Pauli, Inst. H. Poincare Ann. 0, 130 (1936).

Applying 0 to the neutron waves in Eq. (1) and
substituting in Eq. (5), we get the interaction for
positron emission:

+s(x)'

r
—+s(x)*

II„'= —
&~l —+s(x) *

+i(x) *

C i(X) ill(x) 4'1(X)

4 s(x) Ps(x) @s(x)
dx.

4 s(x) Ps(x) 4s(x)

C 4(x) $4(x) @4(x) (9)

Electron emission is given by the complex con-
jugate of Eq. (9), but since in the expression for
the probability of emission only

f

H'fs appears.
it is sufFicient to consider Eq. (9) alone.

It is convenient to expand Eq. (9) for H„' as
a linear combination of the familiar invariants.
For this purpose we shall use the Dirac operators,
p and e, acting on the heavy particle eaves only

pl —sisz&scszi ps Pisz&s&z& ps
(1o)

a, = in„o;» o.„=in,.u„o,=za n„.

In this formulation Eq. (9) becomes

1 $1
Ho =g s t'p (pi+ius)

iis Al—(pi ips)
4 @4

$2 42 $1 $1
+p3

- 4s 4s

—(o,+io„)
4's 4 s

+(o, io„)—
A 4s 4'i 4i

f+Ox + 4dx. (11)
4's 4's 4 4 4'4

From this expansion selection rules can be

when positive and negative energy levels are
interchanged. In the spin coordinates pertinent
to Eq. (4)

9= —ipo;2.
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deduced at once. The terms proportional to the
a's and to p~ constitute an axial vector inter-
action and give hi=0, &1 (0~0 excluded) with
no change in parity in allowed transitions. The
p3 term is the scalar interaction and gives hi = 0
(0~0 included) no change in parity. The p& term
is the pseudoscalar and gives no allowed transi-
tions.

A curious form of the rule for determining the
change in parity is evident from Eq. (11).It will

be noted that the light particle functions that
are associated with p3 and e (which mix large
terms of proton waves with large terms of
neutron waves) contain products of one small
and one large component of the light particle
waves. Thus, if we follow the customary method
of giving the electron (and neutrino) the orbital
quantum number L that applies to the spin
eigenfunction, i.e. , the same as the large com-
ponent, we obtain the rule: There is no change
in the parity of the nucleus if the sum of orbital
quantum numbers of electron and neutrino is
odd; the parity changes if the sum is even. This
is just the reverse of the rule that applies to
particles of integral spin and also of the rule
that applies to the absorption and subsequent
emission of a single particle of any spin. The root
of the paradox lies in assigning a definite parity
to wave functions of spin -,'A. The form of the
matrix that represents inversion of the coor-
dinate system' shows that the phase of these
waves is changed by —,'m rather than 0 or m, the
phase of the large components increasing if that
of the small decreases and vice versa. Thus two
successive inversions lead to the original wave
function but with opposite sign, the same result
as that obtained by rotating the coordinates by
360' about some axis. It is well known that there
is no paradox in the case of the rotation because
the space of all rotations, although continuous,
is two-sided. '

A short discussion of the above results has
been presented in a letter to the editor of The
Physical Review. ' It is pointed out in the letter
that addition of scalar and axial vector operators
increases the lifetimes of the 4n+2 nuclei relative

to the 4n&1 nuclei in allowed transitions. ' I his
improves the agreement of theory with experi-
ment for C" and F"but makes it worse for He'
Furthermore, the ratio of the transitions to
excited and to ground states of the nuclei con-
sidered by Gronblom' is predicted more closely
by the antisymmetric theory than by the axial
vector (or tensor) alone. The reason for this is
again the relatively stronger transitions without
change of spin which the antisymmetric theory
predicts.

III. MATRIX ELEMENTS

The shapes of the forbidden spectra under the
theory presented in this paper can be derived
from the results of reference 3 on the scalar,
axial vector, and pseudoscalar interactions. A
slight extension is necessary to include some
cross product terms in the first forbidden spectra.
I have repeated the work of Konopinski and
Uhlenbeck insofar as it applies to the antisym-
metrical theory of beta-decay by the method
which uses the eigenfunctions of both electron
and neutrino in polar coordinates. Except for the
addition of cross product terms between different
kinds of interaction, the results are, of course,
the same as in reference 3. Nevertheless an out-
line of the method is presented, and the results
are given in detail for several reasons. The chief
reason is to have the contributions of various
electron and neutrino angular momenta pre-
sented separately because the possible influence
of the nucleus on these contributions is very
likely different. Beta-spectra may furnish a
useful experimental means of determining the
influence of nuclei on electron and neutrino
waves. It appears certain from the work of Rabi
et al." that there is no spin dependent force
between electron and nucleus except that due to
magnetic moments; but it may well be that there
are spin-independent forces in addition to the
Coulomb field. Another reason for presenting the
calculations in polar coordinates is to throw light
on the detailed effect of the Coulomb field on the
shape of the beta-spectrum and also on the life-

7 Cf. E. Wigner, Gruppentheorie und ihre anmendung auf
die guantenmeckanik der atomspektren (Braunschweig, F.
Vieweg % sohn, 1931), p. 99.

'C. Critchfield and E. Wigner, Phys. Rev. 60, 412
(1941).

' E, Wigner, Phys. Rev. 56, 526 (1939), and in the same
issue, B. Gronblom, Phys. Rev. 56, 508 (1939).

"Rabi, Millman, Kusch, and Zacharias, Phys. Rev. 55,
526 (1939); Kusch, Millman, and Rabi, Phys. Rev. 57,
765 (1940).
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times of the beta-activities. The latter questions
are taken up in Section IV.

In this section it will be assumed that there is
no interaction between the electron and the elec-
tromagnetic field of the nucleus. We have,
therefore, to use the eigenfunctions of kinetic
energy for both electron and neutrino in Eq. (11)
and substitute H„' in turn in Eq. (6).

The "matrix eleroent" of beta-decay theory,
3f, is related to our II' by

«= i (2orb—'R/gP, P„)ZI', (12)

where R is the radius of the sphere in which
quantization is effected, p, is the momentum of
the electron, and p„ is the momentum of the
neutrino. Using M in place of II„' we find the
probability of emission of a positron and neutrino
(absorption from states P and P, respectively)
with total angular momentum jh and z-com-
ponent nzIE to be

The electron wave will always be given first. A
more expanded form of the wave function is

2-,LS» (.)P,(-,) S»(-,)P, (.))
where superscripts denote the values of m for
individual waves. Now we may calculate

An electron and neutrino emitted into a state
specified by j and m may cause a maximum
change in the nuclear spin of jh. The nuclear spin
may also change by integral multiples of b less
than jk provided that the total angular mo-

mentum is conserved. It is necessary to calculate
the matrix element only for one particular m,
and it is convenient to choose the highest value,
m =j. The total probability of emission into
Q, p)); is the sum over all ))», and this sum ))pill

be considered automatically accomplished in the
square of matrix elements.

Consider the particular case in which an elec-
tron disappears from an 5» state of energy —B,
and the neutrino from a P» state of energy B—m.

If the total angular momentum of these two
particles is zero, the state will be denoted by the
symbol

(S»P») o.

«(S», P»)p by substituting this form into Eqs.
(11) and (12) and evaluating the expressions at
the nuclear radius. Only the leading terms in the
series expansions in powers of r/X, or r/X„will
be retained. Under these conditions

iV(S»P»)o= pa~~pp (14)

Here J'pp stands for 1'4'*ppCdx. In general

~"A =
J~

O*ACdx.

In some expressions a', a", b', and b" will be
used for those a's and b's that are changed by
the effect of the Coulomb field. Their values in
the absence of a field are the same as the un-

primed letters.
The calculation for the state (P»S»), yields

«(P» S») p
= ——,'b pp. (16)

In order to simplify the presentation of the
formulas, we shall combine related matrix ele-
ments into one equation when feasible. Thus
Eqs. (14) and (16) may be condensed into

«(S»P») p/a = «(P»S») p/b—= ,' J pp. (17)—

The allowed transitions may also cause emis-
sions into states of unit angular momentum for
which:

M(S»P»))/a = —M(P»S»))/b = »)t »p. (18)

Matrix elements (17) and (18) comprise all

the allowed transitions, and it is evident from
Eq. (15) that the sum of squares of these matrix
elements will be independent of light particle
wave-lengths. We now present the matrix ele-

ments that lead to firs forbidden transitions.
The latter are of two types: dipole matrix ele-

The factor a and the related factor b which
appears later are defined by

a —= L(E+mc')/2B]»,

b:L(E, —rnc') /2P] &.—
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ments which are proportional to p3 and e but also
contain the first power of the momentum of one

of the light particles, and pseudomonopole matrix
elements, proportional to velocity terms of the

heavy particle waves, i.e. , to pI and p2. In both
cases there is a change in parity, so it is necessary
to consider all possible changes in angular mo-

mentum:

llf(S)S)) 0 ',ia ——~(-pg —ipse)

and the symbols [err] and Q will be used:

[err];,q= , (e,—r;r~,+e;r;rq+0 qr, r,)

i 2——(er') ——r(e, r),
15 i5

Q —=
J }p3[rr] —i [r(e Xr)]}/(12) '*h',

(22)
M(S0'u) 2 = (b'P.P—'/3 ap-'/3—) Q

+(ap„+b'p. )/6h "(e, r),

~(PIPE) 0 = BibJt (P&+ip&)

(bp„ya—'p, )/6h "(e, r),

(19)

M (PuS~) 2= (aP.P-/3 b"P'/—3)Q

M(PP u) 2 = (a'P.P-/3 bP-'/—5)Q*

M(DiP'~) 2 = (bp.p-/—3 a "p '/—3)Q*

M (S)F,)),/ap„' = —M(F2)S))p/bp, '

= —M (P,D„),*/b p„'

=M (D2)Pg) 2'"/ap. '

M(S~S~), = (ap„—b'p, )/6h [par —i(eXr)], =J"(3p I «]

M(P~P~) q
———(bp„—a'p, ) /6h Jr[par+i(e X r) ],

M(S)Du) g/ap = —M(DuS)) g/bp,

= M(P)Pn) g*/bp„

= —M(PnP&) i*/ap,

=(v2/12h) I [2p,r+i(eXr)],
(20)

M (S)Du) 2/ap„= —M (DuS() g/bp.

M(P)Pu) 2/bp~

=M(PgpP() g/ap,

+2i [r(e X r) ]}/30v2h', (23)

M(PnDu) pea = —M(DnPu) 2/b

t'
= (P.P-/6 3'h')J p Lrr],

M(S,F,))8/ap. '= —M(F2@'))3/bpe'

= —M(P)Dp)) 8/bp '

=—M(D2)P() 3/app

——h
—'(120)—&J [err], (25)

M(PuDu) 3 ———M(DuPu) 3

=(p p/6h')
J L «] (26)

where

= (3&/6h) Jt [er], (21)

[er];~=—2 (e;r~+e ~r,) —
3 (e, r) &;k.

Equations (19), (20), and (21) give all the

matrix elements that lead to first forbidden

transitions. Following are the results for second

forbidden transitions. In these p~[rr] and

[r(eXr)] are defined analogously to [er] above,

IV. EFFECT OF THE COULOMB FIELD

The Coulomb field of the final nucleus has an

important effect on the beta-spectrum of most

forbidden transitions. In fact, it is only for the

very light nuclei and (or) rather large electron

energies that the effect of the nuclear charge can

be neglected. This has already been pointed out

by Konopinski and Uhlenbeck. ' The effect may
be described as follows: In the absence of a
field, electron waves may be classified as 5
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waves, P waves, etc. , according to the trans-
formation properties of the "large components, "
the radial dependence of these waves being one,
r, etc. , (r~ in general) near r = 0. In the presence
of the field, the angular dependence remains
unchanged, but the radial dependence acquires
two new properties. The first is that some of the
solutions (total angular momentum -,'k) are not
bounded at r=0. The integral of the square of
the wave function is bounded, however, and in
calculating transition probabilities for beta-
activities the value of the electron wave at the
surface of the nucleus is used. This singularity
is not important to the shapes of the beta-spectra.

The second, and more important, effect of the
electric field is to lower by unity the power of r
with which a wave approaches r=0. Neglecting
the small effect mentioned above, a Pz wave ap-
proaches r =0 for the most part as r itself, but
there is a small admixture of a wave (with the
same angular dependence) which approaches
r =0 as r', i.e. , as a finite constant. The coefficient
of this S part of the P» wave is proportional to
Z/137 and is usually very small, but the more
favorable radial dependence of this part near the
origin makes it of importance compared with the
P part itself. The physical interpretation of the
electron state is that there is a finite probability
of finding an electron extremely close to the
center of attraction in spite of the fact that the
electron has one unit of angular momentum. In
the relativistic theory of the electron the increase
in kinetic energy that arises upon concentrating
the electron within a radius r of the center is
proportional to ck/r. On the other hand, the
decrease in potential energy in the Coulomb field
is also proportional to 1/r so that it is possible
to have the electron very close to the nucleus
although it has angular momentum.

So far as we carry the analysis of forbidden
spectra in this paper it is sufficient to consider
the amount of S part in the P waves and of the
P part in D waves. There are P waves in both
S~ and Pz, eigenfunctions, however, and the coef-
ficient of the S part will be diA'erent in the two.
In order to determine the coefficients with which
these anomalous parts of the wave appear the
work of Dirac" on the radial functions is used.

"P. A. M. Dirac, The Prznci ples of Quantum 2lEechanics
(Oxford, 1935), p. 265.

Neglecting quantities of the order (Z/137)' com-
pared with unity we find the results are ade-
quately expressed as modifications of the factors
a and b in Eqs. (19) and (22) as already indicated
by the use of primes. All other matrix elements
are unaffected. The values of the primed letters
are:

a'/a = 1 3Ze—'/2 (E+inc') p,

b'/b = 1 —3Ze'/2(Z —mc') p

u"/a=1 SZe'—/4(E+n", c') p

b"/b = 1 —5Ze'/4(B mc') p—

(27)

where p is the radius of the nucleus at which the
wave functions are evaluated.

V. SHAPES OF SPECTRA

The contributions of the individual matrix
elements found above may be changed in dif-
ferent ways by further, non-Coulombic interac-
tion between electron and nucleus. In this section
the electric field only will be taken into account.
It will be further assumed that the nuclear wave
functions are eigenfunctions of the time reversal
operator" so that the operators in Eq. (11) that
change sign under time reversal, e arid p2, lead
to different states of the final nucleus than the
operators that do not change sign, p~ and p3.
This assumption eliminates most of the cross
products of different operators in the squares of
matrix elements.

The probability of allowed transitions is cal-
culated by adding the absolute squares of all
matrix elements leading to such transitions. The
positions of the nuclear particles do not matter
to those matrix elements, Eqs. (17) and (18), and
no change in parity takes place in the transition.
Such transitions may thus be called monopole
radiations. From the values of a and b as given
in Eq. (15), the sum of squares of matrix ele-
ments, Eq. (17), that apply if initial and hnal
nuclei have spin zero is

P[cv]'=-'[ J'p, &' o~o (28)

"E.Wigner, Gottingen Nachriclzten (1932), p. 546.

Similarly, if the nuclear spin changes by one unit
the appropriate sum of squares is

(29)
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If the transition involves no change in nuclear
spin and the spin is not zero, the sum of (28) and
(29) is to be used:

Since Eq. (30) represents a larger factor in the
probability of decay than Eq. (29), transitions
without change of spin will be more prominent
than under the axial vector or tensor theory
alone and this is desirable in Gronblom's analysis
mentioned above. Equation (13) represents the
normal Fermi spectrum of electrons if M' is
constant so that allowed transitions in the anti-
symmetric theory give normal spectra.

First forbidden transitions are conveniently
divided into three classes: monopole, dipole, and
mixed. The monopole radiations differ from the
allowed emissions in that a change of parity is
entailed, and for this reason the first forbidden
monopole transitions are called psegdomonopole.
The classification of beta-radiations as various
multipole radiations is somewhat more con-
venient than the broader: allowed, first, and
second forbidden classification. This is especially
true for light nuclei because the matrix elements
characteristic of first forbidden transitions, say,
may vary in magnitude over a much wider range
than the difference between allowed and the
strongest erst forbidden. "

Pseudomonopole matrix elements are propor-
tional to p~ and p~, i.e. , to the small components
of the nuclear waves. The two operators p~ and

p2 appear in Eq. (19) and, according to the
assumption stated above, do not mix. The sum
of squares of M applicable to pseudomonopole
emissions is then

and final nucleus must be as large as the unprimed
number in the same Ai.

P I m(. , r) I

2 = (1/36@2)

)& [(p„+cp '/E —3Ze'/2cp)'

+ m'c'p, '/L'll J'(a., r) I',

Ai = 0 (32)

g I M(p31) I
—(1/36k')

XDp„cp,—2/F+ 3ze'/2c p)'

+2(p-'+ p')+~'~'p'/~' j

P IM(lr)&r) I'=-(1/36k')

X [(p. cp, '/—E+3Ze'/2c p)'

+ ', (p„'+p, ) +-ni'c'p, '/E' J

X
I
J'(0Xr) I', Af=0', 1 (34)

2 I
M(«) I'= (1/12&') (p'+ p') I

J'L«j I'

Ai =0', 1', 2. (35)

Ordinarily the term containing Z will far out-
weigh other terms in a given expression and in
every one except Eq. (35) the spectrum will be
quite the same as the normal one. Deviations
from the normal spectrum should be apparent
in the high energy transitions in light elements
if hi&2 or in any case if' hi = 2.

The one mixed transition, between p2 and
(0., r) leads to

2 I &1(~2 (~ &)) I'=(1/6&)(p'+&p'/F-

—3«'/2~v) I
J'u

I
&&

I
J'(~ r) I

~f=0 (36)

The spectrum is normal.
There are four distinct matrix elements that

lead to dipole transitions. The sum of squares for
each of these will be presented along with the
allowed changes in nuclear spin. An indicated
change of spin that is primed, as the 0' in
hi=0', 1, means that the sum of spins of initial

» Discussions of and formulas for the half-lives of beta-
activities have been presented in three independent papers
appearing in The I'hysico/ Review 61 (1942): C. L.
Critchfield, p. 249 I'light nuclei only); IC. E. Marshal&, p.
431, and E. Greuling, p. 568.

Again the Z term should predominate and the
spectrum be normal. All first forbidden transi-
tions cause a change in the parity of the nucleus.

So-called second forbidden transitions can be
of two types, pseudodipole and quadrupole.
There are no pseudodipole transitions in the
antisymmetric theory, however, because the only
possible matrix elements of this type, p~r and
p2x', do not permit Bi=2; and Ai&2, without
change of parity, is allowed in monopole transi-
tions. Thus all transitions are quadrupole, Ai = 2

or 3, in the second forbidden category. There are
three distinct matrix elements and no cross



BETA —DECAY THEORY

products under the above assumptions:

2 I M(p4rr) I'= (1/360&4) L3p ' —4cp P,4/E

+10p,'p„' 4cp—„'p,'/E+3p '

+ (Ze'/cp) (6P-' «c—P-'P'/E

+5p,'p„3p, '—/E) + (15/8) (Ze'/c p)
'

x(4P.'+p.')]I J'p, rrl' ~i=2, (»)
p I

M(4rrr)
I

'= (1/36054) (3P,4+10P.2P,,2

j3p.') I J 4rrrl' ~i=2', 3, (38)

2!M(«&&r) I'= I 2 I
~I(»rr) I'/I J' p3rrl'

—(1/3)z I
cv(4rrr) I'/I J'orr I'I

&& I
J'(reyr) I' ai=2. (39)

If Z is fairly large or the energy particularly
small, the normalization factor for waves in a
Coulomb field should be included in the electron
waves. An approximate form of the squares of
the normalization factor is

f(f) = i /(er 1), i =—27rZe'E/hcp. ,
—(40)

in which g is positive for positron emission and
negative for electron emission. The approxima-
tion involved in Eq. (40) as well as throughout
the calculations on the Coulomb effect is that in
which quantities of the order (Z/137)' are
neglected in comparison with unity. Our results
thus apply only to light nuclei. The final form of
I'(E) may be written

&(E)= (g'/2~'c'&")f(i)EP. (~—E)'2
I
M I' (41)

in which the sum is taken over all elements that
contribute to the transition. The integral of
I'(E)dE over all electron energies then gives the
decay constant. These integrals have been pre-
sented in the papers quoted in reference 13.

The foregoing calculations have been carried
through for positron emission. In order to apply
them to electron emission, it is simply necessary
to change the sign of Z throughout.

VL CONCLUSION

Full application of the results of this paper
would require many experimentally determined
beta-spectra of forbidden transitions. Further-

more, the spectra must be free of distortion such
as introduced by thick sources, etc. The spectra
of P" and Na'4 as determined by Lawson'4 (cf
reference 3) are probably in the desired category.
Both transitions are slower than allowed transi-
tions„Na'4 by a factor 40 and P" by a factor
2&(104. Assignment of a definite multipole to
these transitions is complicated by the fact that
we do not know the magnitudes of the matrix
elements and also by the intermultiplet character
of the transitions (cf. Wigner, reference 9). Ac-
cording to the estimates made of matrix elements
in the erst reference 13, Na'4 could be a pseudo-
monopole transition that depends upon pg. The
Kurie plot predicted for such a transition would
be a straight line, and in fact, the high energy
end of the experimental curve does appear to be
quite straight. The low energy end is probably
complicated by another transition.

The high energy end of the Kurie plot for P"
is also straight but its lifetime is too long to
ascribe the decay to the matrix element M(p~).
In addition, the spectrum is probably simple so
that the deviation at the low energy end cannot
be explained as the inRuence of' a second spec-
trum. The lifetime of P" suggests the matrix
element M(p~) according to the estimates in the
erst reference 13, but in order to obtain the ob-
served spectrum, it would be necessary for the
matrix element to become appreciably dependent
upon the energy of the electron when this is low.
This or any other elaborate explanation is to be
avoided at this stage of the theory of forbidden
spectra.
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14 J. L. Larson, Phys. Rev, 56, 131 (1939).


