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Theory of Complex Spectra. III
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The consideration of the phases of the fractional-parentage coefficients allows the extension
of the matrix methods to configurations with more than two equivalent electrons. Tables are
given for the parentages of the terms of p" and d". Applications are made to the spin-orbit
interaction of the d" terms and to the electrostatic interaction between the configurations d",
d" 's, and d" s . Errata in Part II are indicated.

)1. INTRODUCTION

HIS paper deals chiefly with the application
of matrix methods to calculations within

configurations with more than two equivalent
electrons.

It is known that the eigenfunctions built up
with the usual vector-coupling formulas' ar'e not
antisymmetrical as required from the exclusion
principle and they must be antisymmetrized
afterwards. But if certain of the electrons are
equivalent, these antisymmetrized states are no
longer normalized and some of them are linearly
dependent, so that the calculations become very
complicated.

An escape from these difficulties was proposed
by Gray and Wills' who started from the nlm, m&

scheme with antisymmetrized eigenfunctions and
computed the SL eigenfunctions using angular-
momentum operators and orthogonality con-
siderations. This method leads to an ortho-
normal system of eigenfunctions, but since it
gives up the vector-coupling formulas, the
matrix of each operator must at first be calcu-
lated in the nlm~m~ scheme and then transformed
to the SL scheme, and no use may be made of
the powerful matrix methods developed in
Chapter III of TAS' and also extended in a
previous paper of the author. '

In order to make full use of the above-men-

binations of the eigenfunctions obtained by the
addition of a further electron l to the con-
figuration 3" '. This possibility was already
indicated by Goudsmit and Bacher, 4 who intro-
duced the concept of fractional parentage; but
they were interested only in the squares of the
coefficients of these linear combinations and
calculated them with a procedure which, being
based on a diagonal-sum method, did not permit
them to separate the fractional parentages of
duplicated terms. 5 The consideration of the
phases of the coefficients of fractional parentage
will enable us to calculate them separately also
for terms of the same kind occurring in a given
configuration and to calculate the matrix ele-
ments of every symmetrical operator between
configurations containing equivalent electrons.

The fractional parentages of the configurations
p" and d" are calculated in )3 and )4, whilst $2
contains a lemma on which these calculations
are based and $5 deals with the matrices of sym-
metrical operators. In $6 an analysis is made of
the structure of the configurations /" in connec-
tion with the appearance of more terms of the
same kind, and $7 contains an application to
configuration interactions.

$2. TRANSFORMATIONS BETWEEN THE DIFFER-
ENT COUPLING SCHEMES OF THREE

ANGULAR MOMENTA

tioned methods, we shall calculate the eigen- If we add two angular momenta j1 and j2, the
functions of the configuration /" as linear corn- magnitude J of the resulting vector and its

s-component 3f characterize completely the
' E. U. Condon and G. H. Shortley, Theory of Atomic states of the system ' but if we add three angularSpectra (Cambridge, 1935) (which we shall denote by TAS),

$14'. momenta, several states may occur with the
2 N. M. Gray and L. A. Wills, Phys. Rev. 38, 248 (1931);

TAS $5'. 'S. Goudsmit and R. F. Bacher, Phys. Rev. 46, 948'G. Racah, Phys. Rev. 62, 438 (1942) (which we shall (1934).
denote by II). We refer to this paper and to TAS for ~ D. H. Menzel and L. Goldberg, Astrophys. J. 84,
definitions, notations, and bibliographical indications. (1936).
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TABLE I. (p'SL(P(S'L') pSL). The difierent rows are (37)II we obtain
normalized separately, and N is the normalization

factor of each linear combination.

p2

3P 1D

= [(2J'+ 1)(2J"+1)]*'W(j&jsJjs, J'J"), (4)

4S
2p
2D

18 &

2 &

1—3
1

0

—1

4(~ii s(J')i sJM) = 2 ~I (j~jsJ'M')0(jsms)
m3&'

(J'j Ms' mlJs'j JsM)

d (jim') 4 (jsm2)4 (jsms)
mIm2m3M'

(jgj ms/ mljsjysJ'M')

same J and M and a complete characterization
of the states needs the specification of the type
of coupling of the vectors.

We may for instance couple at first j& and j&
and then add j3 to their resultant J': In this case
the eigenfunctions are

where W is the function defined by (36') lI.
It is sometimes useful to consider the changing

of the coupling together with a change in the
order of the vectors; the same way as before
yields

(jijs(J')jsJ l
j~js(J")jsJ)

= [(2J'+1)(2J"+1)]lW(J'j,j,J";Jj,). (5)

If we have three electrons or groups of elec-
trons, the transformations between the different
parentages in SL coupling are obvious extensions
of (4) a.nd (5): For instance,

(s&l&ssls(S'L')sslsSL
l
s~l~, slssslss( SL"),SL)

= [(2$'+1)(2S"+1)(2L'+1)(2L"+1)]*'

W(s&ssSss I
S'S")W(l&lsLls, L'L"); (6)

~ (J'jsM'ms
l
Jj',JM); (1) a particular case of this transformation was con-

sidered in TAS 6' 14.
but we may'also couple at first j2 and j3 and then
add their resultant J" to j&, and in this case the
eigenfunctions are

tl'(i ~ jsjs(J") JM)

d Uim ~)A(jsms) 0 (jsms)
mym2m3M"

(j,j,msm,
l j,j,J"M")

(j J"m M"
I j J"JM). (2)

The unitary transformation which connects
these two representations of the same system is

(j~js(J')jsJ l j~, jsjs(J") J)

)3. THE EIGENFUNCTIONS OF GROUPS OF
EQUIVALENT ELECTRONS

If we couple two equivalent electrons with the
usual vector-coupling formulas, we obtain anti-
symmetric or symmetric eigenfunctions accord-
ing to whether S+L is even or odd (TAS, p. 231);
the eigenfunctions of the states with S+L even
are therefore the normalized eigenfunctions of
the allowed states of I2.

If we add in the same way to the allowed states
of P a third l electron, the obtained eigenfunc-
tions are in general antisymmetric only with
respect to the first two electrons, but not with

(J'j~JM
l Jj'M'm )

mIm2m3M'M"

(j &j sJ'M'lj gj smgms) 01S g3P 2'D ,0F

TABLE II. (d'sSL[d'(s'S'L)dSL).

2'G

(jsjsmsms lj sj sJ"M") 2p
4p

(j&J"m&M"
lj &

J"JM); (3)
2P
4p
2G

32II

introducing the expression (16') ll for the trans-
formation coeScients for the addition of two
angular momenta and using Eqs. (19)II and

30 &

15 &

60-~
140 ~

70—$

5-$
42 &

2 &

7$
—8&
—3—7
28&

—1
0
0

15~
0

45&
—10&

0—10~
0

8$
7$

—21&
21&

7$
2

—1

0
0—3—5—5
0

11&
1
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respect to the third. If we apply in effect to
f( P( S' L')lSL) the transformation'

TAsLr. III. (d4vSL(d'(v'S'L')dSL).

P(l'(S'L')1SL) = Q P(l, ll(S"L"), SL)
S/ IL I I

(l, ll(S"L"), SL
l

l'(S'L')lSL), (7)

where the transformation matrix is given by (6),
we obtain in general in the sum (7) allowed and
forbidden values of 5"I-" and, therefore,
P(12(S'L')lSL) cannot be an eigenfunction of P.

Only such a linear combination

+(l'uSL) = P $(l'(S'L')lSL)
S'L'

(P (S'L') lSL]PnSL) (8)

d4 N

0's I 0
4'S 1 0
33P 360 ~ —14~

43P 90 & 5
3ID 280 ~ —42&

4'D 140 & 42&

4'D 210 & —14&

4'D 10 & 0
4'F 560 ~ 120&

3F 840 & 4
43F 1680 & —200&

3IO 504 & 0
4IG' 1008 & 0
43G 1680 & 0
43H 60 & 0
4'I 10 & 0

0 1

0 0
—8 135&

-14& 0
0 105»

0 0
7 0
3& O

0 0
—56~ 315&

—448$ 0
0 189$

0 0
0 0
0 0
0 0

0 0 0
1 0 0

—35~ —56'» —56&

10& -5
45& 28& 0
20& 63& 0
60& —21& —21&

0 0 - 7&

200& —105& 0
15~ —14~ 224~

120& —175& —112&
—5 70& 0
88$ 3855 0

200& 315~ —560&

0 5& 20&

0 0 0

0 0
0 0
0 0
0 0

—60& o
15» 0
45k 0

0 0
—3& —in&

90& 110&
—405'» 220&

66~ —154&
—5074 —284

2974 3085
-3 26&

33P 34P PD 33D 33F 34F 33g 3&H

may be the eigenfunction of P for which the
coefficients of P(l; ll(S"L"), SL) vanish for every
forbidden value of S"L"after the application of p(p'('D) p 'D) = (3/&6) '*Il'(p, pp('D), 'D)
the transformation (7); the "coefffcients of frac- —(3/I6) '0(P PP('I'), 'D)
tional parentage" (P(S'L') lSL)PnSL) must
therefore satisfy the equation system —(I/4)4(P, f P('D) 'D)

Q (l ll(S L ) SLll'(SL )lSL)
S/LI

+ (3/4)II (P f f ('I'), 'D);

(1&(SL )lSLysuSI, ) 0 (S +I odd) (9) since in the development of

Since a function antisymmetric with respect
to the electrons 1 and 2 and also with respect to
the electrons 2 and 3 is antisymmetric with
respect to all three electrons, the condition (9)
is necessary and sufficient for the determination
of the coefficients of fractional parentage of the
terms of P, and the number of independent non-
vanishing solutions of (9) for a given SI. equals
the number of allowed terms of this kind in P;
if this number is greater than one, the different
terms may be distinguished by a parameter n.

As an illustration of this method let us cal-
culate the eigenfunction of the term p''D. It
follows from (6) that

4(P'(' )f ' )=( / )V(P, PP(' ) ' )

—(3/&6)'II(P f P('I') 'D)

+(3/4)4(p, pp('D), 'D)

(&!4)4(f,PP('P) —'D),

' Since we shall mostly consider transformations and
operators which are diagonal with respect to ~Vq and AIL
and independent of them, we shall in general neglect these
quantum numbers.

the coefficients of

4(P PP('D) 'D) and 4(f, PP('I') 'D)

must vanish, the only possibility, apart from a
phase factor, is

+(l ' 'D) = (I/2) V9 '('&)P 'D)

—(I/2)'Il (f '('D)l 'D).

The same method may also be extended to the
configurations l", if the fractional parentages of
l" ' are known. In this case

0'(1"uSL) = Q P(l" '(n'S'L')1SL)—
e'S'L'

(1"—'(n'S'L') 1SL)l"nSL)

II (l.—( "S"I.")l(S'I ')lSI.)
'S'L 'a"S"L"

(l"—'(n"S"L")lS'L')1" 'n'S'L')

(l" '(n'S'L')1SL)jl" nSL), (10)

and the coefficients of fractional parentage
(l" '(n'S'L')lSL)Jl"nSL) must satisfy the equa-



370 G I UL I 0 RACAH

TABLE IV. (d'oSlf)d4(v'S'L')dSL).

de N p'S 4'S &P 4'P g'D 4'D g'D 4eD 23F 43F ~'G 'G 43H

625 5 &

epS

3~P 150-~
34P 300 ~

&2D 50 &

AD 350 ~

emD 700 &

e'D 700 ~

3&F 2800 ~

ePF 2800 &

34F 700 ~

32G 8400 &

ePG 18480-&
e4G 420 ~

32H 1100 ~

e21 550 &

0 0
0 0
0 0
0 0

o
O —14&

0 —56&

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0
0

14&

—8
—3
—7

0
0

448&

0
—56&

0
0
0
0
0

0
0
5

14~

0
—14&

126~
126~

—200$
360$
—4

0
0
0
0
0

O —2&

0 0
30& 15~

0 0
—5& o
45& —10&

O 90&

0 0
—160~ 180~

0 —10
0 0

—800~ —10
0 1452$
0 0
0 0
0 0

0
10~

35&

0
60&

60&
—135&

120$
600&

-15&
600&

968$
5
0
0

0
1

0
-75&

0
0
0

—175&

0
0

-175&
0
0

—105&

0
0

0
0

—1st
0
0

35&

35&

0
105&

—525&

0

—25415
0

33&

0

0
0

—4
—56&
—21&

0
0

112&

0
224&

1680&

0
0

—220&

0

0
0

—5
56&

0
—21&

189~
—84~

—175&
—315&

14&

945~
4235$
—70&

55&

0

0 0 0
0 0 0
0 0 0
0 0 0

—3 0 0
—5 —11~ 45&

0 99& 45&

0 0 1805
-20 275$ —405$

0 495& —3
0 0 —90~

880& 845& 891~
0 —1215& —5577~
o o

220~ —5~ —99~
O —45& 99&

0
0
0
0
0
0
0
0

220&
—396~
—110~

924~
—308$

154&

286&

0
0
0
0
0
0
0
0
0
0
0

-728&
—2 184'

0
182~

—175~

tion system

(S"I"il(S"'L"') SL
~

Z&L(il(SiLi)lSL)
tt ISIL I

(I/ —9( IISIILII)lSILf]y/ ( ISILI)—
(l" '(u'S'L')lSLjl"nSL) =0

(SIII+LIII odd)

not exhaust all states of /" '/, but only those
which are allowed in /"; the hermitian conjugate

(l"nSL(l"—'(n'S'L') lSL)

= [l" '(n'S'L') lSLjl"nSL]* (12)

(11) does therefore satisfy the relation

The systems (9) and (11) do not fix the phases
of the eigenfunctions of the different terms, nor
the scheme in the case of more terms of the same
kind, but give the fractional parentages in any
arbitrary orthonormal scheme; the convenience
of a particular choice of the scheme will be con-
sidered in $6.

The fractional parentages of the terms of p',
d', d4, and d'" calculated with this method are
given in Tables I—IV. The phases of the eigen-
functions of p' and d' are in agreement with
those of TAS 4' 6j and 5' 6 with the exception
of p' 'P; it must however be remarked that these
phases differ from those of Ufford7 for the terms
4P 'F, 4F, and 'G of d'.

The coefficients of fractional parentage con-
sidered by Goudsmit and Bacher and by Menzel
and Goldberg are n times the squares of our
coefficients.

It must be pointed out that the matrix
(l" '(u'S'L')lSLjl"nSL) is not an ordinary uni-

tary matrix, but only a rectangular matrix which
is a part of a unitary one, since its columns do

7 C. W. UGord, Phys. Rev. 44, 732 (1933).

n'S'L'
(l"nSL[1" '(n'S'L') lSL—)

(I" '(u'S'L')ISLjl"n "SL)= 5(nu"); (13)

but a matrix multiplication in the opposite order
has no sense, if the sum is limited to the antisym-
metric states of /". In calculations with only sym-
metrical operators we may however, treat
formally the matrix (l" '(u'S'L')lSLjl"nSL) as
a common unitary matrix without weakening the
general laws of matrix calculations, since sym-
metrical operators do not connect states of
different symmetry and, . therefore, the sum over
the neglected states vanishes.

$4. FRACTIONAL PARENTAGES IN ALMOST
CLOSED SHELLS

We shall determine in this section a relation
between the fractional parentages of the terms
of an almost closed shell /4'+' " and those of the
terms of /"+'. This relation will not only avoid
long numerical calculations, but will also give
us the eigenfunctions of the terms of /"+' " with
the phases fixed by the convention of $6 of II.
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According to j'j6 of II two terms of l" and of
1"+' " will be called conjugated' if their eigen-
functions appear multiplied with each other in
the relation

4/+2)
@(/44+2 1$)

} } P [(2$1.1)
n ) ~SLMsMr

(2L+ 1)]'4' s(/ "nSLMS Mr )

.@rs(/44+2 ~nSL —Ms —ML)

~ (SSMS Ms } SS00)

' (LLML ML
l
LL00) (14)

~SLM42ML
( j )s+L Ms MLy Q(—gnS—IMsM r )

@m(/4'+' ~nSL M—s Mr—) (1—5a).
In the same way, if we consider the group 9'

of the first n+1 electrons of the shell and the
group %' of the remaining 4/+1 —n, we may also
write

(41+2)
+(/44+2 'S) =

}
E.n+1 )

( 1)8'+L' Ms' rrL— —
a'S 'L'Mg'M L '

+ s (/"+'n'S'L'Ms'Mr, ')

@m (l4'+' "n'S'L' —Ms' —Mr, '). (15b)

It follows from (10) that

+ s (l"+'a'S'L'Ms'Mr, ')

+ s(/"aSLMsML)
aSLM gMLmstrL/

4/r„+r(m, ml)(S ', Msm, }S-.',S'Ms')-
(L/M Lml }

L/L'ML')

.(I"(nSL)/S'L'jl" +'n'S'L'), (16)

To th'e correlation defined in $6 of II we shall reserve
the word "conjugation, " since other types of correlations
between terms of different configurations will be found in
f6 of this paper.

where 8 denotes the group of the first n electrons
of the shell and R the group of the remaining
4/+2 —22; owing to (16')ll we have

p4/+2y —'*

4(/4'+' 'S) —
}

n )

and

%sr(/4'+2 "aSL M—s M—L) =
rrr'S'L'M g'ML'msm/

' Vol" (/4'+' "a'S'L' Ms—' —Mr. ')4/r4l4. 2(m, ml)

(S'-', —Ms'm,
~

S'-,'S—Ms)
(L'l —ML'm,

}
L'/L ML)—

(/4 l+ 2—~ (n'S'L') /SL}}/44+2—"nSL) ~

here Jt.'" is the group of the electrons n+1,
n+2, ~ 43+i. Since %m is antisymmetric, the
substitution of the electron 4/+2 by the electron
42+1 and of the group Q" by the group %' mul-
plies 4'm by ( —1)"+', and then

+m(14'+2 "nSL Ms M—r)—
(—1)"+'y „4.l (m.m l)

a'S'L'MS'ML'msm/

+rs (l4'+' "n'S'L' Ms' —Mr,')—
(S'2 Ms'm—, }

S'-,' S—rVs)

(L'/ —ML'ml
~

L'/L ML)—
(/4'+' "(n'S'L')/SL}jl4'+2 "nSL). (17)

If we introduce (17) in (15a) and (16) in (15b),
we may equate the coefficients of each product
+op„+&+m' separately, since for different quan-
tum numbers these products are orthogonal, and
obtain

jI4/+2) —l

( j )S+L MS ML+n+—1— ,

(S'2' —Ms'm,
~

S' ', S Ms)-—
(L'/ ML'm l }

L'lL ——ML)

(/4'+' "(n'S'L')/SL j/44+2 "nSI.)
(4/+2i

( 1)s'+L'—Ms' —ML'

En+1 )
~ ($2Msm,

~

S2S'Ms') (L/MLml
~

L/L'Mr. ')

(l"(nSL)/S'L')/" +'n'S'L'). (18)

Owing to (16')I I and (19a)II, and to the fact that
22+1 has the same parity as 2(S'+L'), we get
(/4'+' —"( aISI)LI/S}}L4'+/2 nSL)

( 1 )S+S'+L+I ' l—
(22+1)(2S'+1)(2L'+1)

(4/+ 2 n) (2$+—1)(2L+ 1)

(l"(nSL)/S'L')l"+'a'S'L'), (19)

which is the requested relation.
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1S
'P
lD

4S
2P
2D

TABLE V. (p'SLl U&'&[[p'S'L').

lS

0
0

P3 (3)

3P

0—1
0

4S 2P

0
0

(3)»

TABLE VI, (p SL
~~

U( )
~~
p'SL') .

1D

V3(3)'
0

V3(»)»

2D

0—(3)'
0

entages of the terms of l"+' it must, however,
be observed that (19) gives the parentages of
+m(P'+') with respect to @ t&f( P'+"), and that the
eigenfunctions of 1"+'determined by the methods
of the preceding section are +s(P&+&); since it
was shown in»6 of II that the terms of P'+' split
in two classes, according to the two possibilities
of (76)II, we must change the sign in the relation
(19) if 4' 9&(P&+&n' S'L') belongs to the class for
which the minus sign holds in (76)II. The clas-
sification of the terms from this point of view
will be considered in subsection (5) of »6.

From (19) and (13) we obtain also

Q (2S+1)(2L+1)(1" &(n'S'L')1SLIJ"nSL)
aSI

(1"nSLLtl" '(n"S'L') ISL)

= [(4l+3 n)/n—](2S'+1)(2I '+1)3(n'n"). (20)

(S. MATRIX COMPONENTS OF SYMMETRIC
OPERATORS

EVe are at first interested in the matrix com-
ponents ()&'

~

I" ~)&") of the quantity

I'= Z' f' (21)
1

For the determination of the fractional par- where f, is an operator which operates on the

TABLE VII. (d'vSL[«35 U&'& ~)d'v'S'L').

2P
4p

12D
2D
2F

34F
'G

32H

32p

—2(21)»
0

2V2(10)»—N(210)»—4(21)»
0
0
0

34P

0
7(21)»

0
0
0—14(6)»
0
0

I2D

-2@2(10)»
0

3 5/2

1/52 (21)»
7(15)»

0—15(7)»
0

~1~2 (210)»
0

'N(21)'
1 /52

9(35)»
0

-5(3)»
0

32F

—4(21)»
0—7(15)»—9(35)»

7(6)'
0—2 (210)»—(2310)»

34F

0—14(6)»
0
0
0—7{6)»
0
0

3'G

0
0—15(7)»—5(3)'

2(210)»
0

3(22)»
(462)»

42H

0
0
0
0—(2310)»
0—(462)»

(3003)»

TABLF- VIIIa. (d', 'L)~35 U& &[~d', L').

o'S

OIS 0
4'S 0
2'D 7(30)»
4'D 0
4'F 0
'G 0
4'G 0
4'I 0

4IS

0
0

3(70)»
4(35)»

0
0
0
0

2'D

7(30) '
3(70)»—5—3o(2)»

0
4(5)»
8(55)»

0

4'D

0
4(35)»—30(2)»—15—10(14)»

10(10)»
2(»0)»

0

0
0
0

10(14)»
Y2 (6)»

7 (70)»
y2(770)»

0

2'G

0
0

4(5)'
10(10)»—7(70)»

5 (22)»
5(2)»—2(455)»

4'G

0
0

8(55)»
2(110)»—/12 (77o)»
5(2)»

'

12/522(22)»—8/11(SOOS)»

0
0
0
0
0—2(455)»

(5005)»
3Y11(1«)»

TABLF VI IIb. (d'vSL[~35 U&'&[[4'v'S'L') for S= I, 2.

3p
3p

4'D
4'D
23F
4'F
4'G
4'H

23P

—FB'(21)'
'N(6)'
'N(15)'

0
'N(6)'
S(6)»

0
0

'N(6)»
'%(21)'
4' (21O)»

0
2/2 (21)»

FB (21)»
0
0

43D

—2N(»)»—y3 (21O)»
5
0

4(35)»—4(35)»
20(3)»

0

4'D

0
0
0—35.
0
0
0
0

1'(6)»
'P~( )'—4(35)»

0
Is(&)'
%(6)»
3(210)»

y3(2310)»

43F

3{6)»
F~(21)'
4(35)»

0
4% (6)»
7

/7 (6)
y2'(210)»
P3 (2310)»

42G

0
0

20(3)»
0—3(210)»—1&g (210)»—%(22)»

2(462)»

43H

0
0
0
0

P3 (2310)»
/3 (2310)»—2(462)»
/13 (3003)»
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T~s&.s IXa. (d' „'L[[35U&'& lid« .'L').

e'S 0
'P 0

1'D 0
32D 4(70) &

52D 0
32F 0
f2F 0
32G 0
52G 0
32FI 0
f,2I 0

0
0

7(30)&

0—5 (105)&

0
4(105)~

0
0
0
0

12D

0—7(30)&

0
15(7)~

0
14(5)&

0—10(21)~

0
0
0

22D

4(70) &

0
15(7)~

0
5(2) ~

0—10(7)~

0—6(55) &

0
0

e2D

0
5(105)&

0
5(2)»

0
0
0

20(6) ~

0
0
0

22F

0
0—14(5)&

0
0
0—7(30)&

0
0
0
0

e2F

0
4(105)&

0
10(7)~

0—7(30)&

0—4(42) &

0—2(462) ~

0

g2G

0
0—10(21)~

0
20(6) &

0
4(42) &

0
9(30)&

0
4(273) &

e'G

0
0
0—6(55) ~

0
0
0

9(30)»
0—6(70)~

0

220

0
0
0
0
0
0—2(462) &

0
6(70)~

0
-7(»)'

,2I

0
0
0
0
0
0
0

4(273) &

0
7(13)&

0

4p
„.4D
34F
54G

lg
'P
1D

34P

0—7(15)&

0
0

e4D

7(15)~

0—8(35)&

0

34F

0
8(35)&

0—15(14)~

TABLE X. (p'SLll6*'V&"& ~~p'S'L')

IS

0—V2(30)'
0

3P

—V2(30)'
3

(6)'

TABLE XI. (p'SL~[6& V&"&~~p'S'L').

TABLE IXb. (d' „'Ltt35 U(') ([d', 'L').

e4G

0
0

15(14)&

0

ID

0
(6)$
0

where (S&L&l SLMsMi,
l f l

S&L&l S'L'Ms'MI. ')
may now be calculated with the ordinary matrix
methods of Chapter III of TAS and of II.

As application of this formula we calculated
the matrix components of the tensors U&') and
V"'&, defined by (102)II, for the configurations
p', p', d', d4, and d'; the results are given in
Tables V—XIV. For d' the matrices were already
given by (103)II; it must, however, be noted
that an error occurred in the final form of the
manuscript, and all the elements of (103c)II and
(103d)II must be multiplied by (3/2)'.

From the elements of V"') the matrix com-
ponents of the spin-orbit interaction may easily
be obtained: it follows in effect from the relation

4S
2P
2D

4g

0
2(3) ~

0

2(3) ~

0
-(»)~

2D

0
(15)&

0

l = D(l+1)(2l+I)]'*u«&

and from (38)II and (102)II that

(l"nSLJM
l P; (s; l;)

l

l"n'S'L'JM)

(24)

electron i, and X' and )"are states of the con-
figurations I and II; owing to the antisymmetry
of 4'()& ) and +(X") we have

(),&lFl),») p. I'~(),I)f,~( ))?&dr
j.

=n t % (X')f„@()")dr. (22)

If I=II=/", puttingi =e and assuming for +
the expression (10), we obtain

(l"uSLMsM r.
l
F

l

l"u'S'L'Ms'MI. ')

=n Q (l"nSL[l"—'(u&S,L&)lSL)
1S1L 1

. (S&L&l„SLMsML,
l f„lS&L&I„S'L'Ms'Ml. ')

(l"-'(n&S&L&)lS'L'ill"u'S'L'), (23)

= (—1)s+i' z[l(1+1)(2l+1))'
(l"nSL

ll
V""

ill
"n'S'L') W(SLS'L'; Ji). (25)

If in (22) I =l" and II =I" 'l', the terms of II
are characterized by Sand I.and by the quantum
numbers of the parent ion l" ' +()&") has in
this case the expression

%(l" '(n&S&L&)l'S'L'Ms'Mr, ')
n

=(1/n)' 2'( —1)"
1

&P(l" '(n&SrLg)l, 'S'L'Ms'Mr, '), (26)

where in the right side we consider the group
1" ' as composed by the electrons 1, 2, , i —1,
i+1, , n, and P; is the parity of the per-
mutation which exchanges i with n. Introducing
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TABLE XII. (d'vSI. ((30& V&"&
~~

d'v'S'L') .

QP
4p
2D
2D
'F
4F

~'Ci

3'H

pP

2
2(14)~

N(42)'—%2(2)'
0
0
0
0

g4P

—2(14)&

(10)'—4(3)'
0
0
0
0
0

—N(42) ~

—4(3) &

Y2(5)'—N(»5) ~

—(42) ~

—(42) ~

0
0

%(2)'
0

N(105) &

—N(5)'- (2)'
~(2)'

0
0

0
0

(42) ~

(2)'—N(14)'
(14)~

Y2(10)'
0

34F

0
0—(42) k

5(2)'—(14)~

2(35)&

—3(10)~

0

0
0
0
0

Y2 —(10)&—3(10)~

%0(30)'—%(~5)'

32H

0
0
0
0
0
0

i~5(55)'
Y5(~5)'

TABI.E XIII. (d"vSL ))30& U"') (~d'v'S'L').

0'S 4IS ~'P sl D 41D 45D 4'F 43F 4tG 436 43H

0~8 0 0
dS 0 0
PP 3(3)& —(7)&

43P 0 2(2)&

AD 0 0
41D 0 0
43D 0 0
4'D 0 0
4'F 0 0
r'F 0 0
4'F 0 0
2'6 0 0
4'(v 0 0
4'G 0 0
438 0 0
4'I 0 0

3(3)~
-(7)&

1
—2(14)$

—+2(1&)&

2(7)~
0

4(5)$
0
0
0
0
0
0
0
0

0
2(2)$

—2(14)$
2

2

V(2)~
—%(2)&

h(70)~
0
0
0
0

0
0
0
0

0
0

—~~g(14)&

2

0
0

—2(10)5
0
0
2

0
0
0
0
0

0
0

2(7)&

Qs(2)&

0
0

(5)~

0
0

(2)~
—4(2)$

0
0
0
0
0

0
0
0

%(2)&
2(1o)&

—12(5)&

-V.(7)~
—2(5)&
—5(2)$
—(2)~

0
0
0
0
0

0
0

4(5)k

y, (70)&

0
0

1~8

0
—(70)&

(70)~
0
0
0
0
0

0
0
0
0
0
0

-2(5)$
0
0

—(35)&

-V.(35)~
0
0

0
0

0
0
0
0
2

(2)~

5(2)$
—(70)~

(35)&

(14)4
(14)&

-(3)~
(33)~

-3(10)~
0
0

0
0
0
0
4

—4(2)&

(2)~

(70)&

y, (35)&

-(14)~
—gg (14)&

5(3)~

~3~ 2 (10)~
0
0

0
0
0
0
0
0
0
0
0
(3)$

5(3)&

0
0

—3
—(66)&

0

0
0
0
0
0
0
0
0
0
(33)&

-V&(33)~
0
0

—%2(»)&
2(6)~

0

0
0
0
0
0
0
0
0

3(10)&

—Y2(10)&

3
N(11)~

No(30)~
—/s(55)&

0

0
0
0
0
0
0
0
0
0
0
0

—(66)&

2(6)&

6/e(55)~

~/s(55)~
—Y2(26)$

0
0
0
0
0
0
0
0
0
0
0
0
0
0

—gs(26)
0

(10) and (26) in (22) and putting i=n, we have

(1"aSLMsMrF~ 1" '(n, &S&L&)l'S'L'Ms'Mr. ')

= ni(l" nSLjtl" &(n&S&L&)1SL)

(S&L&l„SLMsMr. ~f ~

S&L&1„'S'L'Ms ML ) (2'1)

This formula, which'is the extension of TAS 6 17,
gives a rigorous demonstration to the method of
Menzel and Goldberg' and also fixes for such
transitions the phases of the matrix components,
which are necessary for transformations to other
types of vector coupling (TAS, p. 252).

If in (22) I=1" vl'v and II=1" " 'l'v+', the
terms of each configuration are characterized by
S and L and by the quantum numbers of the
groups of equivalent electrons; in the same way
as for the precedent case we obtain

(1" '(a&R &), 1"(n2S2L2),

SLM sMr,
~

F & l"—v—'(a, 'Sr'Lr'),

1'"+'(ng'S2'L2'), S'L'Ms'Mr')
' D. H. Menzel and L. GOMberg, Phys. I&ev. 4'7, 424

(1935) and reference 5.

= L(n —p)(p+1)]'* P
S3L3

(1"-"a&S,L r
.Ill"- -'(n, 'S, 'L, ')1S,I.,)

(S '&Llr. „(S&L&), S2L2,

SLMsMr.
~ f„v ~

Sr'L&'l„v(S3L3),

S2L2, S'L'Ms'Mr. ')

(Sr'L &'l'($3L3),

S2L2) SL
~
Sr Lr ) 1 S2L( 2SL22 )y S L )

(1', 1' (a2S2I2), S2'L2'11' +'n2'S2'L2'). (28)

In connection with this result it must be
observed that (l, l" '(a'S'L'), SL)l"nSL) is not
(l" '(a'S'L')lSL]l"nSL), but it is easy to see
that the two coefficients are connected by the
relation

(l, 1" '(a'S'L'), SL)l"nSL)
—( )s+L+s'+L' & 4——

(l" '(n'S'L') lSL)l"nSL). (29)

It is unnecessary to consider the matrix ele-
ments of Ii for transitions between more com-
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T&BLE XIV. (d'vSL ~(30& V&"&~~d'v'S'L').

AS eeS ezP e4p 12D e2D e2D e4D 32F 34F e'6 AH

AS 0 0
eeS 0 0
e'ep 4 0
e4P (14)~ 3(10)~
12D 0 0
e2D 0 0
eeD 0 0
e4D 0 0
e2F 0 0
e2F 0 0
e4F 0 0
326' 0 0
e'0 0 0
e40 0 0
s&H 0 0
e2I 0 0

—4
0
0
0

(14)&

0
—1

2(2)'}

0
0
0
0
0
0
0
0

(14)~
3(10)5

0
0

—8
0

—2(14)&

(70)&

0
0
0
0
0
0
0
0

0
0

(14)k
—8

0
—(35)&

0
0

—2(14)~
0

—2(14)5
0
0
0
0
0

0 0 p

0 0 0
0 1 2(2)$
0 -2 (14)& -(70)&

—(35)& o o
(10)~ -4(5)~

(1o)& o o
4(5)k p p

0 —8 4(2)}
2(1o)& 0 0

O —2 4(5)&

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0
0
0
0

2(14)5
0
8

4(2)$
0

—
V2 (70)~

0
0

V.(66)~

5(6)&

0
0

0
0
0.

0
0

—2(10)$
0
0-V2 (70)~

0
(70)~

—Y2 (2)'
0
0
0
0

0
0
0
0

-2(14)&
0

—2
4(5)k

0
—(70)&

0
0

—(66)&

2(15)&

0
0

0
0
0
0
0
0
0
0
0

V2 (2)~

0
0

—V2 (22)}

0
0

0
0
0
0
0
0
0
0

—V2 (66)~

0
—(66)5

—N(22)}
0
0

4(3)&

0

0
0
0
0
0
0
0
0

5(6)&

0
(15)&

—3(2)&

0
0

—2(33)$
0

0
0
0
0
0
0
0
0
0
0
0
0

—4(3)&

-2(33)$
0

3(13)&

0
0
0
0
0
0
0
0
0
0
0
0
0
0

—3(13)&

0

plicated configurations, since all other cases may
be reduced to these three by means of TAS I'16.

The calculation by the same method of the
matrix components of the scalar operator

G=E g',

needs in some cases the knowledge of 4(l"nSL)
as linear combination of the eigenfunctions of
)ti—2P

+(l~nSL) = Q P(l"-'(u, S„L,),
a1S1L1S2L2

1'(S~L2) SL) (l" '(niSiLi),

12($2L2), SL)l"nSL); (31)

the coeAicients of this expression are given by the
formula

(l"—'(a, S,L,), l'(SvLg), SL)l"SL)

(Sag, l'($2L2),
al S/LI

SL}S,L gl (S'L') lSL)

(l" '(agS(Lg)lS'L'}1."—'u'S'L')

(1"—'(n'S'I. ')lSL)l"aSI.). (32)

The following results are easily derived:

(l"aSI.
~

G
~

l"n'SL)

= -', n(n —1) P (l"nSLjtl"-'(n, S,I.,),
a1$1L1S2L2

l'(S2L2), SL) (l'$2L2
~ g ~

l'SgL2)

(l"—'(ngS(L)), P($2L9), SL)l"u'SL), (33a)

(l"nSL i G
i
l" '(n'S'I. ') l'SI.)

= (n 1)n' —P (l"aSL(l" '(n&$&L, ),
a1S1L1$2L2

l'($2Lv), SL) (l,l,S2L2
~ g;, ~

l;l, '$2L2)

(SgLg, lP($2L2), SI.
~
SgL,l($'L')l'SL)

(l" '(nrS)Lg)lS'L'}I" 'n'S'L'), (33b)

(l"uSI.
j
Gjl" '(a&$)Lg) l"(S2L2), SL)

= (n(n —1)/2 j&(l"aSL[l" '(a~S&L&),

l'($2L2), SL) (l'S2L2
i g ~

l"$2L2). (33c)

Since the actual application of (32) needs
generally very long calculations, the formulas
(33) are of practical use only in a few particular
cases; in other cases it is simpler to express g;;
as a sum of scalar products of tensors and to
reduce the problem to the calculation of tensors
of the type F. Applications of both methods will
be shown in the next sections.

$6. THE STRUCTURE OF THE CO N-
FIGUATIO NS

In this section we shall classify the terms of
the configuration l" according to the eigenvalues
of

Q=E g*,,
i(j

where g;, is a scalar operator which operates on
the two equivalent electrons i and j and is
defined by the relation

(l'LM
~ g, ;~ /'LM) = (21+1)e(L, 0). (35)
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It will be shown that to every term of l" with
non-vanishing Q a term of the same kind cor-
responds in l" ', and this fact will allow us to
assign to each term a "seniority number" ac-
cording to the value of n for which the term
appeared for the first time. Some useful relation
between the fractional parentages of correspond-
ing terms will be obtained and it will also be
shown that the classification of the terms of
l"+' according to the two possibilities of (76) II
depends only on the seniority of the term.

(1) The Eigenvalues of Q

It follows from (42) II and (40a) II that
2l

P„(2r+1)W(ill/; Or) W(ill/; Lr) = 8(L, 0); (36)

expressing W(llll; Or) by (36')II and using also
(38)II and (58)II we get for &/;, the expression

'2l

') "( '+')(""' "~'"')

Since u&'& is a scalar and, owing to (33)II,

Multiplying the two sides by

(/"u'SLLC/" '(PSL), P('S), SL)

and adding with respect to a' we have

Q(l"uSL) (/~uSLLL/" '(PSL), l'('S), SL)

=P (/"uSLjt/" '(P'SL), l'('S), SI.)
rr IP1

(l" '(P'SL) l'('S) SL)l"u'SL)

(/"u'SLtt&/" '(PSL) l'('S), SL);

the summation with respect to n' may be made
by means of (42) after transforming the last two
factors by the relation

(l" '(PSL), l'('S), SL/l" uSL)

(4/+3 n) (4—/+4 —n) l

n(n —1)

(l"+'—"(uSL), l'('S), SL]l"+' "PSL), (43)

which is analogous to (19) and may be obtained
in the same way; we get

we have also

9'~=(2/+1) '

u&""= (2l+1)-' (38) Q(/" SL)(l" SL(L" '(PSL), l'('S), SL)

= (/"uSL(/" '(PSL), l'('S), SL)Q(/4'+4 "PSL).
(44)

and

+Z. (—1)"(2r+1)(u" u'"') (37')
Owing to (41) (/"uSL(l" '(pSI ), p(&S), SL,)

may be different from zero only if

Q(l"uSL) = Q(l" 'PSL)+2l+3 n, —(45)

Q =-,'n(n 2l 1)(21+1)——
2l

+2 Z. ( —1)"(2r+1)U'"" (39)
1

We shall henceforth consider only schemes for
which also Q is diagonal, i.e. , schemes for which

(l"uSI
~ Q ~/"u'SL) = Q(/"uSL) /(uu'). (4o)

It follows from (39) and (74)II that if Q is
diagonal in a given scheme of /", it is also diagonal
in the conjugate scheme of /t4'+2 ", and that

Q(l"+' "uSL) = Q(l"uSL) +2l+1 n. (41)—
In order to calculate the possible values of

Q(l"uSL), we express it by means of (33a) and
(35):
Q(l"uSI.)6(uu') = ', n(n 1)(-2l+1—)

Pp (/" uSL(l" '(P'SL), l'('S), SL)—

(l" '(P'SI.), l'('S), SL)/& "u'SL). (42)

and according to (42) the only non-vanishing
values of Q(l"uSL) are those which are con-
nected to a Q(l" 'pSI.) by (45).

(2) The "Seniority Number"

Putting for QWO

v p(QSL) = (/"uSL(/" '(pSL), P('S), SL), (46)

where n may assume all values for which
Q(l"uSL) = Q, and P all values which satisfy (45),
we have from (42) that

—,'n (n —1)(2l+ 1)

.Z~ v-& (QSL)vI- (QSL) = Q~(uu'), (47)

and also from (43) and again (42) that

—',n(n —1)(2/+1)

2« ~t.(QSL)v-~ (QSL) = Q/(PP'); (47')
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it follows that for two given values of Q which
are connected by (45) the number of independent
states of given S and I. is the same in /" and 1" ',
a,nd that the matrix

u s(QSL) = Pn(n —1)(2/+1)/Q]lv, »(QSL) (48)

is a unitary one. If we apply to the eigenfunctions
of /" the transformation u, and consider the
states with eigenfunctions

@(/ pSL) = Q e(/"nSL)u»,

In this paper all tables of matrix elements are
given in the QSL scheme and the seniority
number is indicated by a prefix under the mul-

tiplicity number of each term: for instance the
two 'D terms of d', which were indicated in TAS
(p. 228) by a'D and b'D, are therefore, respec-
tively, denoted by &'D and &'D.

(3) The High Degeneracies

Majorana's operator of position exchange may
be defined for equivalent electrons by the relation

we obtain
(/2LM

~
M;,

~

l'LM) = (—1)~ (51)

i.e. , it is possible to find a scheme of l" in which
not only Q is diagonal, but also each term of /"

with QWO corresponds to a well-defined term of
/" ' whose Q is connected to Q(l"pSL) by (45).
If also Q(l" 'PSL) WO, this term corresponds to
a term of I," ' and so forth; each chain of cor-
responding terms begins with a term l"PSL which
has Q=O.

We may thus assign to each term in the QSI
scheme a "seniority number" v, which indicates
the number of electrons of the first membe
its chain; it follows immediately from (45)
Q depends only on n and v and that its va
are given by

M;, = —[-,'+2(s; s;)]. (52)

From (43)II we have

P„(—1)"(2r+1)W(/ill; Or) W(/l// Lr)
0 ~

= ( —1)iW(/ll/; LO); (53)

expressing W(llll; Or) and W(ill/; LO) by (36)II
and using also (38)II and (58)II we get for 3II;,
the expression

r of
that M;;=+„(2r+1)(u &"&.u &"&) (54)
lues 0

Adding this equation to (37) and introducing
(52) we have

(5o)
2 P& (4/+1) (u &"& u;&"&)

ate

Q(n, v) = ,'(n v) (4/+4 —n—v)——

Confronting (41) and (50) we see that conjug
terms have the same seniority.

The seniority number suffices for distinguish-

ing the different terms of the same kind in the
configurations d" but not in f", since there are
in f" terms of the same kind which have also the
same seniority. For such configurations an un-

specified parameter a must be maintained besides

v; terms corresponding according to (49) will

have the same values of v and of a.
With this convention Eq. (49) which defines

the correspondence between terms of the same
chain becomes

It follows therefore from )4 of II and par-
ticularly from (51)II that if Slater's integrals F"
are proportional to (2k+1)/C»&„ the electro-
static interaction between two equivalent elec-
trons is proportional to (55) and then the
electrostatic-energy matrix is diagonal in the
QSL scheme and its eigenvalues are only func-
tions of n, v, and S. This fact explains the high
degeneracies observed by Laporte and Platt' for
these particular ratios of the parameters; unfor-
tunately these ratios are only hypothetical,
since they are excluded by the property of Ii~ of
being a decreasing function of k (TAS, p. 177).

(/~
—'(~'v'SL), /2('S), SL&&l"~vSL)

= [Q(n, v)]'[2n(n —1)

(/~
—'(P'SL) l'('S), SL)l"PSL)

Q (l pSL)] [&

( 1 ) (2l+ 1)] g (pp ) (49)
a,n d m ay a1s o be exp ressed, accord i n g to D i rac's
vector model, by

(2l+ 1)] l/& (vv') /&(n-a') (49'). 'o O. Laporte and J. R. Platt, Phys. Rev. 61, 305 (1942).
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(l" '(a'v+15'L')/SLj/"avSL)

(l"uvSL(l" '(a "v+1S'L') /SL)
= (2S'+ 1)(2L'+ 1)

[(n —v) (v+1)/2n(2l+ 1 v)—]/i(a'u") (60a)

and

Q (2S+1)(2L+1)Q (l"—'(a'v'S'L'), l'('S), 5'L')/" 'u "v—"S'L')
~l I tII I

(l" '(a"v"S'L')/SL)/ "uvSL)
eSL

(l" i(u'v —1S'L')/SLj/" av SL)
. (/"uvSLP" '(a "v 15'L'—)/SL)

= (25'+1)(2L'+1)t (4/+4 —n —v)

(4/+5 —v) /2n(2l+ 3 —v) ]8(a'u"). (60b)

(l" '(a'v'S'L')/SL)l" 'a"'v"—'SL)
rrl I I ~l I I

(l" '(a 'v'"SL), P('5), SL)l"uvSL), (56)

and owing to (49') and (50)

L(n —v' —1)(4/+ 5 n v') /—(n ——2)]l Another useful relation is the following:

(l"+i (a'v+ 1$'L') /SLj/ "+2avSL)
—

( 1)s+L+l+k s' L'——

(2S'+ 1)(2L'+ 1)(v+ 1)

~ (l" i(a'v'S'L')/SL)/"uvSI. )
= (l" '(u'v'5'I ')/SL)/" 'avSI. )

(4) Relations Between Parentages of comparing (58c) with (20) we obtain also
Corresponding Terms ~ (25+1)(2L+1)

If we express 4'(/") as linear combination of
P(/" 'l) with 4(/" ') as linear combination of
$(/" 'l'), express on the other hand +(/") as
combination of $(/" 'P) with +(/" ') as com-
bination of i/(/" 'l), and compare the two
developments, we obtain

[(n v) (4/+4— n v) /n—]l —(57).
It is easy to deduce from this recursion formula

that

(l" '(u'v'S'L')/SL)/"uvSL) = 0

(v'Wv+1), (58a)

(l" '(a'v 1S'I—')/SL)/" uvSL)

= L(4/+4 —n v)v/2—n(2l+2 —v)]*'

(l" '(a'v —1S'L')/SL)/ "avSL), (58b)

(2S+1)(2L+1)(v+2) (2l+ 1 —v)

~ (l"(avSL)/5'L')1"+ia'v+1S'I'); (61)

since this relation is verified for v = 0 (5=L = 0,
S'=-,', L'=/), it suffices to prove that if it holds
for v =v' —1 it holds also for v =v'.

We use for this purpose the expressions (32)
and (49') of (/"'(uv'SL), l'('S), SLj/"'+'uv'SL):
owing to (6), (58), and (50) we have

( 1)s+L+&+1—s&—Li

(l" '(a'v+ 1S'L')/SL)l" uvSI. )
= P(n v) (v+2)/2n]*

(l"+'(a'v+1S'L') /SL) /+' avSL). (58c)

Comparing (58b) with (13) we obtain the more
accurate orthogonality relations

(/"uvSLP" '(a'v —1$'L')/SL)
aISILI

(l" '(a'v —1S'L')/SLj/"u"vSL)

= $(4/+4 —n —v)v/2n(2l+2 v)]/i(aa") (—59a)

(l"avSL(/" '(a'v+1S'L')lSI)
0/ISILI

(l" '(u'v+15'L')/SL)/"u"vSL)

= [(n —v) (4/+4 —v)/

2n(2l+2 v)]6(ua"—); (59b)

el SILI

(2Si+ 1)(2L i+ 1)

2 (2l+ 1)(2S+1)(2L+ 1)
(l"'(av'SL, )lSiI. )/"i'+' , u' —v1SiL,)

(2l+1 —v') v'

(v'+ 2) (2l+ 2 —v')

(l"' '(a. iv' —1SiLi)/SL)l"'av'SL)

+ P ( 1)s+L+i+~ s2 L2- —

o/2S 2L2

(2S2+ 1)(2I.2+ 1)

2(2/+1) (2S+1)(2L+1)
~ (l"'(av'SL)lS2I ~ j"j/' +' us'v+1 S~ Lg)

(l"'+'(a v'+1$2L2)/SL)l"'+'uv'SL)

2 (2l+ 1 —v')

(v'+ 1)(v'+ 2) (2l+ 1)
(62)
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If (61) holds for v=v' —1 we may calculate the and
first sum with the aid of (59a) and obtain

(/ "+'(a'v —1S'L')/SLj/ "+'nvSL) %

v' 21+1—v'

2/+2 —v' 2(v'+1) (v'+2) (2/+1)

1
2 = —(/2'+ i(a' v—1S'L')/SLj/2'+iavSL). (63b)

If we assume

the second sum must then have the value qrM(/2l+1 2I ) —qs iI(/2!+1 2L) (64)

4t+4 —v'-

2/+2 —v' 2(v'+1)(v'+2)(2/+1)

and owing to (59b), to (60b) and to the well-

known corollary of Schwarz's inequality, this
fact is possible only if (61) holds also for v=v'.

By the use of the formulas (58) and (61) the
calculation of the fractional parentages is con-
siderably simplified: Only the parentages of the
"new" terms (v= n) must really be calculated by
the methods of f3; all others may be quickly
deduced from them.

(5) Relations Between Correspondence
and Conjugation

It follows from (43) that if two eigenfunctions
4's(/"avSL) and +s(/"+2nvSL) correspond accord-
ing to (49'), also the eigenfunctions of their con-
jugate states 4' (si4'/+' "nvSL) and 4'm(/4' "ovSL)
correspond in the same way. But if, in order to
make full use of (74)II, we assume as standard
scheme the scheme of the +q for n~& 2l+i and
that of the %si for I &~ 2/+2, we cannot use (49')
for the determination of (/" (0.'vSL), P('S),
SL)l"+'avSL), nor can we use (19) for n=2/
without knowing which of the two possibilities
of (76)II holds for each term of P'+'

In order to solve these questions we consider
provisorily the system of functions + s(/"+'nvSL)
defined by means of (49') and the system of
functions +si(/2'+'n'v'S'L') defined by means of
(14), and seek the relation between the parentages
of 4s(/"+'nvSL) with respect to 0's(P'+"a'v'S'L')
and the parentages of @si(/2'+'nvSL) with respect
to +si(P'+'0. 'v'S'L'). Using (19), (58), and (61),
and owing to the fact that 2S is even and 2S' is
odd, we get

(/"+'(u'v+1S'L')/SL)l"+'Ov SL)st

= (/"+'(o, 'v+1S'L')/SL)l"+'avSL) s (63a)

it follows by the alternate use of (63a) and (63b)
that

(6) Relations Between Matrix Components
of Tensors

It follows immediately from (23) and (58) that
the matrix components of every operator I"

between two states of /" may be different from
zero only if

Dv=0, +2,
and that

(/"~vSLMsMr,
~

Ii l/"a'v 2S I'Ms MI. ). —
',D n+ 2 —v)(4/+4 —n v)/(2/+—2 ——v) 7l

(66)

. (/" vSLM M
i
I'i/" 'v 2S'L'Ms'MI, ')—; (67)

owing to (65) a minus sign, however, must be
introduced in this formula for n ~&2l+2.

If Av=0 the sum (23) splits in two sums ac-
cording to the two possibilities v —1 and v+1 of
the seniority numbers of l" ', but only the first
sum may be immediately expressed as in the
preceding case by means of the matrix com-
ponents for /"; the second sum is to be expressed
by means of the matrix components for /" and
those for another arbitrary configuration I"'. If

4%(/"+'nvSL) = (—1)" "'4K~(/"+'nvSL),
(65)

+m(/"+'nvSL) = ( —1)"'%s(/"+'nvSL).

If we had assumed a minus sign in (64), the
relations (65) would have also the opposite sign;
the choice between these two possibilities depends
on the phase of +(/"+' 'OS), and it may be shown
that (64) is in agreement with the convention
of )5 of TAS for the eigenfunctions of closed
shells.

The relations (65) must be taken in account if
we use (19) for n=21 or (49') for n=2/+2 and
n= 2l+3, and also if we calculate the coefficients
of fractional parentage for n~&2l+2 by means
of (58) instead of (19).
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we assume n'=4l+2 —v, the final result is found
to be

(E nvSLMSML
i
F

l

I"n'vS'L'Ms'M r.')'
= [(4E+2—n —v)/2(2E+1 —v)]
. (E"nvSLMsMk

i Fi E"n'vS'L'Ms'Mk')

+[(n —v)/2(2E+1 —v) j
(E"+' "nvSLMsMgi FiE4'+' "

n'vS'I. 'Ms'Mk'). (68)

If F is an irreducible tensor, it follows from
(68) and (74)II that

(E"nvSI. ii T&""&
i it"n'vS'I. ')

= (E"nvSLiiT&""&iiE"n'vS'I. ') (&&+k odd), (69a)

(E"nvSLii T&""&iiE"n'vs'L')

2l+ 1. —n
(E"nvSLii T& "k& iiE"n'vs'Z, ')

2l+1 —v

(k+k even). (69b)

From (67), (65), and (74)II we get also

(E.nvSLii T&» iiE.n'v —2S'I.') = 0

(«+k odd). (70)

The remarkable result that a tensor of odd
degree is diagonal with respect to v and that its
submatrices are independent of n may be ob-
tained also in a more direct way. It follows from
the triangular conditions and from the fact that
in P only states with even S+L are allowed, that
for ~+k odd

(I' 'Si t&& "k&+tk& "k&
i
E'SLMsMk)

= (E'SLMsMr.
i

t&& "k&+t2&"k&
i
E' 'S) =0

TABLE XV. (p'SLY~ 2 V&"& ~~p'S'L')

and, therefore,

g
. ,(t &ak&+ t, &a k&) —(t &zk&+t, &xk&)g. , 0

(&&+k odd); (71)

since all other th("~' commute with g;;, T(""
commutes with g;; and also with Q, and is there-
fore diagonal with respect to v. From (71) we
have also

QT=TQ= P tkg;, ;i(j
iPhPj

calculating the matrix of this operator with the
methods of f5 and owing to (49') we obtain

(E-nvSLiiT& k&iiE-n"5'L')

= (E" 'nvSLii T&""&iiE" 'n'vS'L'),

which is equivalent to (69a).
The matrices of the tensor V(") defined by

(102)II were calculated for the configurations P',
P', d', dk and dk using also (69a); the results are
given in Tables XV—XIX. The matrices given
in Tables V and XIX are sufficient for the cal-
culation of the spectra of the configurations p"E
and d"P with the methods of )8 of II.

)7. THE ELECTROSTATIC INTERACTION
BETWEEN d", d"-ls AND d" 's'

The electrostatic interaction between O' 'S
and S2 iS is given by

(dk &5
i
s2/r

i

sk &5)

=R'(dd, ss)(d' "SiPk(cos co) is' 'S), (72)

where R' is defined by TAS 8'8 and co is the angle
between the radii vectors of the two electrons.
From (51)II we have

lg
3P
1D

3P

0
(6)$

—3

TABLE XVI. (p'SL[~2 V &&[[
' pLS').

(2IIC'"llo) =1,

and hence from (45) II and (38)II we get

0 (d' '5
i
P2(cos &0) i

s' 'S) = 1/5:;
since

R'(dd, ss) =R'(ds, sd) =G'(ds) =5Gk(ds),

(73)

4g
2p
2'

4S

0
0

2(2)'

2P

0
(6)'
0

—2(2) ~

0—(&4)~

(72) becomes

(d' '5is'/ris' '5) =51Gk. (74)

Introducing this result in (33c) and owing to
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TABLE XVII. (d'vSL)~ 70 V&"&&(d'v'S'L')

32p
4p
'D
'D
2F

34F
2g

32H

32P

—19(14)»
28

0—8(35)»—8(14)»
22(14)»

0
0

34P

—28
14(35)»

0—28(10)»—56—28(10)»
0
0

12D

0
0

35(6)»
0
0
0
0
0

,2D

8(3s)»—28(10)»
0—5(6)»

4(210)»
4(210)»—60(2)»

0

32P

-8(14)»
56

0—4(210)»—77
98—3(35)»—4(385)»

—2Z(14)»—28(10)»
0

4(210)»—98—14(10)»—18(35)»—4(38S)»

32G

0
0
0—60(2)»

3(35)»—18(35)»
3(33)»—12(77)»

32H

0
0
0
0—4(385)»

4(385)»
12(77)»—(2002)»

TABLE XVIII. (d'4SL[)70 V&"&~&&d'4$'L').

41S

4'S 0
43P 0
41D 0
43D —4 (210)»
43D 0
41F 0
43P 0
4'G 0
43G 0
43H 0
41I 0

43P

0
6(14)»

—15(35)»
3(35)»

—105
12(35)»
12(14)»

0
0
0
0

41D

0
—1s(3s)»

0
—5(6)»

0
0
0
0

—60(2)»
0
0

4'D

4(210)»
—3(35)»

s(6)»
1er (6)»

—I Y2(210)»
—10(21)»
—9(210)»
—6(165)»
15(2)»

0
0

4'D

—105
0".2 (210)»

s5 (30)»
0

35(6)»
0

—15(70)»
0
0

41P

0
—12(35)»

0
—10(21)»

0
0

21(10)»
0

12(14)»
6(154)»

0

43F

0
12(14)»

0
9(210)»

35(6)»
—21(10)»
—42

0
0
0

6(165)»
0
0
0

0 0
12(35)» —27 (10)»
6(385)» 6(210)»

0 0

4'G

0
0

60(2)»
15(2)»
15(70)»
12 (14)»

—12(35)»
27(10)»
—6(33)»

6(77)»
12(91)»

4'H

0
0
0
0
0

—6(154)»
6(38S)»
6(210)»

-6(»)»
—3(2002)»
—7(39)»

41I

0
0
0
0
0
0
0
0

—12(91)»
—7(39)»

0

TABLE XIX. (d'5SLj~ 70 V(")~~desS'L').

e2S
e'S
e'D
e4D
e2F
2G
46

e2I

0
0—4(210)»

6(105)»
0
0
0
0

e6S

0
0
0—70(3)»
0
0
0
0

e2D

—4(210)»
0

15 (6)»—60(3)»
20(21)»—4(165)»
20(15)'

0

e4D

—6(105)»
70(3)»
60(3)»
io(15)»

0—8(33O)»—40(3)»
0

,2P

0
0—2O(21)»
0—105—(1155)»

14(ios)»
0

e2G

4
8(330)»

(1155)»
12Ni(33)»

io(3)»
gi i (30030)»

e4G

0
0—20(15)»—40(3)»

14(105)»—10(3)»—10(330)»
2(2730)»

e2I

0
0
0
0
0

/ii(30o 0)'—2(2730)»—3/i i (858)»

(49') we obtain and it appears more convenient to use the fol-
lowing method.

The interaction in question is given by
(d"vSI.

~ P e'jr;, ~d" 's'v'SL)

= [Q(n, v)]-*'e(vv')G„(75)
(d"vSL

~ Q e'/r;;
~

d" '(v'S'I. )sSI.)—
owing to the conventions of subsection (5) of f6,
a minus sign must be introduced for n=6, @=2
and for n=7, v=3.

The calculation of the interaction between the
configurations d" and d" 's by means of (33b) is

easy only for n=3, since in this case

(d, d'('D), SL'JId'vSL)

=R'(dd, ds)

(d"vSL
~ P P2(cos &v;,) ~

d" '(v'S'L)sSL); (76)

owing to (45)II and to the fact that P; C, &2&2 is
a scalar and its non-diagonal matrix components
vanish, we have

may be obtained from Table II by means of (29); (d"vSL
~ P P&(cos &v;,) ~

d" '(v'S'L)sSL)
but, as it was already mentioned at the end of
$5, the calculations for n ~&4 become very long, = 2(d"vSL

~ LQ& C~&'&P
~

d" '(v'S'L)sSL), (77)
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TAs&.E XX. (dsvSI
I Yes/r;i ljds(v'5'I. ')sSI) T»sr.E XXE. (d'vSI ( Zes/r;; &d'(v'5'I. ')sSI).

2P
4p

12D
2D

82P
4p
2Q

dis

( 3P)2P
(2'P)4P
(21D)2D

( 1D)2D
( 3P)2P
{23F)4F
(21G)2Q

3(35}&
0—V2(70)'

N(30)'—3(10)&

0—5(2) &

d4

SP
28P
4'p
SP
lD

21D
41D
4'D

d3$

( 2P)SP
(84P)3P
(32P)3P
( 4P)3P
(12D)aD
(32D)1D

( 2D)lD
( 2D)3D

(70)&

0—2(5)'
2(70) &

—(105)&

—3(5)&

6(10}~—4(5) &

41P
23P
23P
4 F
4'F
'G

41G
3Q

4sH

( 2P)lP
(32F)'F
(34P)SP
( 2P)3P
(34P)SP
( 2G) TG

( 2G)lQ
(8'Q)'G
(8'H)'H

—15—2(5)'
0

3(5)&

—4(5)'
'N(3)'
yg(33) &

3(5)~

—2(5) &

d4 daS II2

and using (33)II we obtain

2(2L+T)(d"vsL~ Q Ps(cos (a;,) ~d" '(v'5'L)ssL)
i&j

= 2(—1)'"
i&

l't L I t

.(d"vsL(~g; C,"&~~d"v"SL")

(d"v"SL"
II P' (." "'(~d"-'(v'5'L)sSL)

+ Q ( 1)r L,"—
i&l tL t t

(d"vSL)~g; C,&'&~~a. '("'5'L")sSL-")

'(d" '(v"5'L")SSL"~[P; C "((d" '(O'5'L, )SSL).
(78)

«o~ (27), (44) II, (80)II, and (73) we obtain
6nally

(d"vsL
i g e'/r, rid" '(v'S'I)ssL)

=(&/14)'L 2 (—1)' "
i&/lI lt

(d"vSL, ()
U&» ~(d"v"SL")

(d"v"SL"(d" '(v'5'L) d SL)

~ (2I."+1)'/(2L, +1)+ Q (—T)~ '"
gltg tt

~ (d"vsL(d" '(v"S'L")dSL)

(2I.+1) ']R'(dd, ds). (79)

By means of this formula the interaction
between the con6gurations d" and d" 's was cal-
culated for n=3, 4, 5, ; the results are different

TA»&.E XXT1. (d'vSI & Ze'/r;; & d4(v'5'I. ') sSI ).

d(l d45

,2S (,aS)2S
2P ( SP)2P
2P ( SP)2P
,4P (,SP)4P
34P (4'P) 4P
2D (21D)2D

32D (2'D)'D
2D ( 1D)2D
2D

'

( 3D)2D
PD (41D)2D
32D (43D)'D
54D (48D)4D
4D ( iiD}4D

8'F (4'F}'F

8(5)~

{210)&
(15)&

0
(105}&

—(35}&

3(5)'
3(10)~

2(15)&

(5) $

—3(30)&

—N(30)'—5/o (14)&

—'Y2

d~ d45

32P (23P)2P —2(15)k

82F (4'F}'F —/32 (15)&

2P ( aP}2P 7y{5)~

32P (48P)2P &%(3)&

4P {SP)4P 0
34P (48P)4P (30)$

82G (21G)2G 1 /03 (3)$

2Q ( lQ)2G /5 (33}$

32G (43G)2G —/2 (15)&

~2Q ( 1G)2Q %(5)f

32G (43G)2Q —/2(11}&

4Q ( 3Q)4Q 5(2})
32H (43H) 2H (15)&

321 (411}2I (5)'

from zero only if e'=@&1 and are given in
Tables XX—XX'll, where the quantity

IIs ——R'(dd, ds)/35

was assumed as parameter. For n=3 our results
agree vnth those given by Marvj. n."

The interaction between the configurations
d" 's and d" 's' may be calculated in the same
way; the result is

(d" '(v'5'L)sSL
~ P e'/r;,

~

d" 's'vSL)-
25'+1 l

5
(d" 'v'5'L

~ Q e'/-r, ; I
d" '(vsI. )ss'L, ). -(81)

"H. H. Mervin, Phys. Rev. 4'7, 521 (1935).


