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Schwinger's modification of the M&ller-Rosenfeld theory
of nuclear forces based on a mixture of pseudoscalar and
vector meson field is investigated in the strong coupling
theory. The isobar separation turns out to be —,

' of its value
in the pseudoscalaz theory. The interaction energy between
two nucleons is calculated, and in the most interesting case
of the symmetrical theory, it is the same as the corre-
sponding expression in the weak coupling theory with the
spin and isotopic spin vectors replaced by the e vectors of
Pauli and Dancoff. A classification of the states of the two-
nucleon system is made, a,nd the lowest state for the
deuteron is found to be the triplet state. An estimate is
made for the values of the constants involved, and we find

that a suitable choice of the coupling constant and the

masses of the mesons can be made in such a way that the
binding energy and the quadrupole moment of the deuteron
agree with the observed values, and such that the condi-
tions for small source (compared to the Compton wave-
lengths of the rnesons) and for small effect of the higher
spin states on the ground state are fulfilled. However the
theory gives for the magnetic moment of the deuteron a
value only a few percent of the observed value, and ac-
cording to this theory highly charged nuclei would be
unstable. We therefore conclude that the strong coupling
theory, based on the assumption of an extended source,
should be abandoned in favor of a weak coupling theory,
based on a point source with the singularities of its field
eliminated by means of a subtraction formalism.

I. INTRODUCTION cated way at that. The introduction of a new
particle is admittedly undesirable, but we feel
that further investigation in this direction is
justified for the reason that this may be a first
step in the direction of a more far-reaching
theory in which the vector meson enters, not as
a new independent particle, but as an excited
state of the pseudoscalar meson.

We have investigated in this paper the mixed
meson theory in the strong coupling approxi-
mation. The calculations of Section II for the
isobar separation follows closely the development
for the pseudoscalar meson given by Pauli and
Dancoff. ' The theory of nuclear forces in the
strong coupling approximation has been de-
veloped by Serber and Dancoff4 who treated
the charged scalar and the neutral pseudoscalar
meson fields, and the calculation in Section III
follows their procedure. Hence the computations
in these sections are not given in detail. However
we wish to point out that in contrast to Serber
and Dancoff, we do not consider the nucleons to
be at rest, and consequently we do not discuss
here the small oscillations around the minimum
of the potential energy which occurs for su%-
ciently small separation of the nucleons. The

HE usual theories of nuclear forces derived
from one type of meson field give rise,

both in the weak and strong coupling approxi-
mations, to tensor forces with inadmissible r '
singularity for small r, which consequently has
to be cut off at a certain arbitrary radius.
M jller and Rosenfeld' showed that the singu-
larity can be removed by taking a mixture of
pseudoscalar and vector meson fields with the
same coupling constant. They, however, also
took the masses of the two types of meson equal,
and found that the tensor force vanished in the
first approximation. Schwinger' then pointed
out that the tensor force can be retained with
only an admissible r ' dependence at small
distances if the masses are taken unequal, and
that the right sign for the quadrupole moment
is obtained if the vector meson has the larger
mass. This is in agreement with the hypothesis
that the vector meson is highly unstable and
that it is responsible for the P-decay in the
nucleus.

It may be argued that the introduction of the
vector meson field is just another way of re-

moving the inadmissible singularities by an
arbitrary constant, and in a much more compli

' C. Mgller and L. Rosenfeld, K. Danske vidensk. Selsk.
17 (1940).' J. Schwinger, Phys. Rev. 61, 387A (1942).

.
' W. Pauli and S. i%I. Dancoff, Phys. Rev. 62, 85 (1942).

This paper will henceforth be quoted as P-D.
4 R. Serber and S. M. Dancoff, Phys. Rev. 63, 143

(1943). This paper will henceforth be quoted as S-D.
We wish to thank these authors for letting us see their
calculations before publication. '
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results of these sections are applied in Sections nucleon which we assume to be spherically
IV and V to the deuteron and the heavy nuclei, symmetrical and normalized according to
respectively.

II. ISOBAR SEPARATION Jt U(x)d V=1. (2)

We describe the pseudoscalar part by the real
quantities y~(x) and the vector part by f,'(x),
where the subscript i denotes the components in
the ordinary space and takes the values 1, 2, 3.
The superscript a in both cases denotes the

components in the isotopic spin space. In the
symmetrical theory it takes the three values
1, 2, 3; in the charged theory the values 1, 2;
and in the neutral theory only the value 3. In
the following we do not restrict the values which
n may assume so that the results for these three
types of theories may be obtained by making
suitable restrictions on the values for e. How-
ever, unless otherwise stated, we restrict our
attention to the most interesting case of the
symmetrical theory. Thc Hamiltonian of the
field and its interaction with a nucleon is given by

H=-2 P I (~ )'+(vv )'+~'(p )'Id V
a

It determines a radius c of the nucleon

—= Jt Jt d Vd V'
1 U(x) U(x')

(3)

0. , c~q, f ~U
y; = —(4n.)* i

——U(x)d V=(4~)l i q d V,
BXi ()Xi

oa, f' 4'j
f;; = (2x)'*Jl — — U(x)d V

BX' BX '

BU BU= (2~)l P; —Pp d V,
eJ BXg' OX'

(4)

8U

J
q' —d V=0,

~Xi

where R= ~x —x'~.
As in P-D, we split the fields into two parts

and write

+1 g J ( (~ a)2+ (~|1,a)2++2(P a)2}d V
a, i

g (4,' ' i... .-U(x)dV, (1)
24Bx; ax, )

where m and cubi are the momenta conjugate to
p and f, , respectively; z and p are the rest
masses of the pseudoscalar and the vector
meson, respectively (we are using natural units
where fi =e = 1); ~; and r are the spin and
isotopic spin matrices, respectively, with o;,
= —o-;i=o.& if i, j, k are cyclic permutations of
1, 2, 3; and f and g are coupling constants for
the pseudoscalar and vector field, respectively. '
For the time being we do not make the assump-
tion f=g. U(x) is the source function of the

' In this paper we find it more convenient to use these
constants which have the dimension of ~ '. Thus our f is
equal to g/&2m where g is the coupling constant for the
pseudoscalar field used in P-D.

so that

X(x) = JI U(x')(e " (R)d V',

Y(x) =
J

U(x')(e &~/R)d V',

with R= ~x —x'~. We define

f BXBU
Ib;,= l dU,

J ax; ax;

and if we assume both aa and pu«1, we have

f' BX BU f dYBU
dU —' dU.

BXi BX 4 BXi t9Xi

BU , BU——P,
' —d V= 0.

J '
ax;

'
ax;

is antisymmetric in i and j, and we shall
Oa Oa

sometimes write iP, , —=Pq for i, j, k cyclic. The
source function generates the potentials X(x) and

Y(x) according to

( —6+~')X=47rU, ( —2+p') Y=4xU; (6)
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This approximation gives some formal, although The Hamiltonian (1) becomes

unessential, simplification and we shall make use

of it. We therefore write

then
$(x) =X(x)/I, g(x) = Y(x)/I; (10)

Bx, Ijx, J Bx; Bx,

1
+—2 ((0'")'+8'")'}

2I

+Q ( fijp,pa+&2gg, pa} O;ra
a, i

We thus obtain from (4) and (5)

rl&(x)
~ (x)=(4x) '*2 V' +0 "(x)

i

p. Brl(x)
0' (x) = (8x) ' 2 0' +4*"(x).

Bxg'

(12)

BU
+(4x)' P ~;0» ~" d V

a, i, g'

Oa

K2 J Bx;

+-,' Q "((pr")'+(OI,")'}dV
a, i &

The corresponding decompositions of the
momenta are given by +0 2 ~(p "(—~+x')p"

I

pr
0 = (4pr) **

pr —dV,
ax;

Oa f Bq Bg
07ij (8pl) *Jl Mi IO& d V,

Bxg' Bxi

Oa Oa Oa
with Io;, = —coj, =—Ioi, (i, j, k cyclic);

+P,' (—6+ji')P }dV, (18)

and the potential energy in the zero state F.' is
(13) given by

1~'= 2 —((0 '")'+(4*' )'}
, ' 2I

+ {fIjI,.O»+~egg, 0»
}Ir,.ra, . (19)

B$
d V=0,

Bxi

l3 g 19'
00 a —00 d V=0;

Bx&' Bx '

f BUBU
Nb;;=4 ~

—d V;
ax, ax,

(14)

(15)

The total angular momentum of the field and
the nucleon is

( ~pI.;;=—P (x, —x, }
dV. J q axj 'ax, )

f &6 rico lt ooo(x, —x, }
dV

», P ~ 0 IjXj OjXi )

8 U(x)
s. (x) =(4pr)l Q 7rip +—pr' (x),

i ~xi and the part L; due to the zero state of the
field is

p. BU(x) Oa Oa Oa Oa

oo, (x) = (2or) ' Q OI; j — +OI; (x). (16) I ij —Z(poi prj Pj &' )+Z(4"00Ijp 4'jpOI jp ) ~

j Bx; a a, k

or

The commutation relations are

iLpr' q'j'~]= 8 e8

I . .0 —g {+.0»&.pa +,Oa& Oa

+tt, .pa&,0» p 0»OO Oa} (21)

Now 8' takes its minimum value when
Oa Ojl

iL00'j Arj=~ e(~'p~jI ' jIIil)jp (17) Iji
0» =fIe,a, P,pa =V2gIe, »; (22)
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NII= s' —'(f'+-2g')I
4D'' =(f'+ g') '{fo'"+ g4'"}

+ Oa —(f2+2g2) —-'{V2g~ Oa fP Oa} .
(23)

~'*f pBU+ Q L" Peg ~ 2r'dV
D(f'+2g') ''- p.

+ —, Q I-" p
{ VLrXep],co„' dV

m"g

D(f'+2g') *'

with the inverse transformation

+ oa —(f2+2g2) —I {fy Oa+V2g+ oa}

p.oa —(f2+2g2) —-',

{~egg&, oa f@ Oa
}

(24)

+2 2 J~{( ' )'+( '")'}dU
a, i

1
+ Z (V')' (35)

2I a P

The corresponding transformation equations for
the momenta are

II' =(f'+2g') '{for—' +&2goo;0 },
Q'a= (f'+2g') ~ {v2gor f(0'a}—. (25) where

s2 1 g (LooaP) 2 6

a, P
The terms which do not inHuence the isobar
separation have been omitted; in particular the
terms due to +,' and 0,' which describe free
mesons. By shifting the origin of x' and co,

'

according to

with the inverse

Or a=(f'+2g') i{f11 +&2gQ,'a},

60 oa (f2+2g2) —-', {V2giIoafQ , oa}
(26)

Then we have

so that it is convenient to introduce new vari- mation, we obtain for the Hamiltonian
ables defined by the orthogonal transformation

where

0 00 01
Li; =Li;+Li;,

00I,,=P. {C,O-II;0- —4,0-11,0-},

01
{+ OaQ, oa @,OaQ .Oa

}

(27)

(28)

(29)

or'f
7r' =7r'"— Q LooaPe. P

D(f'+2g')' p

8 II 3r7 $/800;

Bx, J'(V $) 'd U
(36)

As in P-D, we write

@ oa —De,a+ Q rlaeeP, (30)

where g
t'=—gt', ei are the components of an

orthogonal matrix introduced in Eqs. (51), (51a)
of P-D and can be considered as components of
an orthogonal system of three unit vectors, and
according to (22)

7l'g
Mi =COi + P LooaP

D(f'+2g')*'p
3V$

X e'X{ &II—
E J'(V() 2d V)

we can get rid of the terms linear in x' and
and of the order 1/D, and still retain the

orthogonality relations (14) { cf. P-D, Eq. (75)].
The final result for the isobar energy is

and
D = (f'+2g') lI;

II„' =Pp{P P+(1/2D)L" P}e,P,

(31)

(32)

s23 4m

4 (f'+2g') J'(VX)odU
where p t'=—pt' and

00L" P=g e e2PL;;= Dg{e; IIP ePII' }
——(33)

and the isobar separation AE is given by

4~ 1

J'(VX) 'd V a(34)2LP Q" ]=
2 (~ vapo+ ~ 6~pe)

3 {s(s+1)——,'} 42r
DE=—

4 (f'+ 2g') J'(V X) 'd U
In (32) and (33) terms of higher order in g P/D
have been neglected [cf. P-D, Eq. (72)]. pap Now for a small source (~a and pa both&&1)
and g & satisfy the commutation relation

(37)

Lcf. P-D, Eq. (57)]. If we insert these new
variables in (18) and perform the S-transfor-

6 We have s instead of L as in P-D since we want to
use the usual spectroscopic notation in the discussion of
the two-nucleon system in Section IV.
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[cf. P-D, Eq. (80a)], hence

3Q
AZ= t s(s+1)——,

' I. (38)
4(f'+2g')

We obtain the result (80a) in P-D for pseudo-
scalar meson alone if we put g=0 and f=g/&2'
For the vector theory alone, we put f=0 and
find that in this case DE is 1/2 of the value in

the pseudoscalar theory (for the same coupling
constant). For the Mpller-Rosenfeld mixture,
we put f=g and find hR in this case is 1/3 of
the value in the pseudoscalar theory.

III. NUCLEAR FORCES

A. Pseudoscalar Theory

We make the simplifying assumptions that
the source size a is small compared to both K

and the distance r= ~xi —xii
~

between the two
nucleons. Let Ui(x) and Uii(x) be the source
functions for particles I and II, respectively,
and normalize them according to

sources i.e. ,

where r=
~
xi —

xii ~.

Q2 (g—«r)

l9Ã$ '~X' E r ) (44)

p (x) =(4m) —l P pg.;&g;(x)+y' (x), (46)
A, i

where y' satisfies the condition

8UA

J
—IV=0 for A =I, II,

~xi
(47)

To obtain the interaction energy between two
nucleons, it is sufficient to, consider j ust the
potential energy of the system E which is

Z=Q J"q ( 6+K—')q dV

P By—(4')'f Q
~

og—;rg Ug(x)d V, (45)
A, a, i~

where the subscript A is summed over I and II.
As in S-D, Eq. (71), we split the field as follows:

U~(x)d V= 1 for A = I, II. (39)
and where the functions (A i span the linear
subspace of the functions BXq/Bx, in such a
way that

'I he potentials Xi(x) and Xii(x) which they
generate according to

DUB
$A.——d V= ~AB~ij.

8xj

(—6+v')X~ ——4irU~ for A = I, II, (40) From these relations we obtain

are given by
g
—«R

Xg(x) = U~(x')—d V',
R

where R= ~x —x'~. Also let

(41)

o r 8UA
y~, =(4ir)

J y —dV.
~xi

(49)

The above conditions are fulfilled up to terms
of the order J;;/I if we put

f BXA BUA
I8,,= I

— d Vfor A = I, II; (42)"J a., a-j
| DXA ~UB

J,,= J~ d V for A, B= I, II a.nd A WB
~xi ~xj.

(43)

J J UI(x) Uii(x')
ax,ax, g R )

It is evident that J;j=J;;. Now I is of the order
a—', and Jij is for small r of the order r ' so that
in the following we can neglect all quantities of
the second and higher orders in J;;/I. 7 More-

over we can substitute for J;j its value for point

'A similar situation holds for the integral J'(BXy/coax;)
X (Bop/8x;)d V in comparison to J'(BXp/Bx;) (BXy/Bxi)d V
which are of the order of magnitude r ' and u ', respec-

1 DXA 1 8XBb;=-I Bxi I'; Bx;

for A, B=I, II and A WB. (50)

In terms of these variables, the potential energy
(45) becomes

Oa 2 Jij Oa Oa Oa

(Px') ——Fi.Fi—r~ +f 2
Aa,

+Q I y' ( —6+ii')q' d V. (51)

tively. It is shown in S-D that, due to this circumstance,
the neglect of the dependence of the isobar levels on r is
justihed as long as the latter integral is large compared to
the former.

The substitution of the point source is in reality not so
simple and holds only for distances r considerably larger
than a. This was pointed out by Oppenheimer and Serber.
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The justi6cation for the assumed decomposition
of q lies in the circumstance that no cross terms

between )j)A; and )j)'a occur in (51). i))' desc. ibes
free mesons and can be omitted for our purpose.

For the case of infinite separation of the two
nucleons (J';j=0), the lowest eigenvalue of the
interaction energy is obtained analogously to
the treatment of the one-source problem in P-D
t cf. Eqs. (82), (64), (65), (67) there). We put

v A =fIeA; (52)

where the eA; satisfy the conditions

R a P
a eAieAj Bij) Zi eAieAi Ba)X)

for A = I, II; (53)

and by selecting the state where

Q oA;rA eA.;= —3 for A=I, II;

we obtain for A = I, II
0.A' vA ———1 for each value of o.

with

where

Za (eI 'eII ))
3

A =g —(ex x) (exx'x) —(ex en ) (62)
2

with x =xr —xsam.

It follows from the method of derivation that
our theory differs from the usual perturbation
treatment in the weak coupling theory only in
the fact that xrArA is replaced by eAa (A = I, II).

As stated at the beginning of Section II, the
symmetrical theory is obtained by letting 0. take
the values 1, 2, 3; the charged theory for a taking
the values 1, 2; and the neutral theory for o,

restricted to the single value 3.

B. Mixed Theory

As in Part A we consider two source functions
normalized according to (39). They generate
the potentials according to

for A = I, II; (63)
(—6+xi') YA

——4)r UA

&A ~z &Ai&As

A»'+~ A» a0 ««&P (5&)

To obtain the minimum value Bo of I to the
first order in J,;/I in the absence of free mesons,
we simply insert (52), (53), (54) in (51). The
result is'

g
—«'R

XA(x) = I UA{x') d V'
R

pg

YA(x) = t UA(x') xf V'
R

for A = I, II. (64)

3f'I f' 2 Ajex;exi j,

or omitting the 6rst term which gives the
self-energy, we have for the interaction energy

K Ix= f'2 Aje—x,exxj. (59)

Inserting for J';j the expression (44), we obtain
0

&I xx=f' P (ex'&)(exx'&)(e ""/r) (6o)

and if the diAerentiation is carried out,

K 1
Bx II ———I' e "'"+A {3+3)ir+)i2r2)e—""— —

3 r r3

If we had taken a more general expression

QAi = ~P(fl~aP+gA )Ai

instead of (52), we would have obtained in the expression
for 8' terms in gA & which are of the relative order J;;/I,
and hence give corrections of the order (J;;/I)' to 8'.

P Bxg BUg l 8Yg 8'
Bx, Bx; J Bx; 8x;

for A = I, II; (65)

I BXA BUjx B' (e '")
dv= —

l l
Bxi Bxj BxxiBxIj 4 r )

for A, 8=I, II and A NB. (66)
~' BY BU B~ (e «')z

Bx, Bx) Bxx,Bxx) 0 r

The potential energy of the system is given by

f
(4x)'f 2—

A, a, i, j~
1 (BP, B)I);a'i

+-l — 10'A')» UA&Y) {6&)
2 E Bx; Bxj)
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where we have assumed the equality of the
coupling constants.

As before, we split the 6eld as follows:

e (&)=(4zi) ' 2 eA'4 (&)+e' (&)

To obtain the minimum value of B to the
first order in J;,/I and K;;/I, it is sufficient to put

for 2 = I, II and i, j, 0 cyclic, (74)

0'"(~)=(8~) '* Z 4A*,nAj(ji)+4'"(~);

with the orthogonality conditions

(68)
Oa Oa Oa a

O'Aij O'Aji =O'Ak ~~fleAk

n p p e
k Zi {0Ai TAeAi+ITAITAeAi }—hap

for 2 = I, II. (75)
8Ug

' (p' —IV=0
Bxi

We find the interaction energy to be

8Ug
IE V=0

aJ Bxj
and inserting the expressions (66) for J,;, K;,
for point source, we obtain8 Ugg

t b.' d V=4ab'z.
Bxj

(7O) +I II f' g (ei'&)(eII
E

8Ug d~=4a~. j"aXj

foi 2 =I& II; (69) 0 a a a a
&I zz= f Q—{(J;; K;—;)ez,ezi K:—*ei ezz }, P6)

Then O, & ~U~
pA, ——(4zr)~J p If V

Bxi

+(«'«I )ZI { I (77)
E r

The evaluation of the differential operators
for A = I, II, P1) y,elds

O

QA, ,=(8zr)l ~[ p.; — zf V
aJ Bxj

where we do not assume yet the antisymmetry

of fA, , in I', and j.The above conditions are satis-
fied up to term linear in J',;/I and K,;/I by

1 BX& 1 BX~
O' ——— Q J;,I Bxi I2 j 8xj

for A, 8= I, II and A AB. P2)
1 BFg 1 BVg——PK,jI &xi P j Bxj

The potential energy now becomes

{(kA*) +2(4A. ) }
21 A, a, i, j

Oa On On Oa

{JijO'Ii ijpz Ij+ 2 Kij4'I ig'I Ijk }
a, i, y, k

Oa ~ Oef Q ITAiTA eiAi+ izAijTA O'Aij
A, a, i, j

&z zz= q {I'J(r)+~K(r)} (78)

with I' and A as defined in (62) and with the
radial functions

fk
J(r) = (k'e ""—+2jz'-e &"), -

r

K(r) =—{(3+3er+k'r' )e
r3 —(3+3jzr+jk'r')e "'}

It is to be noted that for small r, both 7 and X
behave as r ', and K(r) =—0 for jz= ji in agreement
with the results of Mdller and Rosenfeld for the
weak coupling theory.

The remarks made at the end of Part A also
hold in this case; i.e., by letting n take the values
1, 2, 3; 1, 2; or 3, we obtain the symmetrical, the
charged, and the neutral theory, respectively.

IV. THE DEUTERON

A. Classi6cation of the States

+ZJ~{e' ( j-k+Ii )P

+0'"(—~+j ')0'"}

The stationary states of the one-nuclear sys-
tem in the symmetrical theory can be described

(73) completely by the numbers s, rji, and Ti which
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are the eigenvalues of the following operators:" respectively, where

s'=t'=s(s+1), s& ——rn, t'= n (80)

s is a positive half-odd integer, and m and n are
half-odd integers such that —s—m, n —s. It is
to be noted that there is complete symmetry
between spin and isotopic spin.

For a system containing two nucleons, the
Hamiltonian is

L' aJI=—P,'+ + —{sr'+sr'' —-', I
M r' 4f'

The first part gives the kinetic energy of relative
motion, " the second the isobar energy, and the
third the interaction energy. The motion of the
center of gravity of the system is not considered,
and of course this is in the non-relativistic
approximation.

Let us first consider states with no orbital
angular momentum (L=O); then there is still
complete symmetry between spin and isotopic
spin as in the one-nucleon system. Their opera-
tors S= sq+s~~ and T = t~+t~~ are still constant,
but now their magnitude need not be the same.
Hence the stationary states can be described by
the eigenvalues S, T, BID, and N of the following
operators:

S' =S(S+1),
T'= T(T+1),
S3 ——3f,
T'=N,

(82)

where S and T are positive integers or zero such
that

~
sr —sn

~

—S, T=(sz+sn), and M and X are
integers or zero such that —S~3f~S and
—T~N» T. If there is an orbital angular
momentum L, then the spin angular momentum
S is no longer constant, and it has to be replaced
by the total angular momentum J given by

J=L+S, (83)

and the eigenvalues S and SIC by J and J~,
"Cf. P-D. Ke use s instead of j there to denote the

eigenvalue of the spin. Also we denote the spin operator
by s instead of L as mentioned already in footnote 6, and
the isotopic spin operator by t instead of T.

"%e identify M with the empirical mass of the nucleon
from which the part of the mass due to the meson field has
been subtracted. It was pointed out to one of us by Dr.
Schwinger that in the neutral theories the latter is a tensor
with respect to the direction of e'. In the symmetrical
theories, however, the field mass is also a scalar.

J'= J(J+1), JM=tu+M. (84)

In addition there is the quantum number pro-
vided by the parity, the eigenvalue of the spatial
reHection operator. The Hamiltonian (81) is also
invariant under any rotation in the isotopic spin
space. Such a rotation leaves the sA; unchanged

a
and transforms the t~ and e~; (for each i) in the
same way. In particular, a rotation which
changes the sign of the 3-component, as for
instance the rotation about the 1-axis through
180' which results in the transformation

II uz, s(r)uz, s(r)dr=1;
z„s~o

(87)

Y'zzu(8, y) is the normalized spherical harmonic;

~A ~~A ) ~A ~ 4 y ~A ~ 4 7

(85)
@A ~eA eA ~ eA eA ~ eA

will turn out to be very useful. LNote that this
transformation conserves the commutation rela-
tions satisfied by the e; given in (135) of the
Appendix. g The transformation (85) multiplies
the spin function by a phase factor e'~~""",and
changes the sign of nq, nq~, and N. Thus the
operator shows the degeneracy in the energy
levels of the excited spin states which differ only
by the sign of N. In particular for the case
N=O, that is for the deuteron, the phase factor
is unity, and the transformation does not change
the state to which the spin function belongs.
Consequently this operator provides another
quantum number which is the signature of the
spin function under the substitution n~~ —nz,

nn —+—
nrem

Kith the aid of these quantum numbers the
complete wave function of a stationary state
can be written in the form

uz, s(r)e(r8y JTJg Xr)= P c
L, S

LM+M =J~
LSS

&( Yz (0, y)" (S, T, 3E, N), (86)

where c~ is the normalized coefficient of the

Clebsch-Gordon series; uz, s(r) is the radial
function which we normalize, for bound states
where this is possible, according to
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(88)"(S,T, M, N) =X(S, M) Z(T, N),

$A (sA mA nA) XA (sA mA) I A (sA nA)

for A =I, II; (89)
and

S
X(S, M) = P c~rmrr{xr(sr, mr)xrz(szz, mzr)

sI j sII
mz+mzz =M

~Xrr(sz, mz)Xz(szz, mrz) },
(90)

T
Z(T, N) = Q c z {rr(irsnrr)err(srr nzz)

szz sJZ
nZ+nzZ =N

&err(sr nr)I r(»r, nrr) } ~

The symmetrization of these expressions in

particles I and II is necessary for the reason

given above. However since I' and A have matrix
elements between states with values of sz and szz

and "(S, T, M, N) is the spin-isotopic spin
function (we shall refer to this hereafter simply
as the spin function when no possibility of
ambiguity exists). Of course the numbers L and
5 do not determine the radial functions uniquely
since there is still the radial quantum number,
but in the present work we consider only the
radial functions belonging to the lowest energy
level. In accordance with the exclusion principle,
we assume + to be antisymmetric in the inter-
change of particle I and II. Then since the
interchange of the space coordinates gives rise
to a factor ( —1)c, the spin function . must be
symmetric or antisymmetric in the interchange
of particles I and II depending on whether L is
odd or even, respectively. Further since the
parity quantum number is ( —1)c, any state is

restricted to spherical harmonics of even or of
odd orders.

In order to evaluate the eigenvalues of the
operators F and A, it is necessary to evaluate
the matrix elements of e; in the (s, m, n)
representation and express the spin function.(S, T, M, N) in terms of the one-nucleon spin
functions &z(sz, mz, nz) and $rz(srz, mu, nzz). The
calculation of the matrix elements of e, is

given in the Appendix. The expression for

(S, T, M, N) in terms of ]r(sr, mz, nz) and

(rr(srr, mzz, nzz) is obtained by means of the
Clebsch-Gordon series. In fact they can be
expressed as products of the spin and isotopic
spin functions T sz+szz —T T

cmzmzr = (—1) C—nZ —nzZ z (92)

and to remember that the operation (85) on
the spin functions (91) for the deuteron simply
replaces nz and nzz by —nz and —n», respectively.

The spin functions (91) are also eigenfunctions
of the operator Fo, and its eigenvalues are found

by simple calculation with the matrix elements
of the e, . They are given by the general formula

{S(S+1)—sz(sz+ 1) —szz(srz+ 1)}

X {T(T+1)—sr(sz+1) —szr(srz+1) }
(93)

4sr(sr+1)srz(szr+1)

Thus if s is the smaller and t the larger of the
two numbers sz and szz, we have

s s(t+1)
s+1 (s+1)t

(94)

which differ by 1, sz and szz are not constants of
the motion, and hence the series (90) are actually
infinite series, and the calculation of the eigen-
values of I' and A are very complicated.

We therefore make the following approxima-
tion: we replace F and A by Fo and Ao which are
the parts of F and A diagonal in sz and szz.

This treatment is of course rigorous in the limit
of infinitely large isobar energy. We shall show
for the ground state of the deuteron, by treating
the off-diagonal parts I"I and A. I of I' and A as
perturbations, that even when the isobar energy
is not too large, the effect of the perturbing
terms is small. This justifies our method of
approximation at least of the ground state of
the deuteron in which we are interested.

In the unperturbed system, sz and szz are also
quantum numbers of the system, and hence,
combining (88), (89), and (90), we obtain for the
spin functions of the unperturbed system

S T
Z(zr& szz ) Sz) T) M) N) Q cmr~nzrcmr11rr'

mz+mzz =M
nz+nzz =N

X {b(sr, mr, nz) err(srz, mrr, nzz)

&&rz(sr, mr, nr)Pr(srr, mrz, nrr) } (91)

It is readily seen that these spin functions are
eigenfunctions of the operator given in (85) with
the eigenvalues (—1)"+"r r. It is only necessary
to use the following property of the Clebsch-
Gordon coefficients:
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TABLE I ~ Classification of the deuteron states.

1/2
1/2
1/2
1/2
3/2
3!2
3/2
3/2
3/2
3/2
3!2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2

(I, I I) (n —p —n)

+
+
+
+
+
+
+

+1—1/3—1/3
+1/9
+5/9—1/3—1/3
+1/5
+1
+11/15
+2/5—3/5
+11/15
+121/225
+11/75—11/25
+2/5
+»/75
+1/25—3/25—3/5—11/25—3/25
+9/25

so that for large sz and szz, I'o lies between —1

and 1. Furthermore, Fo is negative when either
S or T is near the maximum value sz+ szz and
the other near the minimum value ~sz —&zz~,

while Fo is positive when both S and T are either
near their maximum or near their minimum
value. This result is very useful since -', I'pj(r) is
the dominant part of the interaction energy, and,
in general, the sign of I'0 determines whether the
interaction is attractive or repulsive. Since the
operator Ao contains angular coordinates besides

the operators e~;, the calculation of its eigen-
values is too complicated in the general case,
and they are computed only for the special
states considered in Part B.

The first few states of the deuteron system
are classified according to their quantum num-
bers in Table I. The fifth column under (I, II)
indicates the symmetry of the spin function
under the interchange of particles I and II.
For sz Aszz, both symmetric and antisymmetric
functions are possible for each value of S and T;
but for sz ——szz, only a symmetric or an anti-
symmetric function is possible for a given value
of S and T, depending on whether (S+T) is
even or odd, respectively. The sixth column
under (n~ n) indic—ates the signature of the
spin functions under the operation (85). As
mentioned above, it is positive or negative

depending on whether (sz+szz —T) is even or
odd. The last column under FD gives the eigen-
values of this operator.

B. The Ground State

The lowest state of the unperturbed system is
for sz ——szz ———,', and for the spatial part of the
wave function to consist mostly of the S-wave
(L=O), we must consider antisymmetric spin
functions (in the interchange of particles). We
see from Table I that both the singlet (S=O)
and the triplet (S=1) states have I'p ———o.
Thus these states will evidently be bound states.
Now the tensor interaction given by Ao vanishes
for the singlet state, and we shall find below
that it contributes additional attractive potential
to the triplet state. Thus in agreement with
experiment the ground state is the triplet state.

To obtain the matrix elements of Ao, we use
the matrix elements of the e; and the expansion
(91) for in terms of &z and gzz. The result is"

4(2zr)
*

Ap p(1, 0, M) =—
3
1

X P &pr pr" &p o(1, 0, M )
M'+M"=M

(95)

292
&o&o('SM') = &o( Dztr')——

3

243
A pZp('D~z) = -'g ('DM') — Zp('Sprz).

3

(97)

No higher values of the angular momentum

"Instead of writing the spin values sz and szz as in
(91), we now use the subscripts 0, 1, and 2 to denote
quantities belonging to the states sz = szz = -,'', sz = 2, szz = 2,'
and sz =szz= g, respectively. Also we drop the designation
0 for E since we do not consider states where E has values
different from 0.

Now if we use the spectroscopic notation to
designate the states; i e. write 'SM' for the
triplet S state with J= 1 and JM = M, 'DM' for
the triplet D state etc. , and if we let Zp('Spr"),
Zp('Dprz), etc. denote the spin and angular parts
of the wave function, we have

Zp('Sprz) = (4pr)-l-p(1, 0, cV),
Z M' (96)

&o('Dpr')= Q rpr pr" &p .o(1, 0, ~ ).
M'+M" =M

Thus combining (95) and (96) we obtain
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occur in this state, and we have

up(r)
4'p(r, 8, 27; 1, 0, M) = Qp(3SM')

imp(r)+ po(3DMi) (98)

For the second excited spin state, sI ——szq ———,',
the states which combine with the ground state
(S=i, T=O) are only the triplet and the septet
terms with T=0 (cf. Table I). The spin-angular
functions which occur in this state are

Z2(3SM') = (477)
—l=2(1, 0, M),

Inserting this expression into the Schrodinger g 3D ],
equation M'+M" =M

(99)

and using the expression (81) for II, we obtain
with the aid of (97) the simultaneous set of
dilferential equations for up(r) and vp(r)

M'
&2('DM') = 2 pM M" &2 =. 2(3, 0, M"),

M'+M" =M

1 M'
& ('GM')= 2 pM M I'3 =2(3, 0, M")

M'+M" =M

(102)

d Qp 1 2&2—+M Eo+ J(r) uo=— MK—(r—)vo,
dr 9 9

d2vp 6vp 1 2
+M Ep+ J(r) ——K—(r) vo

dr2 r2 9 9

2v2= ——MK(r) uo
9

The operator Ap applied to these functions gives

(ipp) the following results:

4+7 34+2
+OZ2('SM ) — Z2( DM ) Z2( DM )

25 75

12+6 4/2
&o&2('DM') = &2('GM') — ~2('DM')

25+7 25+7
Thus we see that the tensor force contributes
additional attractive potential. The above equa-
tions are to be solved with the normalization
condition

(u 2+v ')dr=1,
Jp

(101)

and the boundary conditions up, vp
——0 at both

r =0 and r = ~. The solution of these equations
will be studied in Part C.

First we want to see whether (98) is a good
approximation to the actual ground state wave

function; i.e. , to see whether the approximation
we have made in taking only the parts of I' and
A diagonal in sl and s&z is justified. We do this

by calculating the matrix elements of the pertur-
bations F~ and h. ~ between the state described

by (98) and the other states. The first excited
spin state occurs when one of the particles has

spin 3/2 while the other has the unexcited

value 1/2. We see from Table I, however, that
none of the states for this case has the same

eigenvalues as any of the states with s~ =s&~ ———,',
and since neither I'& nor A& change these quantum
numbers (except si and sn), both I'i and Ai have

no matrix element between these states.

34 34+2
+—~2('DM') — —&2('SM'),

75 75

12+3 144
A Z p(D2M )= Z2( GM )+ Z2(DM )

175 175
(103)

4+2 4/7
Z2 ('DM') + Z2 ('SM'),

25+7 25

6 12+3
+0+2( GM ) +2( GM ) +2( DM )

7 175

12+6
+ +2(DM ) ~

25+7

Writing the wave function in the form

232(r)
+2(r, 8, 32; 1, 0, M) = Z2('SM')

r

+ g (3D i)+ g (7D I)
s2(r) w2(r)

r r

+ Z2('GM') (104)
r

we find the following set of equations for the
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radial functions:

d Q2 3Q 11
+35 Z2 — —J—(r)'u2

df 2f' 15

2
MK(r) {17+2 v2 —6+7 w2j,

225

d'v2 6v2 3c ii 34
+cV E2— J(r)———K(r) s,

& f 2f' 15 225

element of the perturbation

H, =-', {r,J(r)+A,K(r) j

between these states, we have

1 r" +5
(2jHj0) =— j', {u2uo+4~oj J(r)

3 p ~ 3

2 1
+ @gap+ v2(/2 Qo —sp)

3+5 3+5

(107)

2 6+2 18/6
cVK(r) 17+2 u2+ w2 —— y2,

225 7 g7
d 812 678g 3c——+M E2-
t& 2f'

1 48
+—J(r) — K(r) w.

5 175

(105)

5
FgZO('S~') = Zg('S~'),

3

5
r~z(&('D ') = z, (3DM&),

3

g7 g2
A1ZO( S~ ) — Z2( D~') + Z, ('DM')

+5 3+5 (106)

3+6 g2
~i&0('D~') = — &2('G~')+ Z, ('D~')

+35 +35
1 g2

&2('DM')+ Zg('S~')
3+5 3+5

Hence if we write (2 jH j 0) for the matrix

g2 3+3
MK(r—) ——g2 up+ —s,+ y, ,

75 g7 g7
d'y2 20y2 3c 1 2

+M Z2 — + J(r) K—(r) —y,—dr' r2 2f' 5 7
H

v'6
cVK(—r) ———v, +—w, .

25 Q7 Q7

No higher spin states need be considered since
neither I'j nor A~ has matrix elements between
states whose spin value differ by more than 1.
Hence the excited state considered above is the
only state which combines with the ground
state (98).

To calculate the matrix elements between
them, we have

j4'Oyj dV 0.2 (109)

by using numerical values for the constants a, f,
~ and p which will be found in Part C and for
isobar separation of 20 Mev. Thus the correction
is quite small, and it will not alter appreciably
the results obtained for the unperturbed ground
state.

On the other hand, if the state (105) is a
bound state, the e8ect of the perturbation is
proportional to the ratio

(2 j Hj 0)/(Eg —EP)—(2 j Hj 0)/B;„b (110)

where F;„b——3a/2f' We would cer. tainly obtain
an upper bound for (2jHj0) if we insert in

(108) +o, &o for u2, v2 and neglect the other small
quantities. This gives for (2 j Hj 0) a value a few
times the binding energy of the deuteron,
Eb a =

j Bo j
Hence in this case the approxima-

Ng(7g'p —Q 2 "do)
35

3/6
g.vo K(r) dr (.108)

/35
From (105) we see that for the dominant S

part N2 of the wave function the direct interaction
gives rise to a repulsive potential 11/15J(r).
The tensor force gives rise to an attractive
potential when coupled with the triplet D part
v2, and a repulsive potential when coupled with
the septet D part m2, but these contributions
will be small compared to the diredt interaction.
Hence it seems that the state (104) will not be
a bound state. Assuming this to be the case,
we can estimate the correction to the wave
function (98) due to the perturbation (107) by
approximating the wave function (104) with a
plane wave. If we denote this correction term
by +p~, then we find
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tion is justified since the upper limit of the
ratio (110) is about 0.3, and actually it will be
much smaller.

In either case, the validity of the approxima-
tion depends on the smallness of the quantity

value for Q. Let us first simplify the equations
by introducing the dimensionless variable

x=2(M{Epl)&r (113)
which transforms (101) to

Ebind/Eiaob ~

C. Determination of the Constants

d'u!dx' —{ ', j(x)—}—u= &—2k(x)v,

d'v 6v———{—,
' —j(x)+k(x) }v= —&2k(x) u,

dg2 g2

(114)

In the present theory the following constants
occur: the size of the nucleon c, the strength of
the coupling f, and the masses of the pseudo-
scalar and the vector mesons, ~ and p. Of these,

f must be chosen so that the binding energy of
the deuteron is equal to the observed value of
2.17 Mev, and ~ equal to the observed value of
the mass of the meson of 200 electron masses
(we take for convenience a=177 m). The tensor
force depends on the ratio of the masses u/"
and vanishes for p=if. Thus we shall choose p,

so that the quadrupole moment of the deuteron
comes out equal to the observed value of
2.73 X 10 "cm'. However we have the following
conditions to satisfy for the validity of our
calculation:

(1) small source, i.e. , a'«1;
(2) strong coupling, i.e. , (fa)P&)(az)P;

(3) small effect of the higher spin states on the
ground state, i.e. , Eb;„d/E;««b«1.

It is not possible to say a priori whether these
conditions can be satisfied with the above
determination of the constants, but as we shall
see below, this is possible.

In order to determine f and u, we must
consider the differential equations (100).f is to
be determined so that the lowest eigenvalue Eo
of these equations is equal to —Eb;„&, and p so
that the quadrupole moment"

V2 f" ( 1
Q=—

~
r'l uv ——v' }dr (112)

10 Jo E 2~2 )
agrees with the experimental value. Since the
Eqs. (100) cannot be solved in terms of any
known function and since the conditions deter-
mining f and u are interdependent, we have to
assume some reasonable value for u, solve (100)
approximately, and see whether it gives a good

"Since from now on we consider only the ground state
wave function (98), we drop the subscript 0.

with

7
j(x) = {n—'e «*+2P'e e*},

x

=27
k(x) =—{(n'x'+3nx+3) e

X3 —(P'x'+3Px+3) e ~*},
where

K P

2(&IIEoI)' 2(~IEoI)'
2
f'M(M IE—„!)

(116)

The normalization condition (101) becomes

I' (u'+v')dx=1,
0

(117)

and the quadrupole moment (112) becomes

V2 p" t' 1
Q=—

il x'l uv — v' }dx,10), i 2vr )
and it is now measured in units of (4M}Epl)

We have made an estimate of the constants
by carrying out a variational calculation to
obtain the minimum value for y, and approxi-
mate expressions for u(x) and v(x) in order to
calculate Q. Hulthen" has shown that for the
simple Schrodinger equation with the potential
e */x, a good approximate solution is

{a,(1 —e—«)+op(1 e*)'}e —«"—
Hence we have taken this expression for u(x),
and an analogous expression for v(x). That is,
we take

u(x) = {ai(1 e*)+a—.(1 e*)'}e*"—
(119)

v(x) = {bi(1 e*)4+bp(1——e *)'}
t' 6 12'

Xl 1+—+—}e *"
x xp)

'4 L. Hulthen, Arkiv for mat. astr. och fysik A28, No. 5
(1942).
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They have the required behavior at both small equalities in the conditions given above hold by
and large values of x. We insert these expressions a factor of about 10.
in the energy which is

D. The Magnetic Moment
1 " d'I d2v 6v'

n +v — ' +n'j (x)
4 ~ o dx' dx' x'

+2V2uvk(x)+v2{ j(x) —k(x) }]dx, (120)

and determine the constants a~, a2, b~, and b2 so
that y is a minimum and the normalization
condition (117) is satisfied. The calculation is
tedious but straightforward, and we give only
the results. Taking } ED} =2.17 Mev, «=177 m,
and p/«=2, we obtain

y =0.433, (121)

as =3.18, a2 = —2.01,
b =0.095, b = —0.072. (122)

(121) gives (f«)'=0.375, and the evaluation of
the quadrupole moment with (119) and (122)
gives Q=1.6X10 ' cm'. The latter seems to
indicate that the ratio p/«should be larger to
give the right value for Q. However, it is well

known that the variational method may give
quite good results for the quantity which is
minimized (in this case f), but that the use of
the approximate wave functions to calculate
other properties may give very bad results. In
our case this is quite possible since Q is propor-
tional to v(x) which contributes very little to
the energy, and moreover the main contribution
to Q comes from the parts of the wave functions
at large distances from the origin which do not
affect the energy very much. In fact the same
calculation made with p/«=3 actually gives a
smaller value for Q. Thus it seems that it is not
possible to obtain anything but a rough estimate
p/«2 without going into a much more careful
computation.

We can, however, show that the conditions
given in the beginning of this part can be
satisfied with our estimated values for the
constants. Now since E;„b=3a/2f',

Let us first consider just the part due to the
pseudoscalar meson. Inserting in the expansion
(46) the value corresponding to the absence of
free mesons (y' =0) and the lowest eigenvalue
of the interaction energy (52), we obtain with
the aid of (50)

f BXg
, Z e~,

(4vr)' g, ; Bx;
(125)

We have neglected terms in J;;/I in (50) since
they only give rise to higher order terms.
Putting (125) in the pseudoscalar part of (124),
we obtain

f t 2 ~Xxl ~ ( z ~Xel
4s g, s„,; & Bx; ) Bxb& Bx;)

( &BXz) 8 ( 2BXe)
8A,- t,'B-

Bx, ) Bxb & Bx;)
u ( 2 ~X~i-4x {"

axi ] 0 ~xi )
or

2 1 1 2

j&———p {e&,ee; e&;e» }-
4& A, B, i, j

BXA 82Xg 8XA
+4v8, b Ue . (126)

Bxi BxgBX& Bxi

The magnetic moment is given by

The calculation of the magnetic moment of
the deuteron is exactly analogous to that given
in P-D for a single nucleon. The current vector
IS~5

j = y'Vq' —y'&p'

+(4rr)&f g~ e~(q'r~' y'r&'—) U~

+g'x(v x q') —g'x(~ x ~')

+(4s)lf P~{(e~X&')r~'
—(e~ X g') r~'} U,i. (124)

Ebme 2(f«)' (Ebindl 0.0056

Z;,.b 3(a«) g «j (a«)
(123)

(127)
e

Mb&= — (xbj ( xj(b)d V, —
2J

Thus there is a region of values for a (and
consequently for E;„b) for which all the in-

'6 We have not written down here the terms which
would occur if the vector meson had an anomalous mag-
netic moment, but this will not change our results in any
way.
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with

2e
Mzz= QP;, (Azz ——Azz)

8~;, j
(130)

2 1 1 2 2 I 1 2

P*,= {ez'ezz; ez'ez—z;+ezzzez; ezzzez, —}. (131)

We see that I';; is antisymmetric in i, j so that
it has only 3 independent components. In order
to compute the component of M in a given
direction, we need the diagonal matrix elements
of the P,; in the (S, T, zifl, X) representation.
However the I';; change sign under the operation
(85) so that they cannot have any matrix
elements between states with the same signature.
Thus this theory gives zero magnetic moment
for the deuteron.

There is no need to continue the calculation
for the vector meson since the reason that the
magnetic moment vanishes in the above case is

so general that it is clear the same result will be
obtained in all cases of the strong coupling
theory.

Of course the existence of the tensor force
gives a magnetic moment due to the orbital
motion of the proton, but this contribution is

very small (of the order of a few percent of the
observed value).

and inserting (126) for jz, we obtain

2e 2 1 1 2 ij ij
Mz, z

———Q {eg;ezzz e—g,ezz, } (A zz A—zz, ), (128)
SX Ag;, j

where

BXA 82X~ BXA
xI +4m bj) Ug d V.

Bxi Bx~Bxj Bx;
(129)

In the double sum over A, 8 in (128), the
terms with A =8 give the moments of the indi-

vidual particles, and they are just the expressions
calculated in P-D. Since it was found there that
the moments of the proton and the neutron are
equal in magnitude and opposite in sign, these
terms will cancel out, and we need only take the

terms with A /B. Since A I, & is not altered by the
interchange of particles I and II, (128) can be
written

tion property. These results are due to the fact
that in these theories, any number of nucleons
can be arranged in a symmetrical configuration
in such a way that each particle interacts with

an attractive potential with all the others: in

the charged scalar theory by having the iso-

topic spin vectors of all the particles in the same
direction, and in the neutral pseudoscalar theory
by having all the particles lie in a plane with
all their spin vectors parallel and perpendicular
to this plane. In the neutral mixed theory such
configurations do not lead to attractive inter-
action between the particles. " In the sym-
metrical pseudoscalar and symmetrical mixed
theories, we have a system of 3 orthonormal
vectors e instead of a single spin or isotopic
spin vector for each particle. The only sym-
metrical configuration in these cases is obtained

by having all the vectors parallel, and the
interaction for this arrangement is repulsive.
Thus for these theories the potential energy will

be proportional to the number of particles and
not to its square as in the cases treated in S-D.

However, for the forces to have the saturation
property, it is also necessary that the kinetic
energy of the particles increase faster than the
attractive potential energy as the radius of the
nucleus decreases in order that there exist a
minimum for the total energy of the system.
This condition is fulfilled in the usual weak

coupling theory" since, if we denote by ro the
radius corresponding to the volume occupied by
each particle, the kinetic energy increases as
ro ', and the dependence of the potential energy,
of course, is the same as the behavior of the
radial potential function, but this cannot increase
faster than r '. In the strong coupling theory
however, the existence of isobar states increases

the number of allowed states in a given volume

of space with the same upper limit for the energy,
and this will change the dependence on ro of
both the kinetic and potential energies.

In order to see how this feature changes our
results, we have made a calculation similar to
that carried out in Bethe and Bacher. We make

V. HEAVY NUCLEI

It was shown in S-D that the charged scalar
and the neutral pseudoscalar meson theories

give rise to nuclear forces which have no satura-

"The second configuration gives attraction only when
K(r) &J(r). For p, /1~~2, this condition holds only when r
is greater than about 2/~ and for such distances, both J(r)
and K(r) are very small.

'7 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936), in particular f25.



THEORY OF MESON FIELD 415

EI,=E,. (134)

Moreover they are proportional to N/ro. E„on
the other hand turns out to be proportional to
N/(ro)t, and there does exist a value of ro at
which E is a minimum.

In the above consideration we have neglected
the Coulomb eriergy, and though this may not
affect the saturation property, it does bring in a
serious difficulty in connection with the stability
of heavy nuclei with high charge. As pointed
out by Fierz, "in a nucleus like that of uranium,
the transition of a proton or a neutron to a
particle with negative charge is energetically
favorable unless the isobar separation is about
50 Mev. However such a value for the isobar
separation is inadmissible since we would then
have to take the size of the source of the same
magnitude as the Compton wave-lengths of the

"H. Rademacher and F. Reiche, Zeits. f. Physik 39,
444 (1926), and 41, 453 (1927).

"M. Fierz, Helv. Phys. Acta 14, 105 (1941).

a Hartree approximation for the wave function
of the system with free particle solutions for the
individual wave functions, both for the spatial
and for the spin parts. The latter are hyper-
geometric functions and have been investigated
by Rademacher and Reiche" in connection with
the quantum theory of a symmetrical top. The
integrals which we need are all tabulated there.
We shall not give the details of the calculation
but just make a few remarks on the points which
differ from the calculation given in Bethe and
Bacher.

The number of particles N is now the product
of X~ and X, where X~ is the number of states
with kinetic energy less than kP/2M, and N, is
the number of states with isobar energy less
than (a/4f') Iso(so+1) —

~3 I. The total energy of
the system is

E=EI,+E,+E„ (132)

where E~, E„and E„denote the kinetic, isobar,
and the potential energy, respectively. If we
consider sp to be large compared to 1 and keep
only the highest powers of it, then N&, X, and
E&, E, depend on kp, sp in the same way. Thus
for (132) to be a minimum,

k '/2M = (a/4f')so' (133)
and

mesons. That is, the size of the source would
have to be taken as the same order of magnitude
as the range of the nuclear forces, and hence the
shape of the source would completely determine
the nature of the nuclear forces. Furthermore,
such a value also removes the main reason for
the introduction of the strong coupling theory;
namely, to give a small value for the meson
scattering cross section.

VI. CONCLUSIONS

Our results show that the theory considered
here suffers from two grave difficulties; it gives
a magnetic moment for the deuteron a value
only a few percent of the observed value, and it
predicts instability of highly charged nuclei.
These results seem to be fundamental properties
of all strong coupling theories, and there does
not seem to be any way of overcoming them.

These difficulties are not present in the weak
coupling theory, and it thus seems advisable to
go back and reconsider the arguments which
led us to take up the strong coupling theory in
favor of the weak coupling theory. The main
difficulties in the weak coupling theories are the
divergences due to the treatment of the heavy
particles as a point source, and the large scatter-
ing cross section of the meson. As already
pointed out by one of us," the first difhculty
can be overcome by using the P -process developed
by Wentzel and Dirac, and the second by using
the theory of radiation damping developed by
Heitler and Wilson. In addition, the weak
coupling theory developed in this way has the
advantage of relativistic invariance which the
strong coupling theory does not have on account
of the finite size of the source. Thus there is no
reason now to consider the strong coupling
theory, and we should go back to the weak
coupling theory.

As stated at the end of Part A of Section III,
the transition from the strong coupling to the
weak coupling theory can be made by a simple
replacement of the spin and isotopic spin vectors
in place of the vectors e . Thus the radial wave
functions for the ground state of the deuteron
in the weak coupling theory satisfy exactly the

"W. Pauli, Bull. Am. Phys. Soc. New York Meeting,
Jan. 22—23, 1943, Abstract No. 25: Phys. Rev. 63, 221
(1943).
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same differential equations (114) except that as
shown in the Appendix, p is redehned as

where f' is the coupling constant in this theory,
and there is no longer any approximation due
to the higher isobar states since they do not
exist. Hence the computation in Part C of
Section IV applies just as we11 for this case, and
we obtain (f'n)'=-,'(fn)' —0.042 for the strength
of the coupling. The ratio of the masses is
unchanged.

and

S+=$1+'L$2, S =S1—ZS2, S3
t+ = t1+Q2 t- = t1—~t2 t3;

(136)

APPENDIX

Calculation of the Matrix Element of e;

The e; satisfy the following commutation relations with
s; and t Lcf. P-D, Eq. (55)]:

Es ~j j= iejc i, j, k, cyclic;
ft, eP)=z'eP', n, p, y, cyclic.

It is more convenient to introduce the imaginary corn-
ponents

follows:

(s, m, n
f
e+

f
s —1, m —1, n')

= —(s, n
f
c

f
s —1, n')

f (s+ m) (s+m —1) ]&,

(s, m, n
f e+

f
s, m —1, n')

= (s, n
f
c

f s, n') [(s+m) (s—m+ 1) ]&,

(s, m, n
f
e+ [s+1, m —1, n, ')

=(s, n~c ~s+1, n')L(s —m+1)(s —m+2)1&,
(s, m, n

~
e3

~
s —1, m, n') = (s, n ) c ~

s —1, n') (s' —m') &,

(s, m, n
f
es [s, m, n') = (s, n

f
c

f s, n')m,
(s, m, n feP[s+1, m, n') =(s, n[c fs+1, n')

f (s+1)'—m']&,

(s, m, n[e fs —1, m+1, n')
=(s, n[c fs —1, n')Lls —m)(s —m —1)]&,

(s, m, n
f
e

f s, m+1, n')
= (s, n

f
c

f
s, n')

f (s —m)(s+m+1)]&,
(s, m, n

f
e

f
s+1, m+1, n')
= —(s, n fc fs+1, n')[(s+m+1)(s+m+2)]&.

Similarly to satisfy the commutation relations, the n-de-
pendence must be as follows:

(s, n
f

c+
f
s —1, n 1) =——(s f

b
f
s —1)L(s+n) (s+n 1)]&, —

(s, n [c+[s, n —1) = (s fb fs)L(s+n)(s n+—1)]&,
(s, n

f

c+
f

+s1, n 1) =—(s fb f
s+1)L(s —n+1) (s n+2—)]&,

(s, n [c'[s—1, n) =(s fb[s —1)[ss—n']&

(s, nfc'fs, n) =(s[b[s)n,
(s, n fc'fs+1, n) =(s fb fs+1)L(s+1)s— ']n&,

(s, n [ c f
s —1, n+ 1) = (s

f
b

f
s —1) f (s —n) (s —n —1)]&,

(s, n [c [s, n+1) = (s f
b

f
s) f (s —n) (s+n+1) ]&,

(s, n
f
c

f
s+1, n+ 1) = —(s f

b
f
s+1)L(s+n+1) (s+n+2) ]&.

8+ = 81 —82 +'L(821+812)

e+ =g1'+ g2 +i (82 —g1 )
e +=e1 +e2 —j(e2 —g1)

= P1 —P2 —Z(e2 +&1 )
$33~

e+3 ——e13+ie23,

e-3 = e13—~e23,

3+ —f31+jg32

83 = 83 —$83 s
1

'
2

(137)
3g 3+(g 3)2 1

e++e +e +e+ +2e3+e3 =4, (139)

To obtain the s-dependence, we use the normalization con-
dition which the e; satisfy $cf. P-D, Eq. (51a)j. Using
(137) we find

(1) for any e;~,

(2) for e

(3) for e3 ,

(4) for e

(5) for e;+,
(6) for e 3,

(7) fo. e;
—

,

s'=s —1, s, or s+1;
m =m —1.I

m m
m'= m+1;
n =n —1

S
n'=n+1.

Matrix elements which do not satisfy these conditions all
vanish.

The non-vanishing matrix elements of s; and t are:

For the matrix elements of the e; between the states
(s, m, n) and (s', m', n'), we have the following selection
rules:

and from these conditions, we obtain the equations

s'(2s —1)(s f
b

f
s —1)'+(s+ 1)'(2s+3) (s

f
b

f
s+1)'= 1,

s'(s —1)(2s —1) (s f
b

f
s —1)'+s'(s+ 1)'(s

f
b [

s)'
+(s+1)'(s+2) (2s+3) (s f

b
f
s+1)'= 2.

Then from the relation

(s e') = —t'
we have

(s f
b

f s) = —1/s(s+1).
Thus (140) can now be solved, and we finally obtain

(s i
b

i
s —1) = 1/s L(2s —1)(2s+ 1)1&,

(s
f
b

f
s+ 1) = 1/(s+ 1)L (2s+ 1)(2s+ 3) ]&.

In particular for s =s'= —,', we have the relation

(140)

(141)

(142)

(143)

(m [s+ fm —1) = [(s+m)(s —m+1)]&,
(m~s3~m) =m, (138)

(mfs [m+1) =[(s+m+1)(s —m)]&,

with exactly the same expressions for t+, t', t with m

replaced by n. Hence in order to satisfy the commutation
relations (135), we must have the m dependence of the e; as

(—,', m, nfe f-'„m', n') = ', (m, n fees -[m', n') (144)

which gives the connection between the strong and the
weak coupling theories; namely, the only difference for the
ground state is the occurrence of a factor -', in the interaction
energy which merely changes the values of the coupling
constants.


