The Spectrum of Neutral Tungsten, WI

O. LAPORTE, University of Michigan, Ann Arbor, Michigan AND J. E. MACK, University of Wisconsin, Madison, Wisconsin

(Received June 29, 1942)

An analysis of the W I spectrum has yielded 300 levels, of which 201 have been given tentative magnetic g values. Configurations, as well as L and S values, have been assigned to the 65 levels $5d^46s^2 5D$ 3HGFDP , $5d^56s$ $^{7.5}S$ 5G , $5d^46s(^6D)7s$ $^{7.5}D$, $5d^46s(^6D)6p$ $^{7.5}FDP$ with 18 definite ambiguities due to a mixing of eigenfunctions. All the low levels are believed to be known. The ionization potential is (7.94 ± 0.1) volts. A rectangular array of the transitions is given.

1. INTRODUCTION, AND SUMMARY OF RESULTS

THE science of the classification of atomic spectra has progressed so far in the last fifteen years that it seems desirable to view what has been accomplished and where knowledge is still lacking.

Naturally classification began with the simplest spectra. A spectrum may be called simple if it shows one or both of the following traits:

(1) It has but few lines.

(2) It shows pronounced coupling character.

Passing over the trivial case of the alkali-like spectra, we see that to the first category there belong the spectra of the occupants of those columns of the periodic table characterized by partly filled p shells. The spectra of the alkaline earths and of Ni, Pd, Pt, with almost closed d shells, also belong in this category. In most of these elements, notably among the heavier ones of them, regularities consisting of constant differences, i.e., levels, have been known for a long time (Runge, Paschen, Paulson).

The most typical representatives of the second category are the famous spectra of Cr and Mn, in which multiplets were first discovered. Other, though not such typical, representatives are the spectra of the other elements of the iron group. For all these the classification has been carried through to a high degree of completion. Some of the spectra of the second long period and a few rare earths are also to be counted in this category although the latter exhibit their characteristic features to a still slighter degree.

Spectra that cannot be regarded as belonging to either of the above categories are the most numerous, and most of them are as yet incompletely or not at all investigated. They exhibit multitudes of lines of approximately equal in-

tensity. From a theoretical point of view only little that is helpful may be said about them. Interactions are so general and so complex that no quantum numbers other than J and the parity value can be ascribed. No grouping of the levels is apparent, and the assignment of further quantum numbers, whether vector sums of electronic quantum numbers or electronic quantum numbers (configurations) themselves, would in general therefore be unjustified. Fortunately there often occur among spectra of this uninviting class, groups of levels that exhibit traces of coupling simply because the chances for perturbing interactions are relatively small among the lowest levels. In a few of these somewhat tractable spectra rather complete classifications have been published, notably those of certain rare earths by Albertson, Harrison, Meggers, Russell, and their co-workers.

The spectrum of neutral tungsten, WI, on which we are reporting here, is of the kind described in the previous paragraph. Its investigation was begun at the Bureau of Standards seventeen years ago, in the heyday of multiplet spectroscopy, in an attempt to find multiplets in a spectrum of an element of the third long period. W I was expected to be the easiest spectrum in this period, since both Cr I and Mo I showed from the then prevailing point of view a relatively simple structure. As we know now, this simplicity arises from the occurrence of configurations involving five equivalent d-electrons, for which spin-orbit interaction vanishes.¹ On the other hand it has become clear that in W I the simplifying influence of d^{5} is considerably obscured

¹ W. Albertson, Astrophys. J. **84**, 26 (1936), points out the corresponding fact for seven *f*-electrons and its bearing upon the relative simplicity of portions of certain spectra in the middle of the rare earth group.

FIG. 1. Energy levels of neutral tungsten, W I. The first ionization level, W II $5d^46s$ 6S , lies at 64.4×10^3 cm⁻¹.

by its relative instability and by mixture with other configurations, and that, as compared with its neighbors in the Pt group, the spectrum of W shows no such singularly simple structure as was exhibited by those of Cr and Mo in the Fe and Pd groups, respectively.

Most of the new material in this paper is incorporated in Table I, which is a rectangular array in which an attempt has been made to gather all the important information available concerning the properties of the neutral tungsten atom. Closely related to Table I is Table II, the list of classified lines. Because Tables I and II are designed for reference rather than continuous reading, and on account of the length of the explanatory matter that accompanies them, the presentation of this matter is postponed to Section 4, which is devoted to it.

Briefly stated, the present status of W I is that 2378 lines have been given assignment as 2567 transitions (including 169 double and 10 triple assignments) among 50 even and 250 odd levels

(of which 16 are established only tentatively and listed with question marks), and tentative g values have been assigned to 201 of the levels. Figure 1 is the general level diagram. As for the assignment of quantum numbers, of course parity and J values are given for all the levels (except for ambiguities in J, in 4 cases). Further than that, surprisingly enough for an atom in this part of the periodic table, it has been found practical to assign approximate configuration and LScoupling quantum numbers, with only 18 cases of evident mixing of eigenfunctions, to 65 levels: $5d^{4}6s^{2} \, {}^{5}D \, {}^{3}HGFDP, \, 5d^{5}6s \, {}^{7,5}S \, {}^{5}G, \, 5d^{4}6s({}^{6}D)7s \, {}^{7,5}D,$ $5d^46s(^6D)6p^{7,5}FDP$. Clues as to possible structural properties are given for about 10 other levels. The rest of the odd levels cannot at present be interpreted. In the study of the low levels, formulas have been used for the configuration d^4 (LS interaction is neglected) after Ostrofsky,² and for the configuration d^{5} (where the LS in-

 $^{^2}$ M. Ostrofsky, Phys. Rev. 46, 604 (1934); see also for corrected formulae: O. Laporte, Phys. Rev. 61, 302 (1942).

Nar	ne	5d46s(6)	D)6p	7 J 193	70 30°	2	F_1 001°	2	F_{2} 14 ₂ °	$\frac{7I}{21}$	D_1 4_1°	7 23	F_3 O_3°	7] 23	D_2 9_2°	2	⁷ F ₄ 247 ₄ °
		(cm ⁻¹)	g	1938	9.38 ′0	200 1.	64.26 54A	214 1.	48.00 48A	$2145 \\ 2.5$	53.80 1A	230 1.	47.19 53 <i>B</i>	2396 1.9	94.58 93 <i>B</i>	24	763.30 .50B
$5D_0$ $5D_1$ $7S_3$ $5D_2$ $5D_3$	$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$	$\begin{array}{r} 0.00\\ 1670.27\\ 2951.27\\ 3325.50\\ 4829.99\end{array}$	0/0 1.51 <i>A</i> 1.98 <i>A</i> 1.48 <i>A</i> 1.50 <i>A</i>	2	-18	5KZ 3z 2	$-04 \\ -03 \\ +13$	5K?z - 0u	+01	6Z 8KZ 7K?ς	$-03 \\ +02 \\ -21$	6K?z 2z	$+01 \\ +04$	6KZd 4Kz 6Kz 6KZ	$00C \\ -01C \\ +01 \\ +03$	6 <i>K</i> ?:	z 00
⁵ D ₄ ³ P ₀ ³ H ₄ ³ P ₁ ³ G ₃	$D_4 \\ 09_0 \\ 12_4 \\ 13_1 \\ 13_3$	6219.30 9528.01 12161.96 13307.09 13348.53	1.49A 0/0 0.99B 1.32B 0.92A							2	+01	1u 	-07 <i>C</i>			1	-01
$\begin{bmatrix} {}^{3}F_{2} \\ {}^{3}P_{2} \\ {}^{3}H_{5} \\ {}^{3}F_{3} \\ {}^{3}G_{4} \end{bmatrix}$	$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$	$\begin{array}{c} 13777.71\\ 14976.17\\ 15069.94\\ 15460.00\\ 16431.30\end{array}$	$1.09B \\ 1.06B \\ 1.05B \\ 1.17B \\ 1.02B$											1.0	+13		
$\begin{bmatrix} {}^{3}H_{6} \\ {}^{3}F_{4} \end{bmatrix}$	$176 \\ 174 \\ 173 \\ 181 \\ 182$	$\begin{array}{c} 17008.48\\ 17107.01\\ 17701.16\\ 18082.84\\ 18116.83\end{array}$	$\begin{array}{c} 1.4 \ C \\ 1.19B \\ 1.02C \\ 0.7 \ C \\ 1.08C \end{array}$														
$5S_2 = 5G_3 = 5G_4 = 5G_4 = 5G_5 = 1$	$182' \\183 \\192 \\194 \\195$	18280.48 18974.48 19253.59 19256.22 19535.00	1.43 <i>C</i> 1.06 <i>A</i> 1.18 <i>A</i> 1.20 <i>B</i> 1.21 <i>B</i>														
$5G_6$ $3G_5$ $3D_3$ $5P_1?$	$196 \\ 195' \\ 193 \\ 201 \\ 202$	$\begin{array}{r} 19648.48\\ 19826.02\\ 19827.67\\ 20427.82\\ 20983.07 \end{array}$	1.32 <i>B</i> 1.20 <i>A</i> 1.28 <i>A</i> 2.1 <i>C</i>														
$5D_0?$ $5D_4?$ $5F_5?$	210 224 225 233 285	$\begin{array}{c} 21856.3\\ 22476.65\\ 22852.82\\ 23930.07\\ 28233.41 \end{array}$	0/0 1.48C 1.2 C 1.4 C														
${}^{7}D_{1}$ ${}^{7}D_{2}$ ${}^{5}D_{0}$ ${}^{5}D_{1}$ ${}^{7}D_{3}$	$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$	$\begin{array}{r} 43451.89\\ 44919.74\\ 45225.18\\ 46458.20\\ 46496.50\end{array}$	2.83 <i>B</i> 1.9 <i>C</i> 0/0 1.74 <i>B</i>	2Z	00	3fZ 3¢ 0 .	$^{+06}_{-02}$	3ζ 5= 0z 2z	$-03 \\ +03 \\ -04 \\ +02$	$1 \\ 3z \\ 1u \\ 2 =$	$^{-03}_{\substack{+01c\\00\\+03}}$	4 <i>K</i> ?Z 5	-01 +02	2 0 0 3z	$-01 \\ +02 \\ +08 \\ -03C$	4 <i>Z</i>	00
${}^{7}D_{4}$ ${}^{5}D_{2}$ ${}^{7}D_{5}$ ${}^{5}D_{3}$ ${}^{5}D_{4}$	$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$	$\begin{array}{r} 47975.45\\ 48078.33\\ 49354.58\\ 49655.95\\ 51123.08\end{array}$	$egin{array}{c} 1.68A \\ 1.55B \\ 1.7 \ C \\ 1.66B \\ 1.4 \ C \end{array}$					0u 	00	0	+03	2z 1z 3	$-01 \\ -09 \\ +03C$	0	 	1 = 0	-02 -05C
	5223 531 554 555 ?585	52284.71 53847.81 55333.03 55380.87 58630.9	1.45 <i>B</i>			-		3Kz 0	00 +01			1	00 				+02 + 15C + 28
	$\begin{array}{c} \circ D_{0} \\ \circ D_{0} \\ \circ D_{1} \\ \circ D_{2} \\ \circ D_{3} \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Frank} & (\text{cm}^{-1}) \\ \hline \\ & 5D_0 & D_0 & 0.00 \\ & 5D_1 & D_1 & 1670.27 \\ & 7S_5 & S_5 & 2951.27 \\ & 5D_2 & D_2 & 325.50 \\ & 5D_3 & D_3 & 4829.99 \\ & 5D_4 & 0.9 & 9528.01 \\ & 3P_0 & 0.9 & 9528.01 \\ & 3P_1 & 131 & 13307.09 \\ & 3G_3 & 133 & 13348.53 \\ & 3P_2 & 134 & 1397.61 \\ & 3P_1 & 131 & 13307.09 \\ & 3G_3 & 133 & 13348.53 \\ & 3P_2 & 134 & 14976.17 \\ & 3H_4 & 124 & 14976.17 \\ & 3H_5 & 15.15460.00 \\ & 3G_4 & 164 & 16431.30 \\ & 3H_6 & 174 & 17701.16 \\ & 3P_5 & 15.15460.00 \\ & 3H_6 & 175 & 17701.16 \\ & 3P_6 & 175 & 15460.00 \\ & 3H_6 & 176 & 17008.48 \\ & 176 & 17008.48 \\ & 176 & 17701.16 \\ & 3D & 5G_4 & 188 \\ & 188 & 1887.48 \\ & 199 & 19255.29 \\ & 6G_6 & 199 & 19255.29 \\ & 7D_1 & 21856.3 \\ & 5D_4 & 194 & 19256.22 \\ & 195 & 19535.00 \\ & 5D_6 & 194 & 19256.22 \\ & 195 & 19535.00 \\ & 3D_6 & 194 & 19256.22 \\ & 195 & 19253.59 \\ & 7D_1 & 318 & 43451.89 \\ & 7D_2 & 224825.22 \\ & 22852.82 \\ & & 22385.233.41 \\ & 7D_1 & 451 & 43975.45 \\ & 5D_4 & 452 & 4078.33 \\ & 7D_5 & 495 & 4938465.95 \\ & 5D_4 & 514 & 51123.08 \\ & & 5228 & 522847.11 \\ & & 553 & 55380.87 \\ & & 7585 & 55380.87 \\ & & 7585 & 55860.9 \\ \end{array}$	$\begin{array}{c} ({\rm cm}^{-1}) & g \\ \hline g \\ g \\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{Name} & (\text{em}^{-1}) & 10383.38 & 20064.26 & 21433.80 & 23077.19 & 23964.26 \\ 0/0 & 1.54A & 1.48A & 2.51A & 2.51A & 1.53B & 1.98B \\ \hline \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

TABLE I. Level and transition array for W I.

teraction energy vanishes), as published by Laporte.³

At this point it is appropriate to consider the degree of completeness of the classification. The relative term "complete," applied to the classification of an atomic spectrum, carries quite different meanings from the two points of view of the experimental spectroscopist and the theoretician. The experimentalist considers a classification complete if it accounts for all the lines on a reasonably exposed plate, or at least for all that show by their behavior under various conditions that they belong to levels especially populous or stable, or otherwise interesting. The theoretician wants, of the infinite number of levels, the identification of certain limited sets, such as the approximately defined configurations. In any atom so complicated as tungsten, the two kinds of completeness are incompatible, for almost every configuration possesses some improbable levels, the discovery of which would require heavily exposed plates, that would present many new lines to be classified, that would yield new partconfigurations, etc.

³ O. Laporte, Phys. Rev. 61, 302 (1942).

$5F_1$ 2594° 25983.1 0.54 <i>E</i>	57 57	20 261 1.	⁷ D ₃ 61₃° 89.11 80 <i>B</i> ↓	26 1	⁷ P ₂ 2622° 229.68 .84B	2 26 0	⁷ F ₂ 632° 367.22 .87B	26	⁵ D ₀ 266 ₀ ° 629.51 0/0	$7F_{5}$ 2665° 26676.41 1.46B	⁷ P ₃ 2743° 27488.05 1.72A	276_2° 27662.44 1.21 <i>A</i>	⁵ D ₁ 277 ₁ ° 27778.46 1.25B	
$ \frac{3fK?Z}{4Z} + 4f = - $	-10 -01 -01 <i>C</i>	6GK2 3z 6K?Z		$4\zeta \\ 6rGF \\ 4z \\ 2$	$\begin{array}{c} -03 \\ -00 \\ -01 \\ -01 \end{array}$	2 5fK2 1	$202 \\ -01 \\ +07C$	3 <i>Z</i>	-03	6 17 2 - 02	$6\rho'K - 03 \\ 5fz & 00c \\ 4f = & 00C \\ 2z & 00c \\ 3z = 00c \\ 00c \\$	$\begin{array}{cccc} 5fZ & 00 \\ 5K?Z & -01 \\ 0 & 00 \\ 3\zeta & -03 \end{array}$	3Z +04 3= +01 4z -02	D_0 D_1 S_3 D_2 D_3
2 +	-01	1	00	$\frac{1}{2}$	$^{+16}_{+01}$	2	+02	2	+03			$ \begin{array}{c} 3 & -01 \\ 4 & +02 \end{array} $	5Z = 00 3 -03	$\begin{array}{c} 09_{0} \\ 12_{4} \\ 13_{1} \\ 13_{3} \end{array}$
.5 +	-19	1 .7 .3	$^{+04}_{+16}$ +12	.4 .4	-04 + 13	$^{3}_{1}$.2	$^{+03}_{-05}$ $^{+28C}$				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 +03 +06	$ \begin{array}{ccc} 3 & -01 \\ 2 & 00 \end{array} $	$13_{2} \\ 14_{2} \\ 15_{5} \\ 15_{3} \\ 16_{4}$
													.3 +12	$17_{6} \\ 17_{4} \\ 17_{3} \\ 18_{1} \\ 18_{2}$
														182' 183 192 194 195
														190 195 193 201 202
														21_0 22_4 22_5 23_3 28_5
2u 1u	-37 00	1u	+03	$\frac{4}{2}$	$\substack{ 00 \\ +02 }$	$\begin{array}{c} 2 \\ 0 \end{array}$	$^{-03}_{+05}$	0u	+3		4z -07	2 + 09 2 - 03	$\begin{array}{ccc} 0u & -1 \\ 1 & -18 \\ \hline 1 & -18 \end{array}$	$43_1 \\ 44_2 \\ 45_0 \\ 46_1$
		0u 4z	+10 - 07	0 <i>u</i>	+14			σű	05	$5K^{2}z = -05$	2z +01		1	401 463 474
						1	 			3 = +05 $2z -03$		0 -01		$48_2 \\ 49_5 \\ 49_3 \\ 51_4$
		0u 1	$+02 \\ -01$	2 0	$-13 \\ 00$	1 1	$^{+11}_{-32}$	0	+05	001	0 +01			$52_{23} \\ 53_1 \\ 55_4 \\ 55_5$
2591°		20	61 ₃ °	2	2622°	2	632°	2	2660°	$\overline{266_5}^{\circ}$	274_3°	2762°	2771°	?585

TABLE I-Continued.

From the theoretical point of view, of course, the present classification of W I is far from complete. Even in $5d^46s^2$, which is the lowest configuration, hardly more than one-half of the 34 levels are known. Experimentally, however, the situation can perhaps be compared favorably with that in almost any other spectrum of comparable complexity; see remarks made under 3(c).

2. CRITICAL RÉSUMÉ OF PREVIOUS DATA AND INTERPRETATIONS

Heretofore a large amount of experimental data but a relatively small amount of classification and interpretation on the arc spectrum of tungsten have been available. Although an exhaustive review is unnecessary, certain aspects of the problem and some of the most important previous work are discussed in the following historical and critical account.

(a) Line Measurements

The older line measurements are collected in Kayser's Handbuch.⁴ The most extensive of all the lists is that of Exner and Haschek,⁵ whose

⁴ H. Kayser, Handbuch der Spectroscopie (1912), Vol. 6,

p. 787. ⁵ F. Exner and E. Haschek, *Die Spektren der Elemente bei* normalem Druck (Leipzig, 1911, 1912).

	${}^{7P_4}_{2784^{\circ}}_{27889.56}_{1.71A}$	$5P_1$ 2811° 28187.84 2.34 <i>A</i>	⁷ F ₆ ?285 ₆ ° 28599.81	$7D_4$ 2874° 28797.21 1.61 <i>A</i>	$5F_3$ 2913° 29139.10 1.06B	$5D_2$ 2912° 29195.84 1.28 <i>A</i>	$5P_2$ 2932° 29393.38 1.83 <i>A</i>	$7D_5$ 297 $_5^\circ$ 29773.27 1.55 A	$5D_{3}$ 2993° 29912.80 1.31A
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$	$8GKZ + 01 \\ 0 + 12$	$\begin{array}{ccc} 6KZ & +02 \\ 5KZ & +05 \\ 4Z & 00 \end{array}$		5fK?Z + 01 5z + 03		$5z -03 \\ 5Z -02 \\ 3= +03$	$3z 00 \\ 5zKz +05 \\ 5fZ -02 $		${}^{6K?Z}_{4fz} {}^{+05}_{-03}$
$D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3$	4= +01c	$\begin{array}{ccc} 1Z & 00C \\ 2 & -05 \end{array}$		1 -02	3z -02	$egin{array}{ccc} 4 & 00 \ 1 & +02 \end{array}$		$\begin{array}{rrr} 4K?z & +03c\\ 2 & -03C \end{array}$	5z +01 2K? +11 1u -27
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	105		1 +05		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} + 03C \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -08	$\begin{array}{ccc}1 & -06\\5u & 00c\\1 & -07\\\end{array}$
176 174 173 181 182	•	1.8 +16			2 -01 .5 +09	.4 -05C .1 -24	1.5 +12		 301
182' 183 192 194 195		.1 +03		.0 +21	$ \begin{array}{c} .2 \\ 1.0 \\ .3 \end{array} + \begin{array}{c} +09 \\ +16 \\ +20 \end{array} $	2.0u + 04C .7 + 04	$\begin{array}{rrr} .4 & +05C \\ .4 & +07 \\ .4 & +14 \end{array}$	(C +44) .8 +13	$\begin{array}{cccc} 3 & -01 \\ .4 & -03 \\ .3 & +12 \\ 2.5 & +01 \end{array}$
$196 \\ 195' \\ 193 \\ 201 \\ 202$.1ud +14	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.3 +11
21_0 22_4 22_5 23_3 28_5									
$\begin{array}{c} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$	0 -01	$\begin{array}{cccc} 2 & +03 \\ 2 & -06 \\ 1u & +15 \\ 0 & +11 \end{array}$		4z −11C	0u - 1 2u - 06	1 <i>u</i>	1 - 06c 2 -04		2 +08
$\begin{array}{c} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$	$\begin{array}{c} 0 \\ 3 \\ -03 \\ \end{array}$	0u −24C	2 +04	$\begin{array}{rrr} 2f & -02 \\ 0u & -24C \\ 0 & -03 \\ 0f & +14 \end{array}$	$ \begin{array}{cccc} 0 & -+12 \\ (C & -53) \\ \end{array} $		$ \begin{array}{ccc} 2 & -08 \\ 0u & +28 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(C -40) $(C -40)$ $(C -$
5223 531 554 555 ?585	$0 \qquad +11 \\$	2811°	?2856°	$\begin{array}{c} 1z \\ 2 \\ - 00 \\ \hline 287_4^{\circ} \end{array} $	 291 ₃ °	 2912°	 2932°	$ \begin{array}{ccc} 0u & 00 \\ 1z & +02 \\ \hline 2975^{\circ} \end{array} $	 299 ₃ °

TABLE I—Continued.

comparison of arc and spark intensities was useful in isolating the transitions belonging to the neutral atom. The high accuracy of their measurements was exceeded only by that of Miss Belke's⁶ important work, which justified the retention of seven digits, and by that of Kiess and Meggers⁷ in the longer wave-lengths. In the farthest photographic infra-red we have made use of Cohen's⁸ unpublished list, but have not classified any lines that occur exclusively on it. In the extreme ultraviolet the hitherto published material has been supplemented by a new list,⁹

⁶ M. Belke, Zeits. f. Wiss. Photographie 17, 132 and 145 (1918). In this paper 3179.964 should read 3179.064 and 5020.369 should read 5040.369.

⁷C. C. Kiess and W. F. Meggers, Sci. Pap. Bur. Stand. 16, 51 (1920); C. C. Kiess, unpublished list of lines in the region ν 11333 to ν 9541, kindly placed at our disposal.

⁸ I. Cohen, A. B. thesis, Wisconsin, 1937 (deposited at the Library of the University of Wisconsin). Belke's (reference 6) lines in the third order were used as standards.

⁹ Obtained by Mack on Schumann plates with a Hilger E-1 quartz spectrograph at Palmer Physical Laboratory, with the valuable advice and aid of Professor Shenstone. Belke's lines, and beyond their limit, Shenstone's silver arc lines, were used as standards. Although the standards are believed to be good to about 0.2 cm⁻¹, it is evident from the disagreement of our tungsten lines with the combination principle that the lines listed are uncertain by several times that amount.

$5P_3$ 3053° 30586.61 1.64A	$\overline{306_1^\circ}$ 30683.45 1.39A	$\overline{313_1^{\circ}}$ 31323.41 0.86A	$5F_4$ 314_4° 31432.87 1.32B L	$\overline{318_2^\circ}$ 31817.61 1.52B	322_3° 32238.00 1.3C	⁵ D ₄ 3284° 32828.11 1.7C	$\overline{329_3^\circ}$ 32957.56 1.43B	$\overline{3312^{\circ}}$ 33141.40 1.51B	
$8rKZ + 05 \\ 3z + 05C \\ 5fK?z = 00$	$2 + 12 \\ 2z & 00 \\ 3z & +03$	$ \begin{array}{rcrr} 1KZ & +04 \\ 2 = & +02C \\ 6\zeta & +14C \end{array} $	5z - 02 $3fz - 01$	$3z 00 \ 3A? +02 \ 3fz -01$	$3 = +02 \\ 3z & 00 \\ 3Az & +02 \end{cases}$	0 + 13 65 - 07C	$\begin{array}{ccc} 5K = & +02 \\ 3Kz & +02 \\ 3z & 00 \end{array}$	$\begin{array}{rrrr} 4dKz & -02 \\ 4KZ & +03c \\ 1 & -04c \\ 20 & +44 \end{array}$	$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$
$5\rho' f k? z - 04$ 	$ \begin{array}{ccc} 0 & -06 \\ 1u & -17 \end{array} $	3Z -06 0u +3	2 -01 0u +29	$ \begin{array}{ccc} ?0 & -43 \\ 0u & -29 \end{array} $	2f -02	3 -02C 0 -17C	$\begin{array}{ccc} 2 & +01C \\ 2 & +01 \\ \hline \end{array}$	200	$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 1 & 00 \\ 1 & -14 \end{array} $	$ \begin{array}{ccc} 2 & -11 \\ 2 & 00 \end{array} $	2u - 12 $1u - 07$	2 +01	$\begin{array}{c}0 \\ -20 \\ 0u \\ 0u \\ 0\end{array}$	$\begin{array}{c} 0 & +02 \\ 2u & -22 \end{array}$	$\begin{array}{ccc} 0u & +02 \\ 0 & -05 \\ \end{array}$	$\begin{array}{ccc} 0u & +5\\ 2f & -10c\\ 0 & -08 \end{array}$	132 142 155 153 164
1 -03 4 +05	105	$\begin{array}{ccc} 2 & +01 \\ 3 & +05 \end{array}$			2	1 <i>u</i> 05	2 -04	1 <i>u</i> +03	176 174 173 181 182
$\begin{array}{cccc} 3 & +03 \\ & \\ .1 & +30 \\ .2 & +17 \end{array}$	2 +04 2 +03	?3 +03	2 -01 + 03	$\begin{array}{ccc} 3 & -04 \\ 3 & +02 \\ 2 & 00 \end{array}$	$\begin{array}{cccc} 2 & -03 \\ 3 & -02 \\ 1 & 00 \\ 2 & +04 \end{array}$	2 +03C	$\begin{array}{ccc} 2 & +18C \\ 1 & -01 \\ 3 & -04 \end{array}$	1 -08	182' 183 192 194 195
3u +10 2 +17	$\begin{array}{ccc} .4 & +10 \\ .0 & +01 \end{array}$	$\begin{array}{ccc} .1 & +05 \\ .2 & +24 \end{array}$	$ \begin{array}{cccc} 3 & +03 \\ 2 & -03 \end{array} $	$\begin{array}{ccc} 2 & +02 \\ 1 & -09 \\ 2 & +08 \end{array}$	2 -02	$\begin{array}{ccc} 3 & +05 \\ 1 & -04 \end{array}$	$3 + 09 \\1 + 04$	$\begin{array}{ccc} 3 & +01 \\ 2 & -01 \\ 1u & +05 \end{array}$	196 195' 193 201 202
					.4 +05	?.2un +52	2.5 +10		210 224 225 233 285
	212	104	1u +17C	$\begin{array}{ccc}1 &\\2 & +04\end{array}$	1 +02		1 +06		$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2u -10		$\begin{array}{ccc} 3 & +02 \\ 0u & 00 \\ 1 & +02 \end{array}$	1u -34 1z +11	$\begin{array}{c} 0u & +09 \\ 1z & +07 \end{array}$	$\begin{array}{ccc} 2u & -14C \\ & \\ 1u & -02C \\ 0u & -1 \end{array}$	3u - 07 0ud - 09 (C - 09)	5u –30C	$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$
2z -10C		(C +46)	0 +13		2z +08C			0 -03	52_{23} 53_1 55_4 55_{54}
305_2°	3061°	3131°	3144°	318_2°	3222°	328_4°	3293°	3312°	19856

TABLE I—Continued.

whose lines are much more intense than Exner and Haschek's and extend to considerably higher frequencies, but are less accurately measured.

Since the completion of what we thought was to be our final list, the M.I.T. tables¹⁰ have appeared, covering almost the whole range of all the previous lists. The accuracy of the tungsten lines in this list, as judged by self-consistency under the combination principle, compares favorably with that in any of the other lists except the middle portions of those of Belke, Kiess, and Meggers. The list is rich in lines although it needs ¹⁰ G. R. Harrison, Massachusetts Institute of Technology Wavelength Tables (John Wiley and Sons, 1939). to be supplemented by others throughout its range. If our work were starting now we should undoubtedly use the M.I.T. list as the principal basis for our work throughout the spectrum, instead of limiting our principal changes to the region $\nu > 40,000$ cm⁻¹ as we have done for the sake of economy.

(b) Special Excitation Conditions

Certain lines evidently belonging to the lowest levels are distinguished by their reversal in the arc or their presence among de Gramont's¹¹ or

¹¹ A. de Gramont, Comptes rendus 171, 1106 (1920).

	3	⁵ F ₅ 3335° 3370.06 1.39B	33	339 ₂ ° 943.98	341	41_4° 21.60 .5C	3 342	342 ₃ ° 228.54	3 34 1	3431° 342.37 .56A	34	3433° 353.99 0.71C	344 344 0.	$\overline{44_2^{\circ}}$ 85.83 82 <i>C</i>	346 346 0.	464° 32.59 89C	34	3471° 719.32 0.15 <i>B</i>
$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$			2 2z	+01 +03	5Kz 3z	$^{+08}_{+03}$	$\frac{2dz}{0}$	$+02 \\ +05$	4Z 1 2	$^{+05}_{+06}_{-01}$	3 3z 2Z	$^{+02}_{-01}_{+04}$	5r Kz 3 $4K =$ $2y$	$^{00}_{\substack{-02\\+06\\+01}}$	2 5K?z	+06 +01 <i>C</i>	5rM?H 5A? 3	?A?KZ-01 KZ-03 00
$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$	5z 0	-04 -04	$0 \\ 3$	$^{+09}_{-02}$	0 1 0	$-04 \\ -02 \\ -15$	2z 2 2	$+03 \\ -02 \\ -03$	3Z 2	04 02	3z 0u	-01 -15	2 4z	04 04	3 3z 	-06 -04	0	+13
$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$	0	00	0		0u 2u 0u	$^{+17}_{-03}_{00}$	2u 3z 2u	$+12 \\ 00 \\ -13$	0u -	+3	0	+02	2 _	+01	0 0uf	$+01 \\ +18$	3 0u	$^{+26}_{-04}$
176 174 173 181 182	1	+07	2	04 <i>C</i>	1u _	+03	2 0u	00 <i>C</i> 3	2	-07	$\frac{2}{1u}$	-07 + 07C		$^{-03}_{+02}_{+03}$	0 0u	$^{-04}_{+2}$	4	 +04
$18_2' \\ 18_3 \\ 19_2 \\ 19_4 \\ 19_5$	2	+01	1 4 3u	$-01 \\ 00 \\ -02$	2u 2u 2	+08C + 10 - 02	$\frac{1u}{1}$	$+02 \\ -03 \\ -09$	1u	-04	2u 1u 3u	$+19C \\ -20C \\ -07C$	$\frac{2}{2}$	$^{-03}_{-04}_{+12}$	2u 3u	+06 +12C	3 3	+04 08
196 195' 193 201 202	$\frac{3}{2}$	-06 + 04			$\frac{2d}{2}$	$^{+18}_{-03}$	-		$\frac{1u}{3}$	$^{+08}_{+04C}$?2	-40	4 (C _	$^{+02}_{+44)}$	_		(C	-38)
210 224 225 233 285	.4 .1	$^{-03}_{+25c}$	2	+15	3 .4 2.0	-02 + 18 + 08	2 .1	-01 + 01	-		2 .1	00 +01	-		1 1	02		
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$					-		-		-				1	+03			$\frac{.5}{2}$	00
$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$	1 3 1u	$+04 \\ -02 \\ -05$	-		$2 \\ 1u \\ 0u \\ 2$	$-19C + 03 + 22 \\ 00 + 00$?1 0u	+33	2	-09C			1	-04	1u	+05	3	+33
5223 531 554 5554 ?5856	3z	-06C	-	3392°	3	+15C	- - 3	 4423°	3	4431°		3433°		 142°	0E	01	;	3471°

TABLE I-Continued.

Thompson's12 raies ultimes, King's13 furnace lines, or the underwater spark lines of Hulburt,¹⁴ Meggers,¹⁵ and Allin and Ireton.¹⁶ They were especially useful in the early part of the analysis. King's method yields less information here than usual on account of the low volatility of tungsten. In the light of the present classification, Hul-

burt's and Meggers' underwater spark lines are evidently the only such lines with much physical significance.

The revised Rowland¹⁷ and Miss Moore¹⁸ lists give 9 sure, and 11 other possible, tungsten absorption lines in the spectrum of the sun's disk, and 3 unquestioned and 6 questioned tungsten

¹² K. Thompson, plate kindly taken at the University of Michigan upon our request.
¹³ A. S. King, Astrophys. J. **75**, 379 (1932).
¹⁴ E. O. Hulburt, Phys. Rev. **24**, 129 (1924).
¹⁵ W. F. Meggers, unpublished work kindly placed at

our disposal. ¹⁶ E. J. Allin, Trans. Roy. Soc. Canada **21**, Sec. 3, 231 (1927); E. J. Allin and H. J. C. Ireton, *ibid*. **21**, Sec. 3, 127 (1927).

¹⁷ C. E. St. John, C. E. Moore, L. M. Ware, E. F. Adams, and H. F. Babcock, *Revision of Rowland's Preliminary Table of Solar Spectrum Wave-Lengths* (Carnegie Institution

 ¹⁴ of Washington, 1928) publication no. 396; cf. H. N. Russell Astrophys. J. **70**, 11 (1929).
 ¹⁸ C. E. Moore, A Multiplet Table of Astrophysical Interest (Princeton University Observatory, 1933); Atomic Lines in the Sunspot Spectrum (Princeton University Observatory, 1923). servatory, 1933).

$\overline{3514^{\circ}}$ 35116.73 1.2B	353_2° 35311.46 1.0C	$ 354_3^{\circ} 35499.10 1.0C $	$ 357_2^{\circ} \\ 35731.92 \\ 1.5C $	$\overline{3593^{\circ}}_{35943.17}_{1.4C}$	360_4° 36082.27 1.24B	3611° 36190.42 1.62 <i>A</i>	362_5° 36275.08 1.27B	3662° 36673.67 1.50B	
$\frac{3K}{5Kz} + 08$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4z & +08\\ 2z & +14C \end{array}$	$ \begin{array}{c} 5rKz & +06\\ 6rKz & +03C\\ 2 & -02 \end{array} $	$1 -01 \\ 1 +05$	$\begin{array}{rrr} 64Kz & +02 \\ 5Kz & +02 \end{array}$	$\begin{array}{ccc} 4rZ & +02 \\ 4rA?z & +02 \\ 5rKz & 00 \end{array}$		$\begin{array}{rrrr} 4Kz & -05 \\ 5AKZ & +07 \\ 5z & 00 \\ 1 & +07 \end{array}$	$\begin{array}{c} D_0\\ D_1\\ S_3\\ D_2\\ D_3 \end{array}$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 1 & -03 \\ 3z & -02C \end{array} $	2z +01 $2= -04$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 2z & -03 \\ 2z & +02 \\ \end{array}$	0 -13	1 00	5K?z 00 2z +02	$ \begin{array}{ccc} 1z & 00 \\ 3z & -01 \end{array} $	$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$
${\begin{array}{ccc} 2z & 00C \\ 0 & +01 \end{array}}$	$3 = 00 \\ 2 00$	301	1 =	$ \begin{array}{cccc} 0u & -32 \\ 0 & +04 \\ 0 & -10 \\ \end{array} $	33	$3Z 00 \ 3 -02$	1 -02	1 <i>u</i> 00	$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$
0 <i>u</i> +1	2 00 00 -13	$\begin{array}{ccc} 0u & -10c \\ 0z & +13 \end{array}$	2u + 11C 1 00	1 +18	$\begin{array}{c} 0 & +14 \\ 0 & -11 \end{array}$	$\begin{array}{c} 0 & +04 \\ 1u & -44 \end{array}$	0u01	0 + 16	$17_{4} \\ 17_{4} \\ 17_{3} \\ 18_{1} \\ 18_{2}$
$ \begin{array}{cccc} 1 & -04 \\ 2 & +12 \\ 2 & -05 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{rcl} 0u & -12 \ 2 & +02 \ 2 & +25C \ 2 & -10C \end{array}$	$\begin{array}{cccc} 1 & +02 \\ 4 & -08 \\ 1 & +21 \end{array}$	$\begin{array}{ccc} 0 & +01 \\ 2u & -04 \\ 0u & -01 \\ 0u & 00 \end{array}$	2 +01	2 +01	1 <i>u</i> 07	4z01C	$18_2'$ 18_3 19_2 19_4 19_5
410	0u	0 <i>u</i> 0	$\begin{array}{ccc} 4 & -01 \\ 3 & -01 \\ 2 & -04 \end{array}$	4 –11 1 –10		$\begin{array}{cccc} 1u & +18 \\ 3 & 00 \end{array}$	$\begin{array}{ccc} 4 & +02 \\ 0u & -1 \end{array}$	$egin{array}{ccc} 1 & 00 \ 2 & -09C \ 2C & +13 \end{array}$	$196 \\ 195' \\ 193 \\ 201 \\ 202$
2 -03 .2 +12		2 -22	2 +01	1 -02	1 +01		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$21_0 \\ 22_4 \\ 22_5 \\ 23_3 \\ 28_5$
			.4	70.000-7778		.1 +24		.0 +03	$\begin{array}{r} 43_{1} \\ 44_{2} \\ 45_{6} \\ 46_{1} \\ 46_{3} \end{array}$
2 + 02 + 15				104	1 +05	1 +14	1 +10 2u -01		$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$
							0 +04	0 +22C	52_{23} 53_1 55_4 55_5 258_2
3514°	353_2°	354_3°	3572°	359_3°	3604°	3611°	3625°	3662°	:005

TABLE I-Continued.

lines in the sunspot spectrum. On the disk, sure identifications have been made of at least one line for each of the lowest 6 levels (none for any higher even levels), and in the spot spectrum 5 lines, 2 unquestioned and 3 questioned ones, arise from $d^{5}s^{7}S_{3}$, and the rest, 1 unquestioned and 3 questioned ones, from various d^4s^2 ⁵D levels.

(c) Previous Publications of Levels

Incidental to his Zeeman effect work, Jack¹⁹ tried to find series in tungsten with the aid of Preston's rule. He allowed a tolerance of about

2 cm⁻¹, and all his differences are meaningless. Paulson²⁰ made a rectangular array in which two differences, $D_2 - D_1$ and $239_2 - 214_1$, are real. In 1925 Laporte²¹ published a preliminary extract from an array of about 70 levels which was the forerunner of our Table I. Most of the material that now comprises our final report has been communicated privately to several workers, and some of it has been published with our permission.^{22, 23} The most important general papers on

¹⁹ R. Jack, Diss. Göttingen (1908); Ann. der Physik 28, 1032 (1909).

 ²⁰ E. Paulson, Diss. Lund. (1914).
 ²¹ O. Laporte, Naturwiss. 13, 627 (1925).
 ²² Bacher and Goudsmit, *Atomic Energy States* (McGraw-Hill, 1932). We have rejected six levels of this tentative list.
 ²³ C. E. Moore, *Term Designations for Excitation Potentials* (Princeton University Observatory, 1934).

	368_3° 36874.31 1.50A	369_2° 36904.11 1.57B	3714° 37146.29 1.1C	3726° 37297.5	373_5° 37309.13 1.25B	374_2° 37466.26 1.28B	376_3° 37674.04 1.13A	3771° 37773.94	380₄° 38001.10 1.1C
$egin{array}{c} D_0 & & \ D_1 & \ S_3 & \ D_2 & \ D_3 & \ D_3 & \ \end{array}$	8rMH?A?KZ-03 5Kz +06 3K +08	$\begin{array}{c} 3 & -06 \\ 7rMHAKZ-07 \\ 3 & +07 \\ 1 & +10 \end{array}$	4A? +02 5Kz +04		·	$\begin{array}{c} 0 & -11 \\ 6rMHA?KZ & 00 \\ 2 & 00 \\ 3 & +07c \end{array}$	$5rMH?A?\zeta 034z +026K = -10$	$\begin{array}{ccc} 0 & +40 \\ 4rz & -02 \\ 2 & 00 \end{array}$	3z +01
$D_4 \\ 09_0 \\ 12_4 \\ 13_1 \\ 13_3$	$\begin{array}{c} 3 \\ - \\ 2 \\ 0 \end{array} + 12$	019	$\begin{array}{rrrr} 2z & +04 \\ 3\zeta & +01 \\ 0 & -03 \end{array}$		2/GKdz-17 3z 00	$2z + 14C \\ 2z - 02$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 +18	$ \begin{array}{r} 3 & +03 \\ 0 & -28 \\ 1z & -07 \end{array} $
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	$\begin{array}{ccc} 0 & -05 \\ 2 & 00 \\ 3 & -04 \\ 1 & -04C \end{array}$	2 -01 3 -02	3z03	0 -2	3 -02 2 -02	$\begin{array}{ccc} 0 & -12\\ 2 & -01C\\ \vdots\\ 2 = & -03c \end{array}$	0 -05 2 -02	2 00	3= -05
176 174 173 181 182	$0 \qquad -01 \\ 0u \qquad +3$	-	0 -13		$\begin{array}{c} 0 & +06 \\ 0 & +15 \end{array}$	014	0 +05	002	
$18_{2}' \\ 18_{3} \\ 19_{2} \\ 19_{4} \\ 19_{5}$	$ \begin{array}{c} $	$\begin{array}{ccc} 0u & -11 \\ 0u & 0 \end{array}$	$ \begin{array}{c} \hline 0u \\ 2 \\ \hline 01C \end{array} $		1u19	$ \begin{array}{cccc} $	$\begin{array}{ccc} 0u & +15 \\ 0 & 00 \\ 0u & -06 \end{array}$	$ \begin{array}{r} 0 & -09 \\ 1 & 00 \end{array} $	0 -21
196 195' 193 201 202	2 00 3 -01	$\begin{array}{ccc}1 & -14\\1 & +02\\\hline\end{array}$	001	$\begin{array}{ccc} 2u & +2C \\ 0u & +1 \end{array}$	2	2u + 17	$\begin{array}{ccc} 0u & +1 \\ 2d & +07 \end{array}$	1 -01	$\begin{array}{ccc} 2 & -33 \\ 0 & 00 \end{array}$
210 224 225 233 285	1 —21		302	2 +2	${{2u }\atop{1}} + {15 }\atop{+ 01}$				112
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
474 482 495 493 514	.3 -01 ?1d +43		107		 2 —_02		1 -07		1 +03
$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ ?58_5$	 3683°	 3692°	 3714°	$0u -3 \\ \overline{3726^{\circ}}$	$\begin{array}{c} 0u \\\\ 373_{5}^{\circ} \end{array}$	2u <u>-21C</u> 3742°	 3763°	1 <i>u</i> +17 3771°	 3804°

TABLE I—Continued.

the spectrum that have appeared recently²⁴ are the extensive work of Catalán and Poggio,²⁵ who

listed 42 real levels not previously published, of which 29 had been independently placed on our list. We gave up our intensive search for levels several years ago, supposing that the law of diminishing returns made further search useless. Laun²⁶ has reported several levels, including the

²⁴ Although this paper does not purport to cover more than the extranuclear structure of the atom, it should be recorded in this section that N. S. Grace and K. R. More, Phys. Rev. **45**, 166 (1934), studied the hyperfine structure of a few lines associated with the $d^{4}s^{2}$ ^{5}D (but none associated with $d^{5}s^{7}S$) and found separations into three components with a total spread of about 0.1 cm⁻¹, which they reconciled with the level scheme by ascribing to each of the ^{6}D levels among the various isotopes, the following spread with respect to the rest of the levels of the spectrum: Isotope 182, most stable; Isotope 183, nuclear angular momentum $I = \frac{1}{2}$, levels doubled and components approximately coincident with isotopes 182 and 184, respectively. (This might have been tested by an intensity study of a D_0 line.) Isotope 184, about 0.05 or 0.06 cm⁻¹ less stable than 182.

²⁶ M. A. Catalán and F. Poggio, Ann. Soc. Espan. Fisica y Quimica **32**, 255 (1934); Zeeman Verhandelingen (1935), p. 387; F. Poggio, Ann. Soc. Espan. Fisica y Quimica **33**, 171 (1935). We have rejected 13 Catalán-Poggio levels. ²⁶ D. D. Laun, Phys. Rev. **48**, 572 (1935); J. Research Nat. Bur. Stand. **21**, 207 (1938). Laun's report included some levels that were already in Catalán and Poggio's or our array, and some that we have rejected; of the Laun levels that we have incorporated in our list, we have altered several J values.

3803° 38052.98 1.11B	3826° 38203.03	3823° 38206.32	$\frac{3824^{\circ}}{38259.34}$?3841° 38429.82	3874° 38748.43	3902° 39030.23	3911° 39183.17 1.01C	3935° 39360.98 1.13C	
$3MAKZ - 06 \\ 4M + 01 \\ 5 - 23$	4	$3 -03 \\ 4MuA?Kz-06 \\ 3 +02$	5MsAKz-06 $3 + 02$	2 <i>M</i> ? -17	5 <i>Mz</i> -07 6 <i>H</i> ? <i>A</i> ? <i>z</i> -04	$\begin{array}{rrrr} 2 & -34 \\ 4rM?z & -01 \\ 4 & -04 \\ 4A?z & -05 \end{array}$	$ \begin{array}{r} 1MAZ - 14 \\ 3A? - 25 \\ 2 - 03 \end{array} $		Do D1 S3 D2 D3
$ \begin{array}{rcrr} 2 & +01 \\ 2 & +09 \\ 2 = & -01 \end{array} $		$\begin{array}{ccc} 3 & +03 \\ 4fz & -03C \\ \end{array}$	3Kdz +02 2 -02 0z -06	$\begin{array}{c} 0 \\ 2z \\ +28C \end{array}$	1A?K? 09c	$2z + 02 \\ 3z - 02$	1 +05	5z -03 3z +02	$D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3$
$\begin{array}{cccc} (Cz & +42) & & \\ 3z & 00 & & \\ 1 & 00 & & \\ 2 & 00 & & \end{array}$		$\begin{array}{ccc} 2 & +07 \\ 0 & +27 \\ 2 & -02 \\ 0u & -39 \end{array}$	$ \begin{array}{cccc} 0 & +04 \\ 3z & -01 \\ 0u & +16 \end{array} $	1z <u>+</u> 39C	$\begin{array}{ccc} 3z & -01 \\ 1 & +17C \\ 0 & +16 \end{array}$	$\begin{array}{c} 3z +01 \\ 3z -01 \end{array}$	3z	2z 00	$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	$2 -01 \\ 0u +26 \\ 0u +07$	1 00		0 +04	$\begin{array}{ccc} 0 & +08 \\ 0 & +10 \\ 0u & -21 \end{array}$	2 00	$1 -03 \\ 1z -04$	176 174 173 181 182
$\begin{array}{ccc} 0 & +08 \\ 0 &+1 \\ & & 0 \end{array}$	+09	$\begin{array}{ccc} 0 & 00 \\ 0 & +16 \\ 2 & -03 \end{array}$	$\begin{array}{c} 3 \\ 0u \end{array} + 01 \\ -01C \end{array}$	0 +05	3 -04	004		0f01	182' 183 192 194 195
0z 1 1 +01	01 00	0 -01	$\begin{array}{ccc} 0 & -07 \\ 1 & +02 \end{array}$	0u + 06	008	$\begin{array}{ccc} 3 & +02 \\ 3 & -02 \end{array}$	 	${ \begin{smallmatrix} 0u & -30 \\ 0 & +07 \end{smallmatrix} }$	196 195' 193 201 202
		1 -04			$\begin{array}{c}2 & -01\\ 2u & -12C\\ .1 & +10\end{array}$	1u + 04C		$\begin{array}{ccc} 0u & -05 \\ 1u & +11 \\ .3u & +12 \end{array}$	210 224 225 233 285
									431 442 45n 461 463
		.2 06			.202C	- Normal Street		1 -06	$\begin{array}{r} 47_{4} \\ 48_{2} \\ 49_{5} \\ 49_{3} \\ 51_{4} \end{array}$
 380*°	3826°	389.°	200C	2 +12C		200-6	201.0	$\begin{array}{c} 0u & +07 \\ 0u & -16 \\ \hline 202.2 \end{array}$	$52_{23}\ 53_1\ 55_4\ 55_5\ ?58_5$

TABLE I—Continued.

important low odd level 214_2 that led to our identification of the $5d^46s6p$ triads.

(d) Zeeman Effect

The early Zeeman effect measurements of Jack¹⁹ are by far the best that have been published. Perhaps the most striking proof of their excellence, in harmony with their almost complete self-consistency within about 1 percent as shown by our analysis, is the ready explainability of the asymmetries of all six of the classified lines among his seven asymmetric pattern measurements.²⁷ Beining's²⁸ lines, on the other hand, although each one as published shows an utterly complete self-consistency to 0.001 g-value unit, are inconsistent among themselves by as much as 25 percent, as is evident from work²¹ referred to by that author! We were able to use a few of Beining's data after applying an empirical correction factor:

 $g_{\text{Beining}} = g_{\text{accepted}} \cdot (0.7375 + 1.25 \times 10^{-5} \nu).$

Catalán and Poggio²⁵ give g values for 95 levels, if we include Laporte's²¹ g values and omit levels we have rejected. They use the same experimen-

²⁷ J. E. Mack and O. Laporte, Phys. Rev. 51, 291 (1937).

²⁸ H. Beining, Zeits. f. Physik **42**, 146 (1927). We have estimated intensity trends from Beining's interpretations, and corrected several evident misprints in this paper.

	3965° 39613.98 1.20C	$396_1^{\circ}\ 39636.56\ 1.44C$	396_3° 39646.35 1.46B	3972° 39707.02 1.00C	397₄° 39719.90 1.17 <i>B</i>	4002° 40011.44 1.0C	4024° 40233.91 1.53 <i>A</i>	402_3° 40269.29 1.03B	4041° 40411.05 1.58 <i>A</i>
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$		$ \begin{array}{r} 0 \\ 3MAz \\ -22 \\ 2 \\ 2 \\ -01 \end{array} $	$\frac{4MsA?=-04}{3}$	$\begin{array}{c} 0 & +24 \\ 2A? & -10C \\ 2 & -03 \\ 2M?A? -06 \end{array}$	$\frac{4Msz}{2} = -06$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4MAz - 17 $2 - 01$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} .7 +08 \\ 3M?z -19 \\ 3Mz -19 \end{array} $
D4 099 124 131 133	4z +03	$\begin{array}{ccc} 3Z & 00 \\ 0 & +25C \end{array}$	$ \begin{array}{r} 3 & +01 \\ 3z & +03 \\ 2z & -04C \end{array} $	4z +03	3 00 041		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 — 13c	$\begin{array}{c} ?3Z +01 \\ 2 +22C \end{array}$
$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$	2z +01 2 +02	2 + 01C = -02	$\begin{array}{ccc} 0 & -08 \\ 1d = & -53C \\ 0 & -11 \end{array}$	$\begin{array}{ccc} 3z & +02 \\ 1z & -04 \\ 1z & -02 \end{array}$	$\begin{array}{ccc} 0 & +51 \\ 2z & +04 \\ 1 & 00C \end{array}$	4z + 10 2 $\zeta - 02$	${ \begin{smallmatrix} 0 & -09 \\ 2z & 00 \\ 2 & +05 \end{smallmatrix} }$	$\begin{array}{ccc} 4fz & +07\\ 3z & +01\\ 1 & -01\\ 0 & -09 \end{array}$	2z +10C
176 174 173 181 182	$\begin{array}{ccc} 0 & -24 \\ 2z & +03 \end{array}$		0 +08	$\begin{pmatrix} C & +37) \\ 0 & -08 \\ 0 & +10C \end{pmatrix}$	$\begin{array}{ccc} 2z & +02 \\ 0 & +13 \end{array}$	$\begin{array}{c}0 & -01\\2 & -01\end{array}$	1	 3z —01	$\begin{array}{ccc} 0u & +15 \\ 6dY & +09C \end{array}$
182' 183 192 194 195	1 +01	1 -01	$\begin{array}{cccc} 2 & 00 \\ 2f & +02 \\ 0f & +01 \end{array}$	0f +04	0u +35 	$\begin{array}{c} & -04 \\ 1 & +02 \end{array}$	$\begin{array}{c} 3 & -01C \\ 0u & -05 \\ \cdot \end{array}$	$\begin{array}{cccc} 3z & 00 \\ 1 & -04 \\ 0 & -01 \\ 4Kz & +23C \end{array}$	2 00 3 00
196 195' 193 201 202	0 +12	31	$\begin{array}{ccc} 0 & +10 \\ 0 & +12 \end{array}$	$\begin{array}{c} 0u \\ 0u \end{array} \begin{array}{c} -10C \\ +25C \end{array}$	$\begin{array}{ccc} 0u & -19 \\ 0u & +07 \end{array}$	0f	and charge		${ \begin{smallmatrix} 0 & -06 \\ ?2 & +42 \end{smallmatrix} }$
210 224 225 233 285	$2 -05 \\ 1 / -01 \\$		$ \begin{array}{ccc} 2 & +01 \\ 1 & 00 \end{array} $	 -	$\begin{array}{c} 0u & +12 \\ 1u & +15 \\ \hline \end{array}$		0u +11	0 +17	Resolution of
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
474 482 495 493 514			?1 +44					Minute Frank	
5223 531 554 555 7585	 3965°	3961°	 3963°	 3972°	 3974°	4002°	2u	.1u +06C 4023°	4041°

TABLE I-Continued.

tal data and the same general methods of reducing unresolved patterns²⁹ as we. Our agreement is on the whole very good. In all except 15 of the 92 of these levels for which we had already independently calculated g values, their values and ours agree within 10 percent, and in most cases the agreement is considerably better.

We have had access to Ellingson's³⁰ new Zeeman effect data from plates taken at Wisconsin. Just as this report is about to be submitted for publication, Professor Harrison has very kindly sent us some remarkable Zeeman effect plates taken in very strong fields with the new M.I.T. magnet.³¹ Preliminary g data³² from these plates indicate values appreciably more self-consistent than Jack's, justifying a general reconsideration of the g values, which is under way.³⁰ A few tentative results of Ellingson's or our investigations of the Wisconsin or M.I.T. plates are incorporated in our tables with no attempt to differentiate them from the older work by means of any distinctive symbols.

²⁹ A. G. Shenstone and H. A. Blair, Phil. Mag. 8, 765 (1929). ³⁰ E. Ellingson, in preparation.

³¹ F. C. Bitter and G. R. Harrison, Phys. Rev. **56**, 15 (1940). ³² J. H. Roberson and J. E. Mack, Phys. Rev. **55**, 1126 (1939); **57**, 1074 (1940); J. H. Roberson, J. E. Mack, and G. R. Harrison, Phys. Rev. **58**, 895 (1940).

404_5° 40476.37 1.04B	405_4° 40582.99	406_3° 40665.84 0.96C	4071° 40770.74 1.28C	408_2° 40868.31 1.26B	409_5° 40911.92 1.03C	409_3° 40923.77 1.32B	$\begin{array}{r} 411_{2}^{\circ} \\ 41104.46 \\ 1.5C \end{array}$	$^{?411_0^{\circ}}_{41127.28}_{0/0}$	
Annual	4MAy -19C 2 -07	$3MA - 29 \\ 3 - 02$	$.7MZ -03 \\ 2M -18 \\ 1A? -30$	$\begin{array}{ccc} 1z & -12 \\ 3MAz & -24 \\ 5rAz & 00 \end{array}$		$\begin{array}{ccc} 3M & -22 \\ 0 & +01 \\ 4rz & -01 \end{array}$	$\begin{array}{ccc} 2 & -37 \\ 3z & -28C \\ 3 & 00 \end{array}$	2M + 03	$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$
4A?Kz + 01 1z + 04	2 +05 1 +08	$\begin{array}{ccc} 2 & +02 \\ 2z & +01 \\ \end{array}$	 3z 00	$3z + 08C \\ 2 & 00$	0 +21	2 -02 3z +05C 3= +04	$\begin{array}{ccc} 0 & -06 \\ 0 & -02 \end{array}$		$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$
	$\begin{array}{c} 2z & +04c \\ 1 & +07 \end{array}$	ungang di Kalan Kanan Kalan Kanan Kalan	$2z + 10 \\ 2z - 01$	$\begin{array}{ccc} 3A?z & +08\\ 2 & +17C\\ 0 & +13 \end{array}$	2 +01 1z -04	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}1 \\ 2z \\ -07C\end{array}$		132 142 155 153 164
$ \begin{array}{cccc} 1 & +03 \\ 0 & +10 \end{array} $	1z <u>-27</u>	2 -06 ?ou -44	$ \begin{array}{cccc} 1 & -01 \\ 1 & -03 \end{array} $	(C + 32) 2z - 01	$\begin{array}{ccc} 0 & -07\\ 2=y & +03 \end{array}$	$\begin{array}{ccc} 0 & -09 \\ 0u & +10 \\ \end{array}$	0 -02	1 -02	$176 \\ 174 \\ 173 \\ 181 \\ 182$
$ \begin{array}{cccc} 2 & -05 \\ 3 & -02C \end{array} $	107	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 = -18C 2 00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 -05	$ \begin{array}{ccc} 0z & -10 \\ 0 & +03 \\ 4 = & +09C \end{array} $	100		182' 183 192 194 195
		2 00	$\begin{array}{ccc} 0 & +10 \\ 0 & -07 \end{array}$	$\begin{array}{ccc} 1 & +02 \\ 1 & -01 \\ 0 & +09 \end{array}$	05	0 00	$egin{array}{cccc} 2 & 00 \ 1 & 00 \ 0 & +12 \end{array}$		196 195' 193 201 202
$ \begin{array}{c} 0 & -+08 \\ 1 & +02 \end{array} $	1u02C	$ \begin{array}{ccc} 1 & 00 \\ 0u & +2 \end{array} $	0 0		1 <i>u</i> +02	2 00	0 –05 <i>C</i>		210 224 225 233 285
.2 +15	1 -25								431 442 450 461 463 474 474 482 495 495 495 514
4045°	$1 \qquad {4054^{\circ}}$	4063°	4071°	4082°	409 ⁵ °	4093°	4112°	?411₀°	5223 531 554 555 ?585

TABLE I-Continued.

The unusual magnetic interaction of the levels of 214_1 and 214_2 has been pointed out:³² In moderately strong magnetic fields their sublevels of the same *M* value repel one another in such a way as to give rise to extremely asymmetric Zeeman effect patterns. Harrison's plates show several other similar but less marked interactions. Further work is being done on this phenomenon.³³

3. INTERPRETATION

(a) Low Even Levels

The actual distribution of the levels of W I can be seen from Fig. 1. The low even levels belong

³³ J. H. Roberson, in preparation.

to the configurations $5d^46s^2$, $5d^56s$, and possibly $5d^6$. The levels arising from these configurations are well known to be:

d^4s^2 or d^6 : ⁵D ³PPDFFGH ¹SSDDFGGI, d^5s : ^{7,5}S ^{5,3}PDFG ^{3,1}SPDDDFFGGHI.

Immediate results to be read from Fig. 1 or from the observed values are that the lowest six levels are $5d^46s^2 {}^5D_{01234}$ and $5d^56s {}^7S_3$ and that in certain obvious respects these six levels, like the lowest levels of most spectra, exhibit strong resemblances to LS coupling properties. There might still exist some doubt as to which of the two J=3 levels is 7S_3 and which 5D_3 , or more cor-

	4114° 41198.05 1.22 <i>B</i>	4146° 41417.43 1.23 <i>A</i>	414 ₃ ° 41499.37 1.11 <i>A</i>	415_2° 41583.16 1.06B	$\begin{array}{r} 416_3^{\circ} \\ 41694.28 \\ 1.28A \end{array}$	4172° 41734.07 1.1C	4184° 41871.91 1.11 <i>C</i>	${}^{419_2°}_{41978.60}_{0.8C}$	422_3° 42251.45 1.32B
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$	$\frac{3MA?z-14}{4rAz} + 02$		$\begin{array}{ccc} 0 & +02 \\ 1 & -29 \\ 0 & +28 \end{array}$	2Mz - 25 2 -30 3MA? = -20 1 -08	$3M? -23 \\ 2 -14$	$\begin{array}{rrrr} .9Mz & -05\\ 0 & +49c\\ 2z? & -23\\ 3z & -12 \end{array}$	2 -17 2 -17	$\begin{array}{cccc} .8Mz & +03 \\ 0 & +41 \\ 0fA? & +22 \\ 2 & -28 \end{array}$	$2 - 30 \\ 3Mz - 26$
D4 090 124 131 133	3 -07 3 -06 1 +06		4MZ 00 1 +04 1 00	$ \begin{array}{ccc} 1z & +02 \\ 2z & +01 \end{array} $	5rz — 09	$\begin{array}{ccc} 0 & +36 \\ 3z & +01 \end{array}$	$1 -01 \\ 0u +14 \\$	1 00	5rMz -01
132 142 155 153 164	2z +11C	3z +04	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & +07 \\ 1 & +01 \\ 0 & +28 \end{array}$	3fz +04	$\frac{3dz}{0} + \frac{07}{-18C}$	035	$\begin{array}{ccc} 2z & -01c \\ 3z & +04 \\ 3z & +02 \end{array}$	
176 174 173 181 182	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3z -02	$\begin{array}{c} 0 \\ 3z \end{array} \begin{array}{c} -15 \\ 00 \end{array}$	2z + 36 2z + 01 (Cz - 38)	$\begin{array}{c}1z & -02\\ 2z & +01\end{array}$	$\begin{array}{ccc} 1 & 00 \\ 1 & -02c \\ 1z & 00 \end{array}$	3z20C	1z04	$\begin{array}{c}1z \\\\2z \\ +01\end{array}$
$18_{2}'\\18_{3}\\19_{2}\\19_{4}\\19_{5}$	$\begin{array}{ccc} 2 & -03 \\ 0u & +17 \\ 1 & -01 \end{array}$	0 +23	$\begin{array}{cccc} 1 & -01 \\ 2z & -04c \\ 2z & 00 \\ 2z & -04 \end{array}$	$\begin{array}{cccc} 1z? & -02\\ 2z & -05\\ 0u & -07 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3z 00 3= -01 0 +22	$\begin{array}{ccc} 2 & +01 \\ 3z & -09 \\ ?0 & -37 \end{array}$	$\begin{array}{ccc} 3z & +02 \\ &01 \\ 2z & -04 \end{array}$
196 195' 193 201 202	3z <u>-01</u>	$2 = -06 \\ 0u + 05$		004	$ \begin{array}{r} 1 & -02 \\ 0 & -12 \end{array} $	$\begin{array}{ccc} 3z & -01 \\ 0u & +04 \\ 2c & +06 \end{array}$	$2z + 01 \\ 3z 00$	0u -14	2z + 01 (<i>Cz</i> +37)
210 224 225 233 285	0u2	2 +02	2 +01 0u +13	0 -43		0u 00	$\begin{array}{c}0 \\ 1\end{array} + 16 \\ - + 13\end{array}$		$ \begin{array}{r} 1f & +03 \\ 2 & -01 \end{array} $
431 442 450 461 463									
474 482 495 493 514									
$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ ?58_5$	 41114°	 4146°	4143°	4152°	4163°	4172°	 4184°	4192°	?.0 +37 4223°

TABLE I-Continued.

rectly, what linear combination of the pure eigenfunctions represents the actual levels; but in view of the g values it appears safe to assert that the lower is almost purely ${}^{7}S_{3}$, and the higher, ${}^{5}D_{3}$. This is the assignment published by one of us^{21} in the first paper on W I. We shall now investigate whether any even levels beyond the lowest six can be assigned, in the usual approximate sense, to configurations and, if so, whether a hint may be obtained as to other quantum numbers.

As was pointed out above, the number of known even levels is much smaller than the large number that the theory predicts for d^4s^2 (i.e., 34) and d^5s (i.e., 74). In composing a table of the

levels to be expected, one is therefore first faced with the difficulty of deciding upon an approximate order in which they follow one another. Theoretical reasoning to the usual approximations as to the order of the levels is not of very great value here because different choices of the parameters would array the levels in different orders. We have here taken as a starting point in our study that order of the terms of a configuration which has been found to be correct in the Cr I spectrum.³⁴ Since this chromium order will serve only as a guide of the crudest sort or, in

³⁴ C. C. Kiess, Bur. Stand. J. Research 5, 775 (1930); J. Research Nat. Bur. Stand. 15, 79 (1935).

$\begin{array}{ccc} 422_1^\circ & & 424_2^\circ \\ 42262.26 & & 42449.56 \\ 1.5C & & \end{array}$	425_3° 42514.14 1.22B	425_{1}° 42573.36 1.3C	426_3° 42601.12 1.12C	4285° 42865.93 1.11 <i>B</i>	4294° 42910.70 1.18A	4304° 43034.09	?4309° 43053.82 0/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -47 1 -49 3z -00 3= -02	$ \begin{array}{cccc} .6 & +28 \\ .8M & +10 \\ 2Mz & -14 \\ 3A? & -02 \\ \end{array} $	$ \begin{array}{r} 1MAz & -27C \\ 2Mz & -20 \\ 2 & -21 \\ 2 & -33C \\ 0 & +20 \end{array} $	1u -17 $2z +13$	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0d \\ 3Az? \\ -13 \\ \\ 0 \\ +36 \end{array}$.8M + 09 0 $-05C$	$\begin{array}{c} D_{0} \\ D_{1} \\ S_{3} \\ D_{2} \\ D_{3} \\ \end{array}$ $\begin{array}{c} D_{4} \\ 090 \\ 124 \\ 131 \\ 132 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & +11 \\ 3z & -02C \\ 0 & +23 \\ 0 & +06 \end{array}$		3z + 07 3=? + 02 2Az = 00	$ \begin{array}{ccc} 0 & -07 \\ 2 & +07 \end{array} $	$\begin{array}{ccc} 4Kz & +05 \\ 2z & 00 \\ 2 & +04C \end{array}$	$3fz \longrightarrow +08C$		13_2 14_2 15_5 15_3 16_4
1 <i>uz</i> 02 2 <i>z</i> 000	1 = -10 $2z -24$	004	101			1 +03		176 174 173 181 182
2fz 00 0z -13 1 -03 0 -03	15 -07	0 +04	$2z +03 \\ 0 -11 \\ 2z -10$	• 2z 00	$\begin{array}{ccc} 0 & -24 \\ 1 & -03 \\ 2z & -03 \end{array}$	$\begin{array}{c} 3z & -02\\ 1uz & +02 \end{array}$		$18_2 \\ 18_3 \\ 19_2 \\ 19_4 \\ 19_5 \end{cases}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 0 & -18 \\ 2 & -06 \end{array} $	1 00 0 00 <i>C</i>	$\begin{array}{ccc} 3 & 00 \\ 0 & +02 \end{array}$	1 00	$3z - 03 \\ 3z - 03$	4z <u>-06</u>	2 <i>Z</i> 00	196 195 193 201 202
0 -19	0 <i>u</i> +22		$\begin{array}{l} 0 \\ 1z \end{array} + 09 \\ 1z \\ -22C \end{array}$	0 -14 1 -04	2f -04 +30 -2 -03C	$\begin{array}{c} 0u \\ - \\ 2 \\ - \\ - \\ - \\ + 06 \end{array}$		21_0 22_4 22_5 23_3 28_5
								$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
								474 482 495 493 514
4221° 4242°	4253°	 4251°	4263°	 4285°	 4294°	 4304°	 ?4300°	5223 531 554 555 ?585

TABLE I—Continued.

other words, since no detailed feature typical of Cr I will play a role in what follows, it seems that this is not too objectionable a procedure. However, any attempt to extrapolate W from Cr and Mo must reckon with two strong tendencies revealed by the $d^4s^2 \, ^5D$ and $d^5s \, ^7S$ assignments already made: first, levels of d^4s^2 are relatively much lower in W, i.e., the configuration d^5s has lost its extra stability with respect to d^4s^2 , of which it had about 8000 cm⁻¹ in Cr and 11000 cm⁻¹ in Mo; second, (LS) separations are enormously increased, which is a natural consequence of the increase in atomic number. (Compare the following over-all separations of the $d^5s^2 \, ^5D$: Cr 557 cm⁻¹, Mo 1380 cm⁻¹, W 6219 cm⁻¹.) In order to trace these two tendencies separately, though crudely, one might draw to scale on one strip of paper those levels of Cr I³⁵ that belong to d^4s^2 , and on another, those that belong to d^5s ; then (contrary to the actual case of Cr but in agreement with the assignments in W I) place d^5s ⁷S in the midst of the levels of d^4s^2 ⁵D; and finally, imagine the levels in each term to spread to per-

³⁵ We have chosen Cr I because relatively little information is available upon the analogous configurations: in Mn II, C. W. Curtis, Phys. Rev. **53**, 474 (1938); in Fe III, P. Swings and B. Edlén, Astrophys. J. **88**, 618 (1938), and in Mo I, W. F. Meggers and C. C. Kiess, J. Opt. Soc. Am. **12**, 417 (1926), M. A. Catalán and P. de Magariage, Ann. Soc. Espan. Fisica y Quimica **31**, 707 (1933).

	?4314° 43185.41 1.3C	$\begin{array}{r} 432_{1}^{\circ} \\ 43217.27 \\ 1.3C \end{array}$	432_2° 43227.64 1.3C	4324° 43250.97 1.14 <i>B</i>	4335° 43330.81	4347° 43411.46 1.20 <i>A</i>	434 ₃ ° 43478.59 1.3C	435_2° 43514.67 0.9C	4374° 43720.86
Do D1 S3 D2 D3	3fMz +15	$ \begin{array}{r} .8M? & -11 \\ .8 & +08 \\ 1 & -06C \end{array} $	$\begin{array}{rrrr} .8M? & -21 \\ .8 & +02 \\ 0 & +02 \\ 2 & -25 \end{array}$.7s +08 2M? -15			$.9M\overline{A?+01}$ 0 -06	.8 + 09 .8M? - 17C ?0 - 56	0 +26
D4 090 124 131	0 00			3 <i>M</i> -20				2 + 04	1d —49
$131 \\ 133 \\ 142 \\ 155 \\ 153 \\ 164$	0 -12 108C	$ \begin{array}{cccc} 2z & +03 \\ 1 & +23 \end{array} $	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ccc} 3f & +03 \\ 1z & -02 \\ 3z & -01 \end{array}$	4z 00C		$\begin{array}{ccc} 2 & -03 \\ 1 & 00 \\ 1z & 00 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & +19 \\ 2z & +02 \\ 4z & +01C \\ 3 & +04 \end{array}$
$17_6 \\ 17_4 \\ 17_3 \\ 18_1 \\ 18_2$		1 -03	$\begin{array}{ccc} 0 & +07 \\ (C & -37) \\ 0z & -32 \end{array}$	1z -02		2z +04	 2z -04	$\begin{array}{ccc} 4z & +08C \\ 2z & -03 \\ 2z & -04 \end{array}$	0 +01
$18_{2}' \\18_{3} \\19_{2} \\19_{4} \\19_{5}$	116	0 -10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3z -03 2f -01	008		$\begin{array}{c}1 \\ 3z \\ 00\end{array}$	0 +05	2z - 06C $1d = y - 04C$
196 195' 193 201 202		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\begin{array}{ccc} 0 & -09 \\ 1u & +01 \end{array}$	0 +12	3Z —05	(C + 32) 0 +20	$\begin{array}{ccc} 0 & -03 \\ ?0 & -44 \\ 3z & +29C \end{array}$	2z -03
21 ₀ 224 225 233 285				1 +05	0u -06 (C +31)		?0 — 33 ——		· · · · · · · · · · · · · · · · · · ·
431 442 450 461 463									
474 482 495 493 514									
5223 531 554 555 ?585		 4321°	 4322°	$2u = \frac{23C}{4324^{\circ}}$	$1 + 14 \\ 4335^{\circ}$	4347°	 4343°	4352°	4374^

TABLE I—Continued.

haps ten times the total separation of the corresponding Cr I term. In this way one would be led to realize that the dozen or so even levels, which follow ⁷S and ⁵D, i.e., up to perhaps 18000 cm⁻¹, are all d^4s^2 with the exception of d^5s ⁵S₂, which, evidently having lost its *LS* character almost completely, is somewhere among them; and that the other d^5s terms, such as ⁵G₂₃₄₅₆, are not among these earlier even levels. To what extent can we now identify in the energy diagram the terms ³P ³H ³F ³G..... (listed here according to the order in which they occur in Cr I) which, according to theory,² are next in line? The levels ³P₀ and ³H₆ are immediately identified with 09₀ and 17₆, for their unique J values make them independent of coupling. The other J = 6 level, 19₆, we identify with $d^{5}s$ ${}^{5}G_{6}$. The reason for this choice rather than the opposite one is that (*LS*) separations within $d^{5}s$ terms are expected to be small in comparison with those of $d^{4}s^{2}$, and within a few hundred cm⁻¹ of 19₆ there are enough levels with proper J values and g values not violently discrepant to constitute the whole ${}^{5}G$ term, while the nearest J = 5 level to 17₆ is almost 2000 cm⁻¹ distant.

These and further identifications are summarized in Fig. 2a in which the interpreted levels have been plotted to scale as in Fig. 1.

4375° 43741.33 1.09C	?437₀° 43790.0 0/0	438_3° 43850.77 1.17B	$\begin{array}{r} 4381^{\circ} \\ 43892.60 \\ 1.05B \end{array}$	439_5° 43924.17 1.2C	4392° 43975.20 1.15C	4394° 43985.36 1.24 <i>C</i>	440_3° 44020.48 1.2C	$\begin{array}{r} 443_{1}^{\circ} \\ 44353.42 \\ 1.02C \end{array}$	
	.6 +47	.9uMAz+04 3Mz -16	.7ufvM+2 .7 +20 .8 00		$\begin{array}{rrr}.9uM & +10\\ 5 & +47c\\.9uMz & +06\\ 1M?z & -20\end{array}$.6 +02	.4 +5 .9M +51	$ \begin{array}{cccc} .8 & +2 \\ .3 & 0 \\ .7A & +04 \end{array} $	$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$
	2 -02	4MAz +04C	3A -03 1 +02			2 -26 3 +06 3.4 +09	1 -40 1 +03	$ \begin{array}{r} 0 & +09 \\ 3 & -04 \end{array} $	$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$
2z + 08			0 +15	natura Roma Protocomo esta		$\begin{array}{c}2 \\1 \\-03\end{array}$	$2 +07 \\ 1 -01 \\ 3Az -04 $	22 +06	132 142 155 153 164
1 <i>uf</i> +03	0 -14	100	0 +08	$2z +11 \\ 0u +33$	$\begin{array}{ccc} 0 & -15C \\ 2 & -05C \end{array}$	$\begin{array}{ccc} 3z & +01 \\ 0 & +26C \end{array}$	 3z —01	$\begin{array}{ccc} 0 & -14 \\ 3z & -01 \end{array}$	176 174 173 181 182
4z - 02 ?0z - 35		3z 00	$\begin{array}{ccc} 1z & 00 \\ 0z & +09 \end{array}$	2z +05	$\begin{array}{cccc} 1z & +01 \\ 2z & -02 \\ 1z & -01 \end{array}$	2z - 05 $2z - 04$	$\begin{array}{c}1 \\ -03 \\ \\ 3z \\ -06C\end{array}$	 2z 00	$18_2' \\18_3 \\19_2 \\19_4 \\19_5$
$1z -01 \\ 1= +02$	-	$ \begin{array}{ccc} 0 & -11 \\ 1 & +04 \end{array} $		2z 00c	$\begin{array}{cccc} 1z & +02 \\ 0 & +15 \\ 2f & -17 \end{array}$	$\begin{array}{ccc} 2z & -03C \\ 2 & -01 \end{array}$	1 = -02 ?2z +47		196 195' 193 201 202
0u 00		0 +02	2Z +2	2 -02 2 -03 <i>C</i>		$\begin{array}{c} 0u & -17 \\ 0u & -4 \end{array}$	1 <i>u</i> -09	 -	210 224 225 233 285
									431 442 450 461 463
									$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$
4375°	?4370°	 4383°	 4381°	4395°	4392°	 4394°	 4403°	4431°	5223 531 554 555 ?585

TABLE I—Continued.

By means of inclined lines connecting levels we have indicated to what extent we believe the levels to be groupable with some justification into multiplets. Where a connecting line branches out into two such lines, a pair of levels lie sufficiently close together to destroy through interaction any decided individuality. Such a pair should, of course, be used twice. Levels 18₂, 18'₂, and 19₂ account for d^5s 5G_2 and 5S_2 and for d^4s^2 3D_2 . The ordinarily prominent g value (g=2) that one would expect in d^5s 5S_2 with ideal (*LS*) coupling is offset in the g-sum by the uncommonly small g value of 5G_2 (g= $\frac{1}{3}$). The g value of 20₁ strongly indicates d^5s 5P_1 . Probably 21₀ (and perhaps 22₄) must be assigned to $d^{5}s \, {}^{5}D$, though $d^{4}s^{2} \, {}^{1}S$ is a possibility. Thus 20₂ and one J = 3 level (say 17₃) are the only even levels below 21,000 cm⁻¹ left unaccounted for. Since all the $d^{4}s^{2} \, J = 5$ levels have been accounted for, 22₅ must be ${}^{5}F_{5}$ (or possibly a ${}^{3}G_{5}$) of $d^{5}s$.

We do not attempt any further identifications among the low even levels, for there is little theoretical or empirical indication of the most likely levels to follow.

We have made an exhaustive search in this neighborhood, and believe it highly probable that all the levels below $22,000 \text{ cm}^{-1}$ have been found.

	443_2° 44367.45 1.1C	443_6° 44390.33 1.28B	444_3° 44446.95 1.38A	445_5° 44546.69 1.3C	445_2° 44596.27 1.11C	4471° 44737.18 1.1C	449_6° 44923.78 1.23A	4494° 44940.47 1.20 <i>A</i>	$\begin{array}{r} 4497^{\circ} \\ 44970.72 \\ 1.20A \end{array}$
$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$	$\begin{array}{ccc} .0 & -33C \\ .6 & +06 \\ .7 & +48 \end{array}$.3m -1 .8M? -02 2Mz -14		$\begin{array}{cccc} .6 & -2 \\ .0f & +22 \\ .7 & +02 \\ 1 & -19 \end{array}$	$\begin{array}{ccc} .7 & -70 \\ .4 & +3 \\ .8M? & +06 \end{array}$.4 -3 .7 -08	
$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$	3z 00		2A -22	$\begin{array}{ccc} 2Mz & -22\\ 2 & +01 \end{array}$	${ \begin{array}{c} 2 \\ 1 \end{array}} + 02 \\ + 02 \end{array}$	3M - 08c 4f - 02		4z + 10	
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	$ \begin{array}{cccc} 2 & +04 \\ 1 & +01 \\ 2 & +04 \end{array} $	0 +14 <i>C</i>	$\begin{array}{ccc} 2z & +01C \\ & \\ 3z & +02 \\ 0 & +18 \end{array}$	2z + 04C 1 00c	2z +01			$2z + 05 \\ 2= -04C$	
176 174 173 181 182	0 <u> </u>	3z +08	$0 -03 \\ 0 -40C$	$\begin{array}{ccc} 3z & -28 \\ 0 & +28 \end{array}$	$\begin{array}{ccc} 2z & -03 \\ 1 & -01 \\ 2 & 00C \end{array}$	$\begin{array}{c} 0uf & +03 \\ 0 & -18 \end{array}$	2 +11	1 <i>u</i> +05	2z +04
$18_{2}' \\18_{3} \\19_{2} \\19_{4} \\19_{5}$	$\begin{array}{c} 0 & -06 \\ 3f & -04 \end{array}$	3 ζ +17C	$2 = -+01 \\ 1 + 06 \\ 2z + 01$	2z	$\begin{array}{ccc} 2 & 00 \\ 1z & -05 \\ 1z & -02 \end{array}$	2z +08	2z 00	$\begin{array}{c} 1z & 00\\ 3z & +02C \end{array}$	
$19_6 \\ 19_5' \\ 19_3 \\ 20_1 \\ 20_2$	$\begin{array}{ccc} 0 & -08 \\ 0 & -15 \\ 1u & +03 \end{array}$	$2 = -01 \\ 2z -01$	2= -01	4 <i>fz</i> 04		1u 00C	$\begin{array}{c} 4 = & 00 \\ 3fK?z & +01 \end{array}$	3z 00	3Z - 04
210 224 225 233 285		1 -21C 1u +13	102	2 -06 4 +01	0 -22C			$\begin{array}{ccc} 2 & -02 \\ 2 & -01 \\ 2u & +01 \end{array}$	
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
$47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4$									
$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ 58_5$	4432°	$1u \xrightarrow{+06}{4436^\circ}$	 4443°	2 <u>06</u> 4455°	 4452°	4471°	 4496°	 4494°	4497°

TABLE I—Continued.

(b) High Even Levels, Series, and Ionization Potential

The apparent thinning out of the even levels from here upward is to be regarded as not real but only caused by incomplete wave-length material. As in most arc spectra, among levels of the same parity as the ground level (i.e., in this case, even) it becomes increasingly difficult in this region to establish higher levels because combinations involving them are generally faint. Of course the still higher "third set" levels again show strong combinations, this time downward to low odd levels. The occurrence of series is the only circumstance that runs counter to the general tendency toward increasing level density and hopeless complexity with increasing energy. Among complex spectra tungsten is especially fortunately situated for the discovery of series, for a reason that we shall now outline.

If many levels of about equal probability are associated with a single value of the current principal quantum number n, the search for series is subject to all the difficulties inherent in the study of a complex spectrum. On the other hand, the identity of, say, only one or two S terms may be harder to establish than that of one or two

4503° 45014.54 1.3C	450_2° 45019.02	4514° 45116.70 1.2C	4524° 45262.51 1.1C	?4531° 45374.07	$\begin{array}{r} 4542^{\circ} \\ 45422.24 \\ 0.63 \end{array}$	454_5° 45451.58 1.16B	455_3° 45551.32 1.30A	4563° 45677.66 1.24 <i>A</i>	
.7M? + 03 .6 + 03	$\begin{array}{ccc} .2 & -2 \\ .4 & 0 \\ .8M & 00 \\ .8M? & -03C \end{array}$.7 + 08 1.0Mz + 26C	.8 <i>M</i> +03	.4	5M? 0 4 +3 7 -06 9M -14C		$ \begin{array}{cccc} .5 & 0 \\ .1s & -4 \\ .9Mz & +01 \end{array} $	$.8M - 02 \\ .5 + 07$	$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$
$1 -01 \\ 0 +30$		2 -25 2 00	$ \begin{array}{r} 0 & +08 \\ 2 & +01 \\ \end{array} $	 3z −08	026		0 +27 	0u -3 2 -01	$egin{array}{c} D_4 \ 09_0 \ 12_4 \ 13_1 \ 13_3 \end{array}$
$\begin{array}{c}0 \\2z \\2z \\2z \\-\end{array}$	$ \begin{array}{cccc} 2 & +03C \\ 2 & -03 \\ 1z & -02 \end{array} $		$ \begin{array}{c} 0 & +12 \\ 5K?z & +10C \end{array} $	$\begin{array}{ccc} 0 & +21 \\ 0 & +47 \end{array}$	$ \begin{array}{rrrr} 1 & +09 \\ 1 & -06c \\ 0f & +22C \end{array} $	1 +04	$\begin{array}{ccc} 2 & -01 \\ \\ 2 & +11 \\ 0 & +03 \end{array}$	$\begin{array}{ccc} 4z & +02\\ 3z & +07\\ & \\ 0 & +08 \end{array}$	$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$
$ \begin{array}{ccc} 1z & +02 \\ 1 & 00 \\ 1z & 00 \end{array} $			$ \begin{array}{ccc} 1 & 00 \\ 3z & -05C \end{array} $	$ \begin{array}{ccc} 1 & -06 \\ 3z & -07 \end{array} $	$2dz -05 +06 \\ 0 -02$	3 <i>fz</i> +04		2= -02	$17_6 \\ 17_4 \\ 17_3 \\ 18_1 \\ 18_2$
$\begin{array}{cccc} 2z & 00 \\ 0 & +03 \\ 0 & +02 \end{array}$	$\begin{array}{ccc} 2 & -27C \\ 4 fz & -15C \\ 1 & -04 \end{array}$	1 +01	1 00	$\begin{array}{rrr} 3A?z & -09C \\ 0 & +02 \end{array}$	3 = ? 00C 1 - 01	1z01	$\begin{array}{cccc} 2z & 00 \\ 2z & -09 \\ 2z & +05C \\ 3z & -07C \end{array}$	$ \begin{array}{c} (C & -36) \\ 2 = & -05 \\ 3z & +03 \end{array} $	182' 183 192 194 195
0 + 14 1Z + 02	$0 \underline{-+} 03C$	$\begin{array}{ccc} 2z & +02C \\ 3z & +02 \end{array}$	$\begin{array}{ccc} 0z & +26 \\ 2z & +14C \end{array}$		$\begin{array}{c} 2z & -02\\ 2 & -03 \end{array}$	2z02C	0 -10	0 + 02C 1 +39	196 195' 193 201 202
$ \begin{array}{r} 1 & -06 \\ 0 & -10 \end{array} $	•	$egin{array}{cccc} 2 & -02 \\ 0u & 00 \\ 2 & -01 \\ 0u & +29 \end{array}$	$\begin{array}{c} 0 & -07c \\ 0 & +07 \end{array}$	0 +35		$2z \qquad 00 \\ 0u \qquad -12$		2z —07	210 224 225 233 285
									$\begin{array}{r} 43_1 \\ 44_2 \\ 45_9 \\ 46_1 \\ 46_3 \end{array}$
									$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$
 4503°	4502°	 4514°	 4524°	?4531°	4542°	4545°	 4553°	4563°	5222 531 554 555 ?585

TABLE I-Continued.

multiplet terms of predictable spread. The latter may be considered the optimum conditions for the discovery of series in complex spectra.

In a configuration of z equivalent electrons, l^z , there are usually several terms of the highest multiplicity; but if z = 2l+1, there is only a term $2^{l+2}S$, and if $z = 2l+1\pm 1$, there is only a term $2^{l+1}l$. (Here we are neglecting the cases $z \leq 2$ and $z \geq 4l$, for we are considering complex spectra.) If one or two s-electrons are added, i.e., in the configurations $l^{2l}ns$ and $l^{2l}s \cdot ns$, the situation is similar, but two terms of different multiplicity are of comparable importance. Thus, in $l^{2l}s \cdot ns$ the important terms are $2^{l+3}l$ and $2^{l+1}l$. In the long periods (l=2), so long as s^2 plays an important part, the above optimum conditions occur in the sixth and eighth columns.³⁶ In W I in particular, $d^4s \cdot s \, ^7D$, 5D series might be expected to be prominent. Actually, we have identified all the members of $5d^46s \cdot 7s \, ^7D$, 5D and searched unsuccessfully³⁷ for higher members of

³⁶ Albertson (reference 1) has remarked somewhat similarly on the dependence of the prominence of series upon z for the special case of the rare earths, z=3.

for the special case of the rare earths, z=3. ³⁷ It is possible that 53_1 is in reality $5d^46s8s$ ⁷ D_1 , which would lead to an ionization potential near the lower limit of the range given in the next paragraph; but our failure to find any of the remaining members of the septet in spite of the close predictability of the separations argues against this supposition.

	4575° 45789.71 1.19B	4584° 45869.00 1.36A	4592° 45902.45 0.5C	4603° 46067.97 1.46 <i>B</i>	4611° 46104.55	4622° 46291.61 0.3C	4632° 46327.71 0.8C	463_3° 46385.44 1.4C	465_5° 46506.35 1.38A
$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$.5 + 6 1.0rMz + 08	$\begin{array}{cccc} .7 & +5 \\ .6 & -3 \\ .7\rho & +03 \\ .7fM & -03 \end{array}$.6 +06 .4f -2 .9uMu -07	$ \begin{array}{c} .0 \\ .4 \\ .3 \\ .3 \\ 0 \end{array} $.6M + 1 .7M? + 2C .6 - 1	.3 +2 .0f 0 .8A +12	.9M - 07 .9M? + 04	
D4 095 124 131 133	$ \begin{array}{r} 0 & +01 \\ 3 & +03 \end{array} $	1MAz - 12C $0 - 01$ $3 + 03c$	0 -04	2 -23 3 +01C	2 -10 1 +03		$\begin{array}{ccc} 0 & +34 \\ 0 & -15 \end{array}$.8 -03 2 -01	1.0 <i>Mz</i> -08 <i>C</i>
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	4z + 08 1 00		1 +06	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	005	1 +02	 1u +08	$\begin{array}{ccc} 0 & -24 \\ 3 & -03 \\ 2z & +01 \\ 0 & -12 \end{array}$	0 +05
176 174 173 181 182	3z — 05	3z13C	$(Cz -41) \\ 0 +13 \\ 0 -05$	$\begin{array}{c} 0 & +20 \\ 1z & 00 \end{array}$	0u07	 2z -04	$\begin{array}{c} 0 & -24 \\ 1 &4 \\ 1 & +04 \end{array}$?1 -48	
182' 183 192 194 195	203	2z + 06	2z + 08	$1 \\ 3A?z \\ -01C \\ +01 \\$	0 +08	3z + 02 0 - 03C		$\begin{array}{c} & \\ 0 & +-04 \\ 2z & -01 \\ 2z & -03 \\ \end{array}$	3z <u>+02</u>
196 195' 193 201 202	2uz06		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -33	100	$\begin{array}{c} -04\\ 0 +16 \end{array}$		2z -03	3Az03
210 224 225 233 285	 0u +09	$\begin{array}{cccc} 2 & +05 \\ 0 & +11 \\ 3r & -12 \end{array}$		1 -06		0u -3 8	2z 00	$ \begin{array}{r} 0 & +01 \\ 0 & -16 \end{array} $	¶z03
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
474 482 495 493 514									
5223 531 554 555 ?585	4575°	4584°	4592°	4 603°	4611°	4622°	4632°	4633°	 4655°

TABLE I—Continued.

this series and for members of the $5d^5 \cdot ns \ ^7S, \ ^5S$ series. The intervals and g values in the D series may be studied in Fig. 3 and Table III. The distributions of the intervals are quite similar; and in particular the distribution in $5d^46s^7s \ ^7D$ is remarkably like that in the limit term W II $5d^46s \ ^6D$. The sagging of the middle levels of $5d^46s \ ^6D \ 7s \ ^5D$ compared with those of $5d^46s7s \ ^7D$ might have been expected from a qualitative consideration of the Landé interval rule. The over-all separations of $d^4s^2 \ ^5D, \ d^4s \cdot s \ ^7D$, and $d^4s \cdot s \ ^5D$ may be predicted, 38 in an LS coupling approximation, to have the relative values

 $\frac{14}{15}\Delta\nu(d^{4}s^{2} \, {}^{5}D) = \Delta\nu(d^{4}s \cdot s \, {}^{7}D) = \Delta\nu(d^{4}s \cdot s \, {}^{5}D).$

The interpretation of these higher levels opens the way for the spectroscopic determination of the ionization potential. The application of a Rydberg formula to $5d^46s(^6D)ns^5D_0$ for n=6, 7 yields a limit of $66,299 \text{ cm}^{-1}$, which is brought by a Ritz correction of (-2.8 ± 1) percent to $64.4 \times 10^3 \text{ cm}^{-1}$. The 2.8 percent correction, estimated from other spectra, is not so reliable as similar estimates in other parts of the periodic table because of the paucity of data in the neighborhood of tungsten. Since the limit $5d^46s \ ^6D_4$ is, according

³⁸ O. Laporte, Handbuch der Astrophysik (Berlin, Springer, 1930), Vol. 3, Part 2, p. 644.

4664° 46625.03 1.14B	4666° 46672.15 1.18B	?4677° 46755.26	4682° 46806.40 1.1C	468_5° 46854.76 1.21B	4694° 46931.81 1.0C	4702° 47079.36 1.3C	4732° 47337.76 0.9C	4733° 47361.69 1.3C	
.4 +2			$\frac{.6}{.7}$ $\frac{-3}{-2}$.7 +7 .9 +15	.4 +5 .6M? -4 $.8\rho' -12$	$ \begin{array}{c} $.3 -1 .7 -3	$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$
$\begin{array}{rrr} .9Mz & -01 \\ 2 & 00C \\ 0u & +26 \end{array}$			104	.8 -04	$ \begin{array}{rcr} .8Mz & +04C \\ 2 & -02 \\ 3 & +05C \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccc} 1 & -03 \ 2 & -04 \end{array}$.7d -14 1u -08 2 -02	$\begin{array}{c} D_4 \\ 09_0 \\ 12_4 \\ 13_1 \\ 13_3 \end{array}$
1+03	4z +05		3z -01 3 +04 3f +02	?0 +46 0 +07	2 +02	3	2 -03 3 +02	$ \begin{array}{c} $	132 142 155 153 164
$\begin{array}{c} 0 & +01 \\ 0 & +10 \end{array}$	0 -03	1 – 10 <i>C</i>	$\begin{array}{c}0&+32\\0&-06\end{array}$		041	$0 + 25 \\ 2z & 00$	03	1 00	176 174 173 181 182
0 + 08 - 03 - 03	3z −03		$ \begin{array}{cccc} 0 & -02 \\ 0f & -20 \end{array} $	${3z \atop 1z} {00 \ +02}$	1 +01c	0 +23	0 + 36 2z -01	2205	182' 183 192 194 195
3z <u>-04</u>	3 = 00 + 16	5z 00		${3z - 02 \over 2z + 02}$	2 +04 <i>C</i>		$2\xi = 00 \\ 0 + 08C$	3z +07	196 195 193 201 202
0 -13 (C +37)				$ \begin{array}{cccc} 1 & +19 \\ 0 & -12 \\ 0 & +31 \end{array} $	107	1 -05	1 <i>u</i> -04	$\begin{array}{c} 0 \\ 3 \end{array} \begin{array}{c} +06C \\ -03 \end{array}$	210 224 225 233 285
									431 442 450 461 463
									474 482 495 493 514
4664°	1 -03 466°°	?467;°	4682°	4685°	4691°	4702°	4732°	4733°	5223 531 554 555 ?585

TABLE I-Continued.

to Laun,²⁶ the normal level of W II, we have^{37, 39, 40} for the ionization energy:

W I $5d^{4}6s^{2} {}^{5}D_{0} =$ W II $5d^{4}6s {}^{6}D_{\frac{1}{2}}$

$$=(7.94\pm0.1)$$
 volts.

Russell's⁴¹ estimate of 6.7×10^4 cm⁻¹ = 8.1 volts was obtained from our data at an earlier stage by considering S_3 , 46₃ as members of a d^5ns ⁷ S_3 series and subtracting two percent as a probable Ritz correction.

(c) Odd Levels

In the past there has been no successful attempt to assign quantum numbers other than Jto the odd levels.42,43 We are essaying the in-

⁴² Laporte, reference 21, misidentified the levels 214₁, 239₂, and 261₃ as a ⁵*P* term. ⁴³ A. T. Williams, Comptes rendus 199, 1201 (1934) made the following attempts at assignment of *L* and *S* by comparison with Cr and Mo, without benefit of *g* value:

$214_1 {}^{5}P$ $347_1 {}^{5}F$	$382_4 {}^7P$
$239_2 {}^5P$ $361_1 {}^5D$	3874 5F
261_{3} ⁷ P 368_{3} ⁷ P	3963 7P
$262_2 P \qquad 369_2 P$	3972 ⁵ P
$278_4 {}^7P$ $376_3 {}^7P$	$402_{3}^{-7}P.$

³⁹ We ought to mention, but we give no weight to, the possibility that a whole series member has been missed in the difficult region 34×10^3 to 42×10^3 cm⁻¹, which would bring the ionization energy down to 6.4 volts. This region has been searched without result.

⁴⁰ Of course the ± 1 percent and ± 0.1 volt recorded here represent only a crude guess as to our error. ⁴¹ H. N. Russell, Astrophys. J. **70**, 11 (1929).

	474 ₃ ° 47483.70 1.29 <i>B</i>	4756° 47541.49 1.23C	475_3° 47593.37 1.2C	4764° 47689.29 1.4C	4785° 47850.76	4794° 47968.55 1.23 <i>B</i>	481₅° 48138.33 1.2C	4813° 48170.53	$\begin{array}{r} 482_2^{\circ} \\ 48244.24 \\ 1.4C \end{array}$
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$.6 -4 .6 -02		.5uf -21	.6 -10		.5 +24		1f + 1 .7M? 0C	.6 -6 .6M +3 .7 +2
D4 090 124 131 133	$\begin{array}{ccc} .6 & +02 \\ 3fH & -12 \\ 2 & +17 \end{array}$.5 + 10 0 + 18 1u - 04	.5 +33 	.6 + 06 3 fz 00	3 + 02 3 - 02	.9 <i>M</i> +11	.8u + 11 	208
132 142 155 153 164	$\begin{array}{ccc} 0 & -10C \\ 0 & -21 \\ 0u & -34 \end{array}$		$\frac{2f}{2}$ +09 2 +08	0f +22	6rKz –14C	$\begin{array}{ccc} ?1 & +44c \\ 2 & -02 \\ 2 & +03 \end{array}$	1 -03 3 +08	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 3 & +03 \\ 2 & 00 \\ 1 & +03 \end{array} $
176 174 173 181 182	$\begin{array}{ccc} 0 & +35 \\ 0 & +02 \\ 1 & -03 \end{array}$		$\begin{array}{ccc} ?0 & +52 \\ (C & -45) \\ 2z & +25C \end{array}$	2 +05	137	 	2 -01		$\begin{array}{ccc} 0 & -06 \\ 0 & +24 \end{array}$
182' 183 192 194 195	$\frac{1}{2z} = \frac{+01}{-09C}$ $\frac{-07}{-07}$	0 +01	$\begin{array}{ccc} 0 & -01 \\ 1 & +01 \\ 0 & +18 \\ 0 & +21 \end{array}$	3z -03		$3z + 03 \\ 1z & 00$	0 +26		021
196 195' 193 201 202	0 + 14 2z - 01	$3 = 00 \\ 3z - 01$	$\begin{array}{c} 0 \\ 1 \end{array} + 26C \\ + 01 \end{array}$	-	$\begin{array}{ccc} 2 & +03 \\ 0 & +12 \end{array}$	07	$2z - 02 \\ 1z 00$		$\begin{array}{ccc} 2A?z & -01\\ 3z & -01C \end{array}$
210 224 225 238 285	0z -17 (<i>Cz</i> +37)	0 <i>u</i> -16	$\begin{array}{ccc} 0 & -18 \\ 2 & 00 \end{array}$	3f = -02 + 0902 + 09	$\begin{array}{c} 0 & -10 \\ 0 & +06 \end{array}$	0 +07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
431 442 450 461 463									
474 482 495 493 514									
5223 531 554 555 ?585	4743°	475e°	4753°	4764°	4785°	4794°	4815°	481 ₃ °	4822°

TABLE I-Continued.

terpretation of individual odd levels in the region of low energy; for the rest of the levels we shall offer only a brief statistical discussion.

Even a casual glance at an energy plot of the odd levels in columns according to J value (Fig. 1) shows in the region 20,000–30,000 cm⁻¹ the stepped structure that is characteristic of multiplets. Although there is hardly a semblance of Landé interval ratios, it is evident, from a qualitative study of the energies, g values, and intensities, that the levels form the pair of triads $5d^46s(^6D)6p^{7,5}FDP$. Every one of the multiplets overlaps all the other five, except for the gap

between the adjacent levels ${}^{7}P_{4} = 278_{4}$ and ${}^{5}P_{1} = 281_{1}$; and there are levels extraneous to the multiplet within each multiplet interval, except at the bottom of the ${}^{7}F$. In view of this complexity the following, though probably without general significance, is a striking fact: except for the case of ${}^{7}P_{4}$ and ${}^{7}D_{4}$, the levels of each J value in the triad are ordered in energy according to S and $L: {}^{7}FDP {}^{5}FDP$. Ambiguities in LS assignment, offering further possible exceptions to this regularity, occur in the three cases of 261_{3} and 274_{3} (${}^{7}D_{3}$ and ${}^{7}P_{3}$), 263_{2} and 276_{2} (${}^{5}F_{2}$ and an extraneous level, mentioned below), and 314_{4} and

483_2° 48318.80 1.4C	4833° 48326.40	4864° 48676.18 1.20 <i>B</i>	4903° 49072.09 1.26C	4914° 49147.95	4912° 49151.84	491₅° 49187.87 1.25 <i>B</i>	4922° 49270.22	494 ₃ ° 49417.90	
.4 -6 .6f +2 .5 -1	.7 -16		.8 <i>f</i> +68	2 <i>u</i> 0	$ \begin{array}{c} .5f \\ -4 \\ .6 \\ 0 \end{array} $.8 +1 .6 +3	.0 0	D_0 D_1 S_3 D_2 D_3
$\begin{array}{ccc} 2 & -05 \\ 2 & -15 \\ 2 & +02C \\ 1 & +03 \end{array}$.8uM + 47	.8uM - 02 3Az - 24	$\begin{array}{ccc} .6 & -2 \\ \\ 2 & -05 \\ 1 & +03 \\ 1 & +01 \end{array}$	3f -2 2 -05	$\begin{array}{c}1 \\1 \\+01 \\1 \\+02\end{array}$.7M +10 3MA?z-14	$\begin{array}{c}\\\\ 0 & +33\\ 2 & -07 \end{array}$.7M = 0 2 = -06 1 = 00	$\begin{array}{c} D_4 \\ 09_9 \\ 12_4 \\ 13_1 \\ 13_3 \\ 13_2 \\ 14_2 \end{array}$
0 +27C	?211	1 -10C				$\begin{array}{ccc} 3 & 00 \\ 1d & +04 \\ \hline & \\ 1 & - \\ 1 & +09 \end{array}$, 0 +18 <i>C</i>	2 -09	15_{5} 15_{3} 16_{4} 17_{6} 17_{4}
$\begin{array}{c} 2 & +08C \\ 0 & +37 \\ \hline \\ 2z & +06C \\ 1f & +06 \\ \hline \\ \end{array}$		2 -17	$\begin{array}{c} 2 \\ \\ 2z \\ \hline \\ +01 \end{array}$	3z -04	0 +12		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$17_{3} \\ 18_{1} \\ 18_{2} \\ 18_{2}' \\ 18_{3} \\ 19_{2}$
	0 -23 0 +31 0u +07	$\begin{array}{c} 2AKz & -15 \\ \hline \\ 0 & +11 \end{array}$	0 -01C 0 -10 0 +16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2 = -+29C 2z + 03 1 + 05	0 +04	$\begin{array}{c} 0 & -04C \\ 0 & +12 \\ \hline \end{array}$	$194 \\ 195 \\ 196 \\ 195, \\ 193 \\ 201 \\ 202$
	0 +26C	$\begin{array}{c} 0 & +15 \\ 2z & +21C \\ 1 & +20C \end{array}$	1 -03	3z10C	0 +06	2 03	0 +11.	1A = -03	210 224 225 233 285
									$\begin{array}{r} 43_{1} \\ 44_{2} \\ 45_{0} \\ 46_{1} \\ 46_{3} \end{array}$
									474 482 495 493 514
4832°	4833°	 4864°	4903°	4914°	4912°	4915°	4922°	4943°	5223 531 554 555 ?585

TABLE I—Continued.

328₄ (⁵*F*₄ and ⁵*D*₄). Among all the levels of the two triads there is (if ?285₆ is real) no level missing, and but one extraneous level, *viz.*, the uninterpreted 276₂. The *g* sum for the seven J=2 levels is so low that, clearly, the interloper must be one of the predicted levels discussed in the next paragraph: Σg_{obs} (seven levels including 276₂) = 10.4, Σg_{cale} (six ideal *LS*-coupling levels ^{7,5}*FDP*) = $10\frac{1}{6}$.

A short distance above these triads is a close group of four adjacent levels 343_3 , 344_2 , 346_4 , 347_1 , with exceptionally small g values. This can only be interpreted as an indication of levels

arising from the addition of a p electron to ionic levels with large L and small S, e.g., $5d^46s({}^4HGF$) $6p^5I_4 {}^5H_3 {}^5G_2 {}^5F_1$ ($g_{ideal LS} = 0.60, 0.50, 0.33,$ 0.00, respectively).

There is no indication that any of the six levels arising from $5d^{5}({}^{6}S)6p$ are low; they would all have large g values in either (L) (S) or (LS ion) (electron) coupling.

Upon the suggestion of Professor H. N. Russell a table has been compiled which gives additional qualitative support to the above assignments of L and S values. At the top and at the left-hand side the odd and even levels were listed respec-

				· · · · · · · · · · · · · · · · · · ·					
	4941° 49443.72	495_3° 49514.34 1.3C	4952° 49517.26	4964° 49636.58	4972° 49700.02 1.9C	4974° 49788.60	4993° 49966.04	501_5° 50137.52 1.11B	5013° 50185.68
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$.5 0 .2f - 63	.6 + 3 .5 - 2	$\begin{array}{c} .5 +5 \\ .3 +3 \end{array}$.5 -4 .5 -3 .6Mu -4	.7 <i>M</i> -1			.4 +6
$egin{array}{c} D_4 \ 09_9 \ 12_4 \ 13_1 \ 13_3 \end{array}$	0 -33	.8 <i>Mu</i> -27 0 -34	2 -02	3 -08	005	.7fv'M - 76 0 + 02 3 - 20C	.7 <i>M</i> +1	.3 -4 2 <i>M</i> ?z -30	$\begin{array}{ccc} .6 & +02 \\ 1 & -16 \\ 0 & +01 \end{array}$
132 142 155 153 164	1	$\begin{array}{c} 0 \\ 2 \\ -05 \end{array}$	2 -05 + 02C	$\begin{array}{ccc} 1 & -04 \\ 3z & -06 \\ 00 & +16 \end{array}$	 0u +22C	2 -09	$ \begin{array}{cccc} 3 & -14 \\ 2 & -01 \\ 0 & -31 \end{array} $	2 -07 0 -33 <i>C</i>	$ \begin{array}{ccc} 1 & -02 \\ (C & -42) \\ & \\ 1 & +01 \end{array} $
176 174 173 181 182	${f 1} {f -01} {f 0} {f +06}$	$\begin{array}{c} 2 \\ 3z \end{array} - 05C \\ -02 \end{array}$	$egin{array}{ccc} 3 & +03C \ 1 & +03 \ 1 & +03 \ 1 & +03 \end{array}$	(C53)	007		$\begin{array}{ccc} 0 & +04 \\ 2 & 00 \\ 1 & +04 \end{array}$?3 -55	 1 +02
$18_{2}'\\18_{3}\\19_{2}\\19_{4}\\19_{5}$	4y +03C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & +33C \\ 0 & +24C \\ 0 & +29 \end{array}$	$\begin{array}{c} \\ 0 & +28 \\ 0 & +13 \end{array}$	$\begin{array}{c} 2z & -02 \\ (C & -42) \end{array}$		2 <i>K</i> +07	2z +04	$\begin{array}{c}2\\-\\-\\1\\+02\end{array}$
196 195' 193 201 202	${\begin{array}{ccc} 1 & -06 \\ 0 & +03 \end{array}}$	0 -04c	$\begin{array}{c} 0 \\ 2f \end{array} \begin{array}{c} +12 \\ +02 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0f	$ \begin{array}{ccc} 0 & +09 \\ 0 & +35 \end{array} $	2z +04	
210 224 225 233 285		0 +30C		$\begin{array}{ccc} 0 & -11 \\ 1z & -02 \\ \hline \end{array}$		$egin{array}{cccc} 1 & -05 \ 1 & +01c \ (C & +33) \ 0 & +20 \end{array}$	1 -04	$\begin{array}{c} 0A - 42 \\ 1u - 02 \end{array}$	0 -14
$\begin{array}{c} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
474 482 495 493 514									
5223 531 554 555 ?585	4941°	4953°	4952°	4964°	4972°	4974°	4993°	5015°	5013°

TABLE I-Continued.

tively, not according to their position, but according to their L and S values, as if W I obeyed LS coupling. In the body of the table intensities were put, as taken from Table I. They clearly showed intensity gradations according to the old qualitative intensity rules for LS multiplets. Because all the data for the compilation of such a table are at the reader's disposal in Table I, it is not included here.

In an attempt towards further interpretation of odd levels, $N_J(\nu)$ was plotted as a function of ν , where $N_J(\nu)$ is the number of odd levels of a definite J with energy less than ν . The broken curves thus obtained were compared with the same curves derived from the odd levels of Ti I, Cr I, and Fe I, whose spectra are supposed to be rather exhaustively classified. No definite statistical information could, however, be derived from these curves since the $N_J(\nu)$ plots seem, to a considerable extent, to be independent of the number of optically involved electrons.

In view of the fact that the $N_J(\nu)$ curves for W I lie reasonably close to those for Ti I, Cr I and Fe I, one may merely conclude that in the regions investigated, the spectrum W I is now classified with a comparable degree of completion.

5024° 50284.57 1.03B	5042° 50494.68	5072° 50718.85	508_3° 50800.43 1.0C	508_5° 50806.08	5084° 50894.05	5094° 50909.40 1.2C	510 ₃₄ ° 51072.17	511_{32}° 51182.48	
.4 +6	.0 -17	.8 +6	.7 +8		.5 +4	.0f +1 .9 +2		$.3f +2 \\ .0f +29$	D0 D1 S3 D2 D3
$ \begin{array}{ccc} .6 & -4 \\ 0 & +07 \\ 2z & -11 \end{array} $	$\begin{array}{ccc} 0f & -02 \\ 0 & +12 \end{array}$	${ \begin{smallmatrix} 0 & +23 \\ 0 & -14 \end{smallmatrix} }$.4 0 0 +21	1 -22	$ \begin{array}{ccc} .5 & 0 \\ 2 & -17 \\ 0 & +04 \end{array} $	$0 -06 \\ 0 +07$		$\frac{3Mz}{0} + 10C$	D4 090 124 131 133
2	3 -28		2f + 60 + 19C + 19C = 0 - 00	$ \begin{array}{ccc} 2 & -09 \\ 2 & -03 \end{array} $	$2f + 34C \\ 1 & 00 \\ 2 & +32C$	$\begin{array}{ccc}1&+31\\0&+10\end{array}$	102	2 -09	132 142 155 153 164
2 +05	$ \begin{array}{ccc} $	$\begin{array}{ccc} 2 & -03 \\ (C & +36) \\ 0 & -16 \end{array}$	2 + 03 0u - 23	$\begin{array}{ccc} 1 & -02 \\ 3 & +02 \end{array}$	19	$\begin{array}{ccc} 0 & +27 \\ 2 & +01 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 +11	176 174 173 181 182
$\begin{array}{c} 0 \\ 3z \\ \end{array} + 13C$	$ \begin{array}{cccc} 0 & +38 \\ 2 & +25C \end{array} $	$\begin{array}{c}2 \\ 2f \end{array} + 03 \\ + 05 \end{array}$	(C +55) 1 +01 1 +02			101	$\begin{array}{cccc} ?2 & +03 \\ 1 & +07 \\ \\ 3 & +18C \\ ?2 & +11C \end{array}$	$\begin{array}{c} 0 & -01C \\ 0 & +09 \\ \hline \end{array}$	$18_{2}'$ 18_{3} 19_{2} 19_{4} 19_{5}
	0 +10	$ \begin{array}{c} $		2		0uf+23	 		196 195, 193 201 202
0 <u>+27</u> <i>C</i>			2 -02	22 +01	$\begin{array}{c} 0 & -02 \\ 0 & -11 \end{array}$	$2z + 05 \\ 1 - 02$	$ \begin{array}{c} ?0 \\ 3 = ? \\ -34C \end{array} $		210 224 225 233 285
									$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
									474 482 495 493 514
502₄°	✓ 504₂°	5072°	508 3°	508 ° °	5084°	509₄°	510 ₃₄ °	511 ₃₂ °	5223 531 554 555 7585

TABLE I-Continued.

4. DESCRIPTION OF TABLE I, LEVEL AND TRANSITION ARRAY, AND TABLE II, LINE LIST

(**A**)

Table I, the rectangular array, serves at the same time as a list of all the known energy levels⁴⁴ of W I with their properties and as a compilation of the transitions among these levels with all their pertinent data (except that on the Zeeman effect for the individual lines).

At the head of each row and each column occurs the description of a level: each row in the body of the table is headed by the description of an even level, and each column by that of an odd level. The description of each level consists of the following items, respectively:

(1) The approximate structural symbol (only if the structure is approximately known, of course). Where symbols are bracketed together they are indifferently interchangeable, e.g., it would have had as much meaning to give the level 17_3 the structural symbol $5d^56s \, {}^5G_3$ or $5d^46s^2 \, {}^3D_3$ as to leave its interpretation blank; cf. Sections 3a, 3c.

⁴⁴ Notation as to the discoverer of each level has been omitted from the already bulky Fig. 1 and Table I. Interested readers may search the papers referred to in Section 2c.

	512_5° 51290.71	?516 ₃ ° 51600.38	?516′2° 51606.4	516_2° 51693.82	5171° 51763.28	5184° 51856.06	520_3° 52015.23	5204° 52059.72	520_5° 520.8112
$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$		$.4 0 \\ .4 -4$.4 + 1.5 .0f = 0					0 -01	
$egin{array}{c} D_4 \ 090 \ 124 \ 131 \ 133 \end{array}$	 2ζ +34	.7 +4	0 +06	0 +18	.8 +25	.7 +4 0 +25 0u +07	2 +13 2 -32	1 -11	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	2 -03	2A -16c $$ $1u +05$	$\begin{array}{c} 0 & -05 \\ 0 & +36C \end{array}$	$\begin{array}{c}03\\ 2 & 00 \end{array}$	1u +01	201	0 -41		$ \begin{array}{r} 0 & +36 \\ 3 & -06 \end{array} $
$17_{4} \\ 17_{4} \\ 17_{3} \\ 18_{1} \\ 18_{2}$	2 +02	2 +10		200	$\begin{array}{c} 0 & -09 \\ 0 & +02 \end{array}$	$ \begin{array}{ccc} 2 & -02 \\ 3 & 00 \end{array} $	1 +03	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 1 & -06 \\ 1 & +11 \end{array}$
182' 183 192 194 195	2 04	2 +10	$ \begin{array}{ccc} $	$ \begin{array}{cccc} 0 & -15 \\ 3 & +11C \\ \\ \end{array} $			$\begin{array}{c} 0 \\ 0u \\ +43 \end{array}$	$ \begin{array}{ccc} 2 & -01 \\ ?2 & 00 \\ 24? & +01 \end{array} $	$ \begin{array}{ccc} 1 & 00 \\ ?0 & -50 \end{array} $
$19_{5} \\ 19_{5}' \\ 19_{3} \\ 20_{1} \\ 20_{2}$	1d +04	 2 +29C				202	4 +14		
210 224 225 233 285						$\begin{array}{c} 0 & +12 \\ 0u & +06 \\ 0 & +36 \end{array}$			$\begin{array}{ccc} 0 & -02 \\ 1 & +07 \end{array}$
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$									
$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ ?58_5$	512₅°	?5163°	?5162°	516'2°	5171°	5184°	5203°	5204°	5205°

TABLE I-Continued.

(2) The name. If the existence of the level is doubtful, the name is preceded by a question mark. The name of each of the lowest six levels is the approximate structural symbol, abbreviated to a capital letter and subscript. The name of each of the other levels consists of the first two (for even levels) or three (for odd levels) digits in its excitation energy value, and its J value as a subscript.⁴⁵ In cases of doubtful J, both J

values are used. The additional symbol "o" is used to distinguish an odd level in this table, but not in the rest of the paper, for a three-digit-andsubscript name is sufficient. In a few instances it is necessary to distinguish one of a pair of otherwise identical level symbols by a prime.

(3) The energy, measured in cm^{-1} from the most stable level, D_0 .

(4) The tentative Zeeman effect g value, followed by one of the letters A, B, C, indicating its reliability. The uncertainty of g for "A" levels is about 0.01; for "B" levels, between 0.01 and 0.1; and for "C" levels, greater than 0.1.

At each appropriate row-column intersection

⁴⁵ This system has the advantages of showing the level's parity and approximate energy without requiring any more digits than if the levels were numbered serially, while at the same time the list can be supplemented to almost any probable future requirement, with no more emergency symbols than an occasional prime.

?5212° 52152.54	522₃° 52255.75	523_5° 52395.48	524_4° 52436.40	525_2° 52503.43	527₅° 52774.04	5293° 52943.38	5301° 53042.02	5314° 53118.29	
			?.2f +7				.0 +4		Do D1 S3 D2 D3
215	.8 +06 	.5 +2 .9Mz +08	.3 -1 .8M?A + 04 0 - 03		.3 -1 .7A +08	.9 +20 0 +01	.4 +4	.3 +1	D4 090 124 131 133
	$\begin{array}{ccc} 2 & -15C \\ 0 & +47 \\ 1 ufA? & -04C \\ 2f & 00C \end{array}$	204	$\begin{array}{ccc} 0 & -04 \\ 0f & -38 \\ \end{array}$	$\begin{array}{c} 0 & +02 \\ 0f & +14 \end{array}$	$\begin{array}{ccc} 0 & -26 \\ 1 & +03 \end{array}$	$\begin{array}{c} 0 & -05 \\ \\ 2 & +05 \end{array}$	2 <i>u</i> +40	$\begin{array}{c}0&+36\\1&-35\end{array}$	$13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4$
2 +07	2 +01	104	1 17	$\begin{array}{ccc}1&+38\\2&00\end{array}$		 0 —09	0 -08	2 -02	176 174 173 181 182
$\begin{array}{ccc}1&00\\2&+10c\end{array}$	2 +01	1 00		$ \begin{array}{c} 1 & -06 \\ 1 & 00 \end{array} $	300C		1 +12	$\begin{array}{ccc} 2 & +01 \\ & \\ 3 & +04C \end{array}$	182' 183 192 194 195
		$\begin{array}{ccc} 1 & +04 \\ 1A & +04 \end{array}$	034	0 + 22C	$ \begin{array}{ccc} 1 & -01 \\ 3 & 00 \end{array} $	0 +42	2 -06	2+01	196 195' 193 201 202
·	0 00C	(<i>C</i> +48)	$\begin{array}{c}0 \\ 0 \\ \\ \end{array}$		0uf42	2z -13C	-	$\begin{array}{c} & \\ 0 & +25 \\ 0 & +22C \end{array}$	210 224 225 233 285
									$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
									474 482 495 493 514
?5212°	5223°	5235°	524₄°	5252°	5275°	5293°	5301°	5314°	5223 531 554 555 ?585

TABLE I-Continued.

the properties of a transition are recorded, as follows:

(1) The intensity and sometimes one or more of the symbols f, r, G, M, H, A, K, y, Z, z, ζ , =, etc., from Table II, below, showing the character of the line. In order to give some degree of consistency to the intensities in Table I, we have divided the intensities from certain of the newer investigations ($\nu > 40,000$ and $\nu < 11,340$) by 10. Lines not given arc intensities in the first column of Table II are here given the arbitrary intensity 0. Almost all these zeros are for lines recorded only by Exner and Haschek or by M.I.T. This arbitrary zero usually, but not always, signifies

low intensity. For further discussion of the intensities, see the discussion of them in connection with Table II.

(2) The discrepancy, $\nu_{observed}$ minus $\nu_{ealeulated}$ (to be read with a decimal point before the first digit if no decimal point is given) between the observed wave number given in Table II and that calculated by applying the Ritz combination principle to the energy values given above and to the left in Table I. This item is identical with the last column of Table II.

(3) If appropriate, one or more of the following: c or C. The same observed line fits more than one allowed transition. In case the criteria at

	531₅° 53194.22 1.3C	5324° 53238.39	5334° 53345.60	5333° 53390.44	5362° 53669.42	?5372° 53748.90	5385° 53862.73	5392° 53949.38	5435° 54310.20
$D_0 \\ D_1 \\ S_3 \\ D_2 \\ D_3$.0 +2	.4 +8			.0 <i>f</i> -2			
$D_4 \\ 09_0 \\ 12_4 \\ 13_1 \\ 13_3$.5 —1	.6 +07 0 00	.5 +1 1u -27	.0 + 04 .0f - 09	.4y -01 .2f -1	$.1uf 0 \\ .6 -12C$.5 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.2f + 6 .5u = 0
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	2M? +04 1A?z -06	$\begin{array}{ccc} 1f & -24\\ 3z & +29C \end{array}$	$egin{array}{ccc} 0&+36\ 1&-26 \end{array}$	$\begin{array}{c} & \\ 0 & +05 \\ 0 &08 \end{array}$	$egin{array}{ccc} 1 & 00C \\ 0 & 00 \end{array}$	0f	2 -15		
176 174 173 181 182	$\begin{array}{ccc} 2 & -01 \\ 2 & +49 \end{array}$	2 -03	$ \begin{array}{ccc} 1 & -11 \\ 0 & -42 \end{array} $	1 -06 - 00 + 03	107	$\begin{array}{ccc} 1 & & -03C \\ 2 & +03 \end{array}$	$\begin{array}{c}0 \\ 2A? \end{array} \begin{array}{c}+02C \\ -07C\end{array}$	204	$ \begin{array}{ccc} 1 & -18 \\ 0 & +02 \end{array} $
182' 183 192 194 195		2 +03	 020 <i>C</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 +11C		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 <u>-04</u>	
196 195' 193 201 202	2 +01	1 +01	3 -11c	0 -09 4 -09 <i>C</i>	$1 - 05 \\ 0u - 42$	313	$ \begin{array}{ccc} 1 & +01 \\ 3 & +01 \end{array} $		24
210 224 225 233 285		$\begin{array}{c}0 \\ 0 \\ -+18\end{array}$	$\begin{array}{c} 0u & +14 \\ 0 & +04 \\ \hline \end{array}$				1		2 <u>+14C</u>
$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$									
$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$									
$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ 758_5$	5315°	5324°	5334°	5333°	5362°	?5372°	538 ° °	5392°	5436°

TABLE I—Continued.

hand do not make one assignment much more probable than the other "C" is placed after the discrepancy at each intersection. In case they do, for the more probable assignment "c" is placed after the discrepancy, and for the less probable assignment "C" replaces the intensity and the whole set of symbols for the transition is enclosed in parentheses (), corresponding to the parentheses about the assignment of the same line in Table II.

? (before the intensity). Doubtful assignment. (A question mark in any other position refers only to the symbol immediately before it.)

- (alone). Transition allowed by the Laporte

rule and the *J*-selection rule, for which no line has been observed.

(B)

Table II, the list of classified lines of the neutral tungsten atom, incorporates all the available information regarding each line, except for the omission of the details of the Zeeman effect patterns and all but one of the many intensity estimates. The data are given in five principal columns, as follows:

(1) I, arc intensity and special excitation data. (In the extreme ultraviolet, $\nu > 40,000 \text{ cm}^{-1}$, two columns I_{LM} and I_T are devoted to these data,

5453° 54556.56	547° 54733.16	5483° 54859.13	5493° 54911.54	5505° 55009.13	5502° 55032.65	5505'° 55043.26	?5502'° 55084.09	5533° 55389.28	
.6 +02		.0f -32C		.7 +3	.58 —2 5 ⊥1	.8 00	$\frac{.0f}{6}$ $\pm \frac{.08}{.1}$		$\begin{array}{c} D_{0} \\ D_{1} \\ S_{3} \\ D_{2} \\ D_{3} \\ \end{array}$ $\begin{array}{c} D_{4} \\ 09_{0} \\ 12_{4} \\ 13_{1} \\ 13_{2} \end{array}$
0 +15	2 <i>MZ</i> +01	.600	0	0 +17	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -34 \end{array} $	0 -2	.604	$ \begin{array}{c} .7A +08 \\ .5 +07 \\ 0 -18 \end{array} $	132 142 155 153 164
 3 <i>C</i> +14	1 -15	$\begin{array}{ccc} 0 & +39C \\ 0 & +18 \end{array}$	$\begin{array}{ccc} 0 & +37 \\ 0 & +03 \\ \end{array}$		019		011	$\begin{array}{c} 0 & -21 \\ & \\ 0 & +09 \end{array}$	$17_6 \\ 17_4 \\ 17_3 \\ 18_1 \\ 18_2$
114	1u - 02	$\begin{array}{cccc} 1A & -03 \\ 2 & +02 \\ 1 & +01 \end{array}$		2 00C 2 +03	200	$\begin{array}{ccc} 0 & -16 \\ 1 & 00 \end{array}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$18_{2}' \\18_{3} \\19_{2} \\19_{4} \\19_{5}$
 0 +01	?2 +15		$\begin{array}{ll} 1d & +05C \\ 1f & -10 \end{array}$	1 +17	(C +28)	1 +01		1 +26	196 195' 193 201 202
0 -15		1 + 42C					· .		210 224 225 233 285
			27mmillion		*******		3C11		$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
									$\begin{array}{r} 47_{4} \\ 48_{2} \\ 49_{5} \\ 49_{3} \\ 51_{4} \end{array}$
5453°	5476°	5483°	5493°	550°°	5502°	550 ₅ ′°	?5502′°	5533°	$52_{23} \\ 53_1 \\ 55_4 \\ 55_5 \\ 258_5$

TABLE I—Continued.

as noted below.) A key to the symbols used in, this column is given below.

(2) λ , wave-length in air, in Angstrom units.

(3) ν , vacuum wave number, in cm⁻¹ (followed in the regions ν 18174 to ν 14313 and ν 11333 to ν 10915, by certain observational discrepancy values discussed below).

(4) Classification.

(5) Discrepancy, $\nu_{observed} - \nu_{calculated}$. (A decimal point belonging before the first digit has been omitted.)

For brevity, only one value is given in each column for each line except as noted in this paragraph and the next. Rather than weighing the data from various sources, we have followed the simple practice of using the most recent arc intensity and wave-length data in each case (see the second paragraph below), except in connection with the M.I.T. list, which unfortunately became available to us only after Tables I and II were in nearly their final form. While the full use of this list would have enhanced the selfconsistency of these tables appreciably both in intensity and in wave number values, a sampling study shows that it would have changed the term values so slightly as scarcely to justify the required alteration. For $\nu < 40,000$ cm⁻¹, therefore, we have made use of the M.I.T. list only for lines

	554₅°	5553°	?5562°	5575°	5582°	55934°	5595°	561 ₃ °	56134°
	55492.08	55545.91	55619.70	55795.55	55835.12	55955.41	55987.86	56108.50	56174.64
Do D1 S3 D2 D3									
D4 099 124 131 133		.3 -1	$\begin{array}{ccc} .4z & -21 \\ .4z & +1 \end{array}$.3u +2	.6u +1	.5 -4 .3 +1	.0 +2 .0 +1	.54 .33	.0 +1
$\begin{array}{c} 13_2 \\ 14_2 \\ 15_5 \\ 15_3 \\ 16_4 \end{array}$	$ \begin{array}{ccc} .2 & 0 \\ 0 & -11 \end{array} $	$.7 +3 \\ .3f +3 \\ .3 +1 $.9M? +01 0 +25	$ \begin{array}{ccc} .6 & -4 \\ .3 & 0 \\ .5 & +13 \end{array} $	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & 0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$.6 +07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} ?.0f -2 \\2 \\ \\ .5 +08 \end{array}$
$17_6 \\ 17_4 \\ 17_3 \\ 18_1 \\ 18_2$	$2 +29C \\ 2 -30$	11	0 + 25	0 +43	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \begin{array}{c} +23C \\ -23 \end{array}$?0 —06	132		0 +34
182' 183 192 194 195	$ \begin{array}{ccc} 1 & 00 \\ 2 & -20 \end{array} $	0 +03	2 00	2 09	0 +27	?1 -08	1 <i>f</i> 07	$\begin{array}{c} 0 & -02 \\ 0 & -24C \end{array}$	$ \begin{array}{c} 1 & -35 \\ -35 \\ 1 & -27 \\ \end{array} $
196 195' 193 201 202	$\begin{array}{ccc} 3 & +03 \\ 1 & +03C \end{array}$	0 +09	007 <i>C</i>	$\begin{array}{c} 0 & -31c \\ 0 & +01 \end{array}$		308			
210 224 225 230 285	1 +17	 		?055		ann anna		1 +12	
$\begin{array}{r} 43_{1} \\ 44_{2} \\ 45_{0} \\ 46_{1} \\ 46_{3} \end{array}$					2.0 + 02C				
474 482 495 493 514									
5223 531 554 555 ?585	554s°	5553°	?5662°	557 °	5582°	559 ₃₄ °	559₅°	561 ₃ °	56134°

TABLE I—Continued.

not found on previous lists, and lines for which the M.I.T. wave-length yields a wave number different by more than 0.5 cm⁻¹ from the value that would previously have been used (a circumstance that occurs only for a few Exner-Haschek lines, e.g., ν 24836). In the region $\nu > 40,000$ cm⁻¹, on the other hand, the M.I.T. list has been used as much as possible, and two intensity columns are listed, I_L for intensities from data original with this investigation and I_T for those from the M.I.T. list. Our list (from which only the classified lines are set down here) includes many lines not found elsewhere but it is incomplete with respect to certain lines which we erroneously supposed to be spark lines, and it is inferior to 'the M.I.T. list in wave number self-consistency.

Because of a falling off in the self-consistency of some of the lists near their ends, an auxiliary column immediately following the wave number column is used to compare the observed wave number values in certain regions of overlap; in particular, values are recorded for $\nu_{\rm Belke} \nu_{\rm Kiess-Meggers}$ in the region $\nu 18,174$ to $\nu 14,313$ and for $\nu_{\rm Kiess-Meggers} - \nu_{\rm Kiess}$ in the region $\nu 11,333$ to $\nu 10,915$.

A chronological list (starting with the oldest) of the sources of the arc intensity and wavelength data compiled in Table II, with the wave

5624° 56255.64	?564₃° 56484.40	$\begin{array}{c} 5656^{\circ}\\ 56526.58\end{array}$	567 ₃ ° 56717.16	5684° 56831.70	5715° 57143.49	5755° 57560.75	?5796° 57919.11	5803° 58091.6	
									$egin{array}{c} D_0 \ D_1 \ S_3 \ D_2 \ D_3 \end{array}$
.3 0 4f +3	.5h —1		.4 —4	.4 -0 .5 +2					$egin{array}{c} D_4 \ 090 \ 124 \ 131 \ 133 \end{array}$
.7 +05 .4s +15	$\begin{array}{rrrr} .3 & -4 \\ .1 & -4 \\ .5 & 00c \\ .4 & -09 \end{array}$.2 -3	$\begin{array}{ccc} .4V' & +6 \\ .3 & +3 \\ .6 & -2c \end{array}$.8 -09 .8M +36C	.4 -13	and the second se	$\begin{array}{c} .2 \\ .4u \\ -1 \end{array}$	132 142 155 153 164
027	0 +05 <i>C</i>	1MuA —30	027	006	$ \begin{array}{ccc} .6 & -06 \\ .7 & -3 \end{array} $	$.7 +05 \\ .6 +05$.8 —06	.5 -04 .6 -09	17_6 17_4 17_3 18_1 18_2
 112	010	2 -27	$\begin{array}{c} 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{ccc} 0u & +20 \\ 0 & +28 \end{array}$	$\begin{array}{ccc} 2 & -22 \\ 0 & -14 \end{array}$	034		0	182' 183 192 194 195
		1 -13	0 -01 2 -06			0 -02	$\begin{array}{ccc} 2f & -27 \\ 0 & +26 \end{array}$		196 195' 193 201 202
247	·	0 +36	0u —27C	$\begin{array}{c} 0 \\ 0 \\ - 36C \\ - 36C \end{array}$	». 	1d18C	0 —07 <i>C</i>	0 -24	210 224 225 233 285
									$\begin{array}{r} 43_1 \\ 44_2 \\ 45_0 \\ 46_1 \\ 46_3 \end{array}$
									$\begin{array}{r} 47_4 \\ 48_2 \\ 49_5 \\ 49_3 \\ 51_4 \end{array}$
562 ₄°	?5643°	5656°	5673°	5684°	571s°	575₅°	?5796°	5803°	5223 531 554 555 ?585

number ranges covered, is given below:

Exner and Haschek⁵	vv44,434-14,779
Belke ⁶	44,231-14,313
Kiess and Meggers ⁷	18,174 - 10,915
Kiess ⁷	11,333 - 9,541
This investigation ⁹	49,488-39,938
Massachusetts Institute of	
Technology ¹⁰	49.832 - 10.915.

The symbols used in the intensity column to designate the character of the lines or the source of the data are as follows:

A—underwater spark absorption line, Allin or Allin and Ireton.¹⁶

B—data from the arc line list of Belke.⁶

d—partly resolved pair.

E—data from the arc line list of Exner and Haschek.⁵

f—intensity greater in spark than in arc.

G-raie ultime, de Gramont.¹¹

H—underwater spark absorption line, Hulburt.¹⁴

K—furnace lines, King.¹³ $\nu\nu$ 44,958-33,923.

L—data from the arc line list of this investigation.^{9, 18}

'M—underwater spark absorption lines, Meggers.¹⁵ $\nu\nu$ 35,308–17,750.

m—probably an arcline masked by a spark line.

FIG. 2a. Interpreted low even levels. Except for the low 7S and the quintets above 18,000 cm⁻¹, which belong to $5d^56s$, all these interpreted levels belong to $5d^46s^2$.

n—possibly a molecular band.

r—reversed.

 ρ —shows a red shift in the spark with respect to its position in the arc.

 ρ' —diffuse on the red side.

S-solar spectrum line.^{17,18}

s—especially sharp.

T—data from the arc line list of M.I.T.

u—especially diffuse.

v—shows a violet shift in the spark with respect to its position in the arc.

v'—diffuse on the violet side.

y—Zeeman-effect pattern seriously inconsistent with our assignment of J and g values.

z—incompletely resolved Zeeman-effect pattern not requiring any of the symbols =, y, or ζ (i.e., usually an unresolved triplet).

Z—completely resolved weak-field Zeemaneffect pattern. ζ—asymmetric, completely resolved Zeemaneffect pattern.

= incompletely resolved Zeeman-effect pattern indicating $\Delta J = 0$.

- (after intensity value) the intensity value given is for a line not resolved in the list being used in this region, but resolved by the investigation indicated by the letter to the right; the wave number given here comes from that investigation.

Where the first symbol in the intensity column is a letter, the line is not found in the list principally used in that region. Where the first symbol is a number followed by a hyphen and a letter, the intensity is that of a blend, recorded as a single line on the list principally used and resolved by another observer. In either case the wave

number given is that of the observer indicated by the letter (B, E, L, or T). When the first symbol is a number followed immediately by a letter referring to an observer, only the symbol immediately following the letter is associated with the observer referred to (e.g., a number after M refers to the intensity given by Meggers for the line in the underwater spark spectrum) except for a few instances where a number or letter is followed by the letter T, in which case the wavelength and wave number are taken from the M.I.T. tables because of an exceptionally large difference between it and the previous values.

Parentheses about a classification and its corresponding discrepancy indicate an assignment that is possible but improbable relative to another assignment made for the same line.

5. NOTES ON CERTAIN LEVELS AND LINES

This section is devoted to a few isolated notes on certain levels and lines. The conclusions that depend upon (published) Zeemaneffect work, i.e., those concerning the reality or the Jvalues of certain levels, are subject to verification in the course of a reinvestigation of the Zeeman effect, now in progress. Because of this reinvestigation we have omitted any discussion of the discrepancies between our classification and the results of Zeemaneffect studies ("y" lines, Tables I and II) insofar as in our opinion they do not affect the validity of our conclusions but arise from trivial causes such as masking or fortuitous wave number coincidences.

(A) $5d^46s^2 {}^5D$ and $5d^56s {}^7S$

In the underwater spark, the sun, and the conditions for de Gramont's raies ultimes, 7S show a considerably greater intensity sum than any other level. This is satisfactorily accounted for by a considera-

tion of the factor $(2J+1) \exp{-[h\nu/kT]}$, which is shown in the following tabulation to be appreciably greater for 7S_3 than for any other level in the atom, throughout a wide temperature range that undoubtedly covers the temperatures encountered in these investigations:

	1000°K	2000°K	4000°K	8000°K
⁵D₀	1.0	1.0	1.0	1.0
⁵D1	0.27	0.90	1.6	2.2
7S3	0.10	0.84	2.4	4.1
${}^{5}D_{4}$	0.0012	0.10	0.96	2.3

Moreover, $d^{5}s$ is the only low configuration that

FIG. 2b. Interpreted high even levels. These belong to $5d^46s(^6D)7s$.

FIG. 2c. Interpreted high odd levels. These belong to $5d^46s(^6D)7p$.

combines with both d^4sp and d^5p in one-electron transitions. Not so easy to understand is the preference of 7S for combination with lower odd levels than 5D in the underwater spark, as shown in Table IV; one might have expected that the tendency of levels with large spin vectors to be low, which would lead to such a preference, would be more than offset by the contrary tendency of d^4sp levels to be lower than those based on d^5 . Table IV is principally an extract from Table I, showing all the surely absorbed and unambiguously classified Meggers underwater spark lines;

Intensi (See te:	ty xt)	λ _{air}	^{<i>v</i>} vac	Assignment	ν_{obs}	Intensit (See tex	y t)	λ_{air}	^{<i>v</i>} vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
2 <u>f</u> 4	4 3 8 6f	2008.64 2010.74 2020.13 2043.55 2054.56	49768.8 49716.9 49485.8 48918.7 48656.6	$\begin{array}{c} D_4 - 559 \\ D_2 - 530 \\ S_3 - 524 \\ D_3 - 537 \\ S_3 - 7516' \\ \end{array}$	+2 +4 +7 -2 +1.5	$\left. \left. \begin{array}{c} 6\\5\\7M10\\3u\\7fvM4 \end{array} \right. \right\}$	3 10 20	2284.82 2284.90 2285.17 2291.09 2294.544	43753.5 43752.0 43746.8 43633.8 43568.18	$\begin{array}{c} D_2 - 470_2 \\ D_1 - 454_2 \\ D_4 - 499_3 \\ 12_4 - 557_5 \\ D_4 - 497_4 \end{array}$	$-4 \\ 0 \\ +1 \\ +2 \\ -1.12$
3 4 2f 5	10 5 8	2060.50 2065.09 2070.81 2078.70 2081.39	48516.4 48408.6 48274.9 48091.5 48029.4	$\begin{array}{c} D_3 - 533_4 \\ D_3 - 532_4 \\ D_2 - ?516_3 \\ D_4 - 543_5 \\ D_1 - 497_2 \end{array}$	$^{+8}_{+2}_{0}_{+6}_{-4}$	4 7 5 5 6	4 3 8 4	2297.38 2298.340 2298.74 2299.02 2299.31	43514.4 43496.25 43488.7 43483.4 43480.6	$\begin{array}{c} 09_0 - 530_1 \\ D_3 - 483_3 \\ D_3 - 483_2 \\ 13_3 - 568_4 \\ D_2 - 468_2 \end{array}$	$^{+4}_{-16}$ $^{-1}_{+2}$ $^{-3}$
3 5	21 <i>f</i> 10 10	2084.48 2088.88 2089.31 2092.54 2098.25	47958.2 47857.2 47847.5 47773.5 47643.6	$S_3 - 509_4 D_2 - 511_{32} D_1 - 495_2 D_1 - 494_1 D_4 - 538_5$	$^{+1}_{+2}_{+5}_{0}_{+2}$	7 4 2 7 <i>M</i> 10?	8 12	2302.67 2305.12 2306.17 2306.60	43414.5 43368.2 43348.5 43340.5	$D_3 - 482_2 \\ 17_6 - 567_3 \\ D_1 - 450_2 \\ \begin{cases} S_3 - 462_2; \\ D_3 - 481_3 \end{cases}$	$+2 \\ -4 \\ -2 \\ +2 \\ 0$
5 <i>f</i> 5 4	5f 4f	2105.43 2116.638 2128.13 2137.15 2137.45	47481.2 47229.72 46974.8 46776.4 46770.0	$\begin{array}{c} D_1 - 491_2 \\ D_3 - 520_4 \\ D_4 - 531_5 \\ D_3 - 7516'_2 \\ D_3 - 7516_3 \end{array}$	$-4 \\ -01 \\ -1 \\ 0 \\ -4$	8f'M15u 8M10? 7M12 5 5	12 8 2 2u	2309.036 2313.188 2316.26 2317.39 2317.55	43294.77 43217.06 43159.8 43138.8 43135.8	$\begin{array}{c} D_4 - 495_3 \\ D_0 - 432_1 \\ D_4 - 494_3 \\ D_3 - 479_4 \\ 13_3 - 7564_3 \end{array}$	$-27 \\ -11 \\ 0 \\ +24 \\ -1$
4 6 3 5	f	2143.05 2146.47 2147.34 2155.69 2156.688	46647.8 46573.4 46554.6 46374.2 46352.78	$\begin{array}{c} D_1 - 483_2 \\ D_1 - 482_2 \\ D_4 - 527_5 \\ D_2 - 497_2 \\ D_3 - 511_{32} \end{array}$	$-6 \\ -6 \\ -1 \\ -3 \\ +29$	6 2 4 9 <i>M</i> 10	8 12 2 f	2318.58 2318.67 2321.24 2321.634 2324.74	43116.6 43114.8 43067.2 43059.87 43002.2	$S_3 - 460_3 \\ 14_2 - 580_2 \\ D_1 - 447_1 \\ D_2 - 463_3 \\ D_2 - 463_2$	$^{+06}_{-6}_{+3}_{-07}_{0}$
3 3 6 5 2	f	2163.02 2165.19 2164.33 2164.93 2167.687	46217.0 46192.1 46189.1 46176.4 46117.59	$\begin{array}{c} D_4 - 524_4 \\ D_2 - 495_2 \\ D_2 - 495_3 \\ D_4 - 523_5 \\ D_2 - 494_1 \end{array}$	-1 + 3 + 3 + 2 - 63	7 <i>M</i> 10 6 6 3 6	10 10 f	2326.562 2326.71 2327.52 2328.72 2328.88	42968.67 42966.0 42950.9 42928.8 42925.8	$D_4 - 491_5 D_2 - 462_2 S_3 - 459_2 D_4 - 491_4 D_1 - 445_2$	$^{+10}_{-1}$ $^{-3}_{+2}$ $^{-2}$
9 5 7 8	10 15	2168.298 2169.48 2170.19 2174.59 2175.84	46104.60 46079.6 46064.5 45971.2 45944.8	$D_0 - 461 D_3 - 5094 D_3 - 5084 D_3 - 5083 D_2 - 4922 $	$^{+05}_{+2}_{+4}_{+8}_{+1}$	5 4f 8M1 6 6	$\begin{smallmatrix}4\\2f\\15\\5\end{smallmatrix}$	2329.29 2329.88 2331.303 2332.50 2332.86	42918.3 42907.4 42881.30 42859.2 42842.6	$S_3 - 458_4$ $13_3 - 562_4$ $12_4 - 550'_5$ $D_3 - 476_4$ $D_4 - 490_3$	$^{+6}_{+3}_{00}_{-10}_{-2}$
8 7 4 4	4	2178,46 2189,197 2190,51 2199,28 2201,49	45889.5 45664.52 45637.2 45455.2 45409.6	$D_3 - 507_2 D_3 - 504_2 D_4 - 518_4 D_3 - 502_4 D_1 - 470_2$	$+6 \\ -17 \\ +4 \\ +6 \\ +5$	7 5 3 5 3	7 4 8	2333.14 2334.30 2336.87 2337.743 2337.93	42847.5 42826.2 42779.1 42763.17 42759.7	$12_4 - 550_5 \\ 13_3 - 561_{34} \\ D_2 - 461_1 \\ D_3 - 475_3 \\ 13_3 - 561_3$	$^{+3}_{+1}_{0}_{-21}_{+03}$
7 4 4 6 f 7 M 2	12	2202.85 2203.20 2204.08 2221.85 2223.56	45381.5 45374.3 45356.3 44993.5 44958.5	$D_4 - ?516_3 D_0 - 453_1 D_3 - 501_3 D_2 - 483_2 D_3 - 497_4$	+4 +2 +6 +2 -1	6z 3	10 12 3	2338.476 2340.86 2341.374 2342.12	42749.77 42706.3 42696.85 42683.2	$12_4 - 549_3 \\ 13_2 - 7564_3 \\ {D_1 - 443_2; \\ 12_4 - 548_3 \\ D_1 - 443_1}$	$^{+19}_{-4}$ $^{-33}_{-32}$ $^{0}_{0}$
6M2 6M5u 1f 7 5	8 10	2225.54 2227.98 2229.20 2234.59 2237.23	44919.0 44869.6 44845.1 44747.0 44684.2	$\begin{array}{c} D_2 - 482_2 \\ D_3 - 497_2 \\ D_2 - 481_3 \\ D_0 - 447_1 \\ D_3 - 495_3 \end{array}$	$+3 \\ -4 \\ +1 \\ -2 \\ -2$	6 4u 3 5 7f	5 4 5 10	2343.744 2344.95 2346.31 2346.69 2347.967	42653.69 42631.7 42607.0 42600.1 42576.98	$D_3 - 474_3 15_3 - 580_3 13_3 - 559_{34} S_3 - 455_3 D_2 - 459_2$	-02 + 1 + 1 0 + 03
5 4 3 6 <i>M</i> 3	6 12	2237.70 2237.96 2238.56 2240.38 2242.06	44674.8 44669.7 44657.6 44621.4 44587.9	$\begin{array}{c} D_4 -508_4 \\ 12_4 -568_4 \\ D_1 -463_2 \\ D_1 -462_2 \\ D_3 -494_3 \end{array}$	$0 \\ +2 \\ +1 \\ 0$	6 7 6 6 <i>u</i> 4	8 5 8 3	2348.151 2350.48 2351.78 2352.96 2353.81	42573.64 42531.4 42508.0 42486.7 42471.3	$D_0 - 425_1 D_3 - 473_3 D_3 - 473_2 13_3 - 558_2 S_3 - 454_2$	+28 -3 +2 +1 +3
4 6 4 8 6	10 10 3	2242.41 2249.5 2249.84 2253.91 2255.52	44581.1 44440.5 44433.8 44353.6 44321.9	$\begin{array}{c} D_4 - 508_3 \\ D_3 - 492_2 \\ D_1 - 461_1 \\ D_0 - 443_1 \\ D_3 - 491_2 \end{array}$	0 + 3 - 5 + 2 0	8uM15 6 8M15 5	12 f 10 15 6	2354.611 2357.93 2358.072 2360.433 2361.62	42456.86 42397.1 42394.62 42352.14 42330.9	$\begin{array}{c} D_4 - 486_4 \\ 13_2 - 561_{34}? \\ 12_4 - 545_3 \\ D_2 - 456_3 \\ 13_2 - 561_3 \end{array}$	-02 +2 +02 -02 +1
8f 7 6 3	2u 12 15	2255.72 2259.555 2260.07 2263.90 2267.22	44318.0 44242.78 44232.7 44157.8 44093.3	$\begin{array}{c} D_3 - 491_4 \\ D_3 - 490_3 \\ D_1 - 459_2 \\ D_2 - 474_3 \\ 12_4 - 562_4 \end{array}$	0 + 68 + 5 - 4 0	4z 9uM20 4z 8 8f	15 8 12 12	2362.65 2363.06 2364.95 2365.448 2366.182	42312.4 42305.03 42271.3 42262.35 42249.25	$\begin{array}{c} 13_1 - ?556_2 \\ D_1 - 439_2 \\ 13_3 - ?556_2 \\ D_0 - 422_1 \\ D_3 - 470_2 \end{array}$	-2 + 10 + 1 + 09 - 12
6 3 6 7 6	10 10	2268.68 2270.16 2271.40 2273.00 2273.76	44064.9 44036.1 44012.1 43981.2 43966.40	$\begin{array}{c} D_4 - 502_4 \\ D_2 - 473_3 \\ D_2 - 473_2 \\ S_3 - 469_4 \\ D_4 - 501_3 \end{array}$	$-4 \\ -1 \\ -2 \\ +7 \\ +02$	8 1s 7 3 7	12 10 10	2366.952 2367.52 2367.68 2369.10 2370.881	42235.50 42225.4 42222.53 42197.3 42165.52	$\begin{array}{c} 09_0 - 517_1 \\ D_2 - 455_3 \\ D_1 - 438_1 \\ 13_2 - 555_3 \\ S_3 - 451_4 \end{array}$	$^{+25}_{-4}$ +20 -1 +09
5 3 7ufvM5 5	20 4f	2274.81 2276.28 2277.58 2281.04 2282.76	43946.1 43917.8 43892.8 43826.0 43793.1	$\begin{array}{r} 12_4-561_3\\ D_4-501_5\\ D_0-438_1\\ 12_4-559_5\\ 12_4-559_{34}\end{array}$	-14 -4 +2 +1 -4	5 6 8M5u 9 7	8 4 12 12 10	2371.85 2373.43 2374.144 2374.460 2374.758	42148.2 42120.2 42107.57 42101.97 42096.68	$\begin{array}{c} 12_4 - 543_5 \\ D_1 - ?437_0 \\ D_4 - 483_3 \\ D_3 - 469_4 \\ D_2 - 454_2 \end{array}$	0 + 5 + 47 + 15 + 06

TABLE II. Classified lines of neutral tungsten, W I.

Intens (See te	ity xt)	λ_{air}	^{<i>v</i>} vac	Assignment	$^{\nu}{}_{obs}^{obs}$	Intensity (See text)	λ_{air}	^v vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$
8 4 6 5 4	10 4 4	2376.069 2376.39 2377.00 2377.92 2380.85	42073.46 42067.7 42057.0 42040.7 41988.9	$\begin{array}{r} 15_5 - 571_5 \\ S_3 - 450_2 \\ 13_2 - 557_5 \\ 13_3 - 553_3 \\ S_3 - 449_4 \end{array}$	$-09 \\ 0 \\ -4 \\ 0 \\ -3$	9uM8 18 8 12 7A 12 9uM8z	2459.295 2460.162 2461.572 2459.315	40649.76 40635.42 40612.16 40649.45	$D_2 - 439_2 \\ D_4 - 468_5 \\ 12_4 - 527_5 \\ D_2 - 439_2$	$+06 \\ -04 \\ +08 \\ -25$
$7 \\ 8 \\ 9M10 \\ 4$	8 15 12 12 4	2381.57 2382.986 2384.817 2389.072 2391.89	41976.2 41951.34 41919.14 41844.49 41795.2	$\begin{array}{c} D_3 - 468_2 \\ D_4 - 481_3 \\ D_4 - 481_5 \\ D_1 - 435_2 \\ D_3 - 466_4 \end{array}$	-2 + 11 + 11 + 09 + 2	$\begin{array}{cccc} 9M3 & 15 \\ 3 & 3f \\ 8 & 15 \\ 7 & 1f \end{array}$	2462.788 2464.128 2464.307 2465.204	40592.11 40570.04 40567.10 40552.32	$\begin{cases} D_1 - 422_1; \\ D_3 - 454_2 \\ 14_2 - 555_3 \\ D_2 - 438_1 \\ 17_6 - 575_5 \end{cases}$	$^{+12}_{-14}_{+30}_{00}_{+05}$
7 4v' 5s	$\begin{array}{c}8\\10\\4\\6\\6\end{array}$	2392.927 2393.42 2393.77 2395.30 2395.89	41777.08 41768.5 41762.4 41735.7 41725.54	$13_1 - 250'_2 \\ 13_1 - 555_3 \\ 15_5 - 568_4 \\ 13_3 - 250'_2 \\ 13_1 - 550_2 $	+08 +3 +6 +1 -2	$\begin{array}{ccc} 9uM6A & 15 \\ 3 \\ 0 & 10 \\ 1uf \\ 8M10 & 15 \end{array}$	2466.848 2468.67 2471.209 2471.94 2472.508	40525.31 40495.4 40453.79 40441.8 40432.55	$\begin{array}{c} D_2 - 438_3 \\ 15_3 - 559_{34} \\ 17_4 - 575_5 \\ 13_1 - ?537_2 \\ D_3 - 452_4 \end{array}$	$^{+04}_{0}_{+05}_{0}_{+03}$
5 8M6 7M4 5	12 8? 3 1 <i>f</i>	2397.21 2397.723 2397.979 2398.27 2400.505	41700.7 41693.52 41689.07 41684.0 41645.22	$\begin{array}{c} 12_4 - 538_5 \\ D_2 - 450_2 \\ D_2 - 450_3 \\ 13_3 - 550_2 \\ S_3 - 445_2 \end{array}$	-1 +03 +22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2473.14 2473.692 2473.818 2474.149 2474.484	40422.1 40413.18 40411.13 40405.72 40400.25	$15_{5} - 554_{5} \\ 14_{2} - 533_{3} \\ D_{0} - 404_{1} \\ D_{4} - 466_{4} \\ \{13_{3} - ?537_{2}; \\ 16_{4} - 568_{4} \end{cases}$	$0 \\ +07 \\ +08 \\ -01 \\ -12 \\ -2$
${}^{6}_{7fA} \\ {}^{8}_{9} M10?$	12 15 10 15	2401.294 2502.441 2405.256 2405.592 2405.688	41631.52 41611.65 41562.97 41557.16 41555.49	$D_4 - 478_5$ $13_2 - 553_3$ $13_3 - 549_3$ $D_1 - 432_2$ $D_3 - 463_3$	$^{+06}_{-04}$ $^{-04}_{-21}$ $^{+04}$	$egin{array}{ccc} 6 & 10 \ 5 & 7 \ 4 & 5 \ 4 & 5 \ 4 & & \end{array}$	2475.091 2476.017 2476.810 2476.82	40390.35 40375.25 40362.32 40362.2	$17_3 - 580_3 \\ 15_3 - 558_2 \\ 13_1 - 536_2 \\ 13_1 - 536_2 \\ 13_1 - 536_2$	-09 + 13 - 01 - 1
8 1 8A 3m	10 10 7	$2406.175 \\ 2408.45 \\ 2409.031 \\ 2409.16 \\ 2410.529$	41547.08 41507.8 41497.84 41495.6 41470.32	$\begin{array}{c} D_1 - 432_1 \\ 14_2 - ?564_3 \\ D_2 - 463_2 \\ S_3 - 444_3 \\ D_4 - 476 \end{array}$	$+08 \\ -4 \\ +12 \\ -1 \\ +33$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2480.126 2480.654 2481.443 2482.098	40308.36 40299.78 40286.97 40276.34	$\begin{array}{c} D_1 - 419_2 \\ S_3 - 432_4 \\ \{D_3 - 451_4; \\ D_4 - 465_5 \\ S_3 - 432_2 \end{array}$	$+03 \\ +08 \\ +26 \\ -08 \\ -03$
6 8 <i>M</i> 5? 8 <i>M</i> 10 5 3	9 12 15 9	$\begin{array}{c} 2313.778\\ 2414.040\\ 2415.679\\ 2416.232\\ 2416.36\end{array}$	41416.24 41411.74 41383.64 41374.17 41371.9		+33 +06 +06 +09 +10 +2	8M2?A 10 9M5z 20 8M10? 15 6 10	2482.212 2484.735 2487.492 2487.766	40274.48 40233.60 40189.00 40184.58	$\begin{array}{c} 12_4 - 524_4 \\ 12_4 - 523_5 \\ \{D_2 - 435_2; \\ D_3 - 450_2 \\ D_3 - 450_3 \end{array}$	$^{+04}_{+08}_{-17}_{-03}_{+03}$
6 7 6 2 9uM5u	$ \begin{array}{c} 10 \\ 2f \\ 7 \end{array} $ 20	$\begin{array}{r} 2420.200\\ 2422.285\\ 2422.659\\ 2423.10\\ 2424.216\end{array}$	41306.34 41270.79 41264.42 41257.0 41237.91	$\begin{array}{c} 13_2 - 2550'_2 \\ D_2 - 445_2 \\ D_4 - 474_3 \\ 15_3 - 567_3 \\ D_2 - 460_2 \end{array}$	-04 + 02 + 02 - 2 - 2 - 07	$\begin{array}{cccc} 4 & 3 \\ 8 & 10 \\ 9M8A? & 8 \\ 6 & 9 \\ 7 & 12 \end{array}$	2487.940 2488.910 2489.718 2490.843 2492.367	40181.77 40166.11 40153.08 40134.95 40110.40	$\begin{array}{c} 13_2 - 539_2 \\ D_4 - 463_3 \\ D_2 - 434_3 \\ 17_6 - 571_5 \\ D_3 - 449_4 \end{array}$	$^{+10}_{-03}$ $^{-01}_{-06}$ $^{-08}$
5 6 7 5	6 7d 10	2424.770 2425.980 2427.287 2427.41	41228.49 41207.93 41185.75 41183.7	$ \begin{array}{r} 12_4 - 533_3 \\ 13_2 - 545_3 \\ 15_5 - 562_4 \\ 12_4 - 533_4 \end{array} $	$+04 \\ -10 \\ +05 \\ +1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2493.393 2493.88 2495.264 2495.722	40093.90 40086.0 40063.85 40056.48	$\begin{array}{c} 12_4 - 522_3 \\ 15_3 - 555_3 \\ D_1 - 417_2 \\ 14_2 - 550_2 \end{array}$	+11 +1 +05 00
7 4 8 <i>M</i> 2? 6	10 10 4 10 9	2429.843 2430.438 2430.617 2431.084 2433.45	41142.43 41132.35 41129.32 41121.43 41081.42	$D_2 - 443_2$ $14_2 - 561_3$ $16_4 - 575_5$ $D_2 - 444_3$ $13_2 - 548_3$	+48 +02 -13 -02 00	$\begin{bmatrix} 4 & 4 \\ & 10f \\ 7 & 1u \\ L \end{bmatrix}$	2495.938 2496.638 2496.98 2499.447 2500.93	40053.01 40041.79 40036.2 39996.80 39973.1	164	$ \begin{array}{r} -09 \\ -12 \\ -3 \\ -27 \\ -2 \end{array} $
6 7 <i>fM</i> 4 4 10 <i>M</i> 2z	7 12 30	2433.743 2433.984 2434.14 2435.962	41076.50 41072.43 41069.7 41029.09	$ \begin{array}{c} 12_4 - 532_4 \\ D_3 - 459_2 \\ S_3 - 440_3 \\ D_3 - 458_4 \\ \end{array} $	$+07 \\ -03 \\ +5 \\ +08 \\ +08 \\ -08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +08 \\ +07 \\ +08 \\$	$\begin{bmatrix} Tf\\ E\\ ET\\ E\\ E\\ E \end{bmatrix}$	2501.036 2501.781 2503.042 2504.31 2504.55	39971.38 39959.48 39939.36 39919.21 39915.38	$\begin{array}{r} 13_2 - ?537_2 \\ S_3 - 429_4 \\ 15_5 - 550_5 \\ 12_4 - 520_5 \\ 09_0 - 494_1 \end{array}$	$^{+19}_{+05}_{+17}_{+05}_{-33}$
5 5	12 6 4	2436.623 2436.835 2439.204	41027.96 41024.40 40984.55	$S_{3} - 439_{4} \\ D_{2} - 443_{1} \\ \begin{cases} S_{3} - 439_{2}; \\ 15_{3} - 7564_{3} \\ 17_{4} - 580_{3} \end{cases}$	+02 +04 +47 00 -04	2z E 1 1	2504.718 2505.37 2505.658 2506.032	39912.64 39902.16 39897.65 39891.71	$D_1 - 415_2 D_2 - 432_2 12_4 - 520_4 \{ D_2 - 432_1; 13_2 - 536_2 $	-25 + 02 - 11 - 06 00
6 8 8M5u 5	3 5 15 18 5d	2440.88 2443.172 2443.615 2444.056 2445.246	40956.4 40917.99 40910.57 40903.19 40885.83	124 - 5314 155 - 5595 176 - ?5796 D1 - 4251 155 - 55934?	+1+07-06+10+36	T 1 2 E 1	2506.148 2508.455 2508.754 2511.11 2513.948	39889.86 39853.18 39848.44 39810.98 39766.09	$\begin{array}{c} 13_3 - 532_4 \\ 12_4 - 520_3 \\ D_4 - 460_3 \\ 18_2 - 580_3 \\ D_3 - 445_2 \end{array}$	$00 \\ +13 \\ -23 \\ -14 \\ -19$
3 5 4s 9 9uz	8 3 12 15 <i>f</i>	2446.70 2447.374 2450.494 2451.342 2451.477	40859.3 40847.74 40795.75 40781.62 40779.38	$\begin{array}{c} 14_2 - 558_2 \\ D_3 - 456_3 \end{array}$ $\begin{array}{c} 15_3 - 562_4 \\ 12_4 - 529_3 \\ D_1 - 424_2 \end{array}$	0 + 07 + 15 + 20 + 09	E E 2M4z 1M10Az	2516.57 2518.49 2520.468 2521.336	39724.63 39694.35 39663.23 39649.58	$\begin{array}{c} 17_4 - 568_4 \\ 12_4 - 518_4 \\ 15_5 - 547_6 \\ S_3 - 426_3; \\ D_4 - 458_4 \end{array}$	-06 + 25 + 01 - 27 - 12
$ \begin{array}{c} 7M5Z\\ 9\\ 9 \end{array} \} M5d \\ 5 \end{array} $	${ \begin{cases} 12f \\ 15 \\ 15 \\ 5 \end{cases} }$	2451.998 2454.713 2454.971 2455.370	40770.71 40725.62 40721.34 40714.72	$ \begin{array}{r} \overline{D_0} - 407_1 \\ 15_5 - 557_5 \\ D_3 - 455_3 \\ 15_3 - 561_{34} \end{array} $	-03 + 01 + 01 + 08	ET 2M15z E Eu	2522.15 2523.421 2524.82 2526.26	39636.57 39616.82 39594.86 39572.31	$\begin{array}{c} D_0 - 396_1 \\ D_3 - 444_3 \\ 13_3 - 529_3 \\ 15_3 - 550_3 \end{array}$	$+01 \\ -14 \\ +01 \\ -34$
8M5 9M6	12 15	2455.501 2456.531	40712.55 40695.49	$\begin{cases} D_4 - 469_4; \\ 16_4 - 571_5 \\ D_2 - 40_3 \end{cases}$	$^{+04}_{+36}_{+51}$	E	2526.38	39570.42	D ₄ -457 ₅	+01

TABLE II—Continued.

Intensity (See text)	^{\lambda} air	^v vac	Assignment	ν_{obs}	Intensity (See text)	λ _{air}	^v vac	Assignment	ν_{obs} $-\nu_{calc}$
E 1M5uA 2M E 2	2529.34 2529.745 2533.641 2534.00 2535.13	39524.13 39517.80 39457.04 39451.46 39433.82	$\begin{array}{c} 16_4 - 559_{34} \\ 17_6 - 565_6 \\ D_1 - ?411_6 \\ 15_3 - 549_3 \\ D_1 - 411_2 \end{array}$	$+02 \\ -30 \\ +03 \\ -08 \\ -37$	E 2A E Ed 1	2614.48 2615.144 2616.37 2616.71 2618.833	38237.11 38227.43 38209.50 38204.54 38173.58	$\begin{array}{c} 13_2 - 520_3 \\ D_4 - 444_3 \\ 15_3 - 536_2 \\ D_3 - 430_4 \\ D_2 - 414_3 \end{array}$	$-41 \\ -22 \\ +08 \\ ?+44 \\ -29$
E E 2M10z 2M20z 1z	2539.00 2541.08 2545.358 2547.155 2550.39	39364.50 39332.29 39275.42 39247.72 39197.92	$\begin{array}{c} 16_4 - 557_5 \\ D_4 - 455_3 \\ D_2 - 426_3 \\ D_2 - 425_1 \\ D_1 - 408_2 \end{array}$	+25 +27 -20 -14 -12	1Ef 2M10u? E E 3M5z	2619.201 2622.217 2622.33 2624.35 2625.232	38168.21 38124.32 38122.68 38093.35 38080.52	$\begin{array}{r} 15_5 - 532_4 \\ 15_6 - 531_5 \\ 12_4 - 502_4 \\ 19'_5 - 7579_6 \\ D_3 - 429_4 \end{array}$	-24 + 04 + 07 + 26 - 19
E 1M30AZ E 1M5u?z	2551.02 2551.360 2552.49 2553.58 2553.839	39188.17 39183.03 39165.62 39148.90 39145.01	$\begin{array}{c} D_2 - 425_3 \\ D_0 - 391_1 \\ 13_2 - 529_3 \\ 17_4 - 562_4 \\ D_3 - 439_2 \end{array}$	$-47 \\ -14 \\ -05 \\ +27 \\ -20$	1 <i>u</i> <i>E</i> <i>E</i> 1 2 <i>M</i> 2? <i>z</i>	2626.272 2627.43 2628.24 2629.166 2632.510	38065.45 38048.71 38036.99 38023.56 37975.26	$\begin{array}{c} 14_2 - 530_1 \\ 15_5 - 531_4 \\ D_1 - 397_2 \\ 12_4 - 501_3 \\ 12_4 - 501_5 \end{array}$	+40 +36 +24 -16 -30
2A 1Az 2M2 E E	$\begin{array}{c} 2554.878\\ 2555.218\\ 2556.760\\ 2556.99\\ 2557.57\end{array}$	39129.09 39123.87 39100.29 39096.71 39087.84	$\begin{array}{c} 12_4 - 512_5 \\ D_2 - 424_2 \\ D_1 - 407_1 \\ 15_3 - 545_3 \\ 13_3 - 524_4 \end{array}$	$+34 \\ -19 \\ -18 \\ +15 \\ -03$	3M2 3M10Az E 2 E	$\begin{array}{c} 2632.717\\ 2633.147\\ 2635.60\\ 2638.639\\ 2638.71 \end{array}$	37972.28 37966.07 37930.80 37887.05 37885.96	$S_3 - 409_3$ $D_1 - 396_1$ $15_3 - 533_3$ $19_4 - 571_5$ $15_3 - 533_4$	$-22 \\ -22 \\ +36 \\ -22 \\ +36$
E E 3M8z	2559.35 2560.49 2561.51 2561.980	39060.67 39043.29 39027.74 39020.62	$16_{4} - 554_{5} \\ D_{4} - 452_{4} \\ S_{3} - 419_{2} \\ \{D_{3} - 438_{3}; \\ 12_{4} - 511_{32}? \}$	-11 +08 +41 -16 +10	Eu E E 2A	2640.70 2642.02 2642.35 2642.71 2643.142	37857.42 37838.52 37833.78 37828.64 37822.51	$18_3 - 568_4 \\ 18_2 - 559_{34}? \\ 13_3 - 511_{32} \\ 13_2 - ?516'_2 \\ 13_2 - ?516_3$	$+20 \\ -06 \\ -17 \\ -05 \\ -16$
E 1 E 2 2	$\begin{array}{c} 2562.30\\ 2564.713\\ 2566.11\\ 2567.517\\ 2568.232\end{array}$	$\begin{array}{c} 39015.71\\ 38979.06\\ 38957.80\\ 38936.49\\ 38925.65 \end{array}$	$17_3 - 567_3 \\ 17_6 - 559_5 \\ 16_4 - 553_3 \\ D_2 - 422_1 \\ D_2 - 422_3$	-27 -32 -18 -27 -30	E 1 3z E	2644.37 2644.626 2646.209 2646.51	37804.90 37801.28 37778.68 37774.34	$174 - 549_3 \\ D_4 - 440_3 \\ \{ \begin{array}{c} D_2 - 411_2; \\ 15_3 - 532_4 \\ D_0 - 377_1 \end{array} \right.$	$+37 \\ -40 \\ -28 \\ +29 \\ +40$
2 2 E 2 2	2568.574 2570.113 2570.51 2572.42 2573.545	38920.47 38897.15 38891.13 38862.27 38845.30	$S_3 - 418_4 \\ D_4 - 451_4 \\ D_3 - 437_4 \\ 09_0 - ?483_1 \\ 13_1 - ?521_2$	-17 -25 +26 +23 -15	2 2 E E	2646.752 2647.111 2648.04 2648.73	37770.92 37765.81 37752.51 37742.69	$D_3 - 426_3 \\ D_4 - 439_4 \\ \{ 17_4 - 548_3; \\ (18_1 - 558_2 \\ 19_4 - 567_3 \}$	$-21 \\ -25 \\ +39 \\ +23 \\ +01$
2 E E E	2577.045 2577.38 2577.66 2580.05	38792.54 38787.50 38783.29 38747.38	$15_5 - 538_5 \\ 17_6 - 557_5 \\ S_3 - 417_2; \\ 17_3 - ?564_3 \\ 12_4 - 509_4$	-25 + 43 + 49 + 05 - 06	E 1 E E 1	$\begin{array}{c} 2649.29\\ 2650.006\\ 2650.46\\ 2651.46\\ 2654.694 \end{array}$	37734.71 37724.55 37718.06 37703.84 37657.94	$19'_5 - 575_5 \\ 17_6 - 547_6 \\ 18_2 - 558_2 \\ 15_5 - 527_5 \\ 15_3 - 531_4$	$-02 \\ -15 \\ -23 \\ -26 \\ -35$
$\left. egin{smallmatrix} 3 \ 3z \ 2 \ E \ E \ E \ \end{array} ight\} M 30d \left\{ \left. egin{smallmatrix} 2 \ z \ z \ z \ z \ z \ z \ z \ z \ z \$	$\begin{array}{c} 2580.355\\ 2580.501\\ 2581.079\\ 2581.48\\ 2583.66 \end{array}$	38742.78 38740.59 38731.92 38725.92 38693.25	$S_3 - 416_3 \\ D_1 - 404_1 \\ 12_4 - 508_4 \\ 13_2 - 525_2 \\ 14_2 - 536_2$	$-23 \\ -19 \\ -17 \\ +20 \\ 00$	4M20Az E 4M10z ET	2656.558 2656.90 2657.398 2658.194	37631.51 37626.66 37619.62 37608.35	$\begin{cases} S_3 - 405_4; \\ D_4 - 438_3 \\ 12_4 - 497_4 \\ D_3 - 424_2 \\ 19_5 - 571_5 \end{cases}$	-19 +04 +02 +05 -14
E 2 EfA? E 1	2584.27 2585.454 2586.33 2586.65 2586.959	38684.12 38666.38 38653.32 38648.54 38643.88	$D_3 - 435_2 \\ 13_3 - 520_3 \\ D_2 - 419_2 \\ D_3 - 434_3 \\ 12_4 - 508_5$	2-56 -32 +22 -06 -22	ET E E 3M10Az	2658.906 2660.50 2661.55 2662.64 2662.853	37598.28 37575.76 37560.94 37545.56 37542.57	$\begin{array}{c} D_2 - 409_3 \\ 19_4 - 568_4 \\ 13_3 - 509_4 \\ 13_3 - 508_4 \\ D_2 - 408_2 \end{array}$	$+01 \\ +28 \\ +07 \\ +04 \\ -24$
E 2 E Eu E	2587.31 2587.782 2593.39 2596.11 2596.66	38638.68 38631.59 38548.12 38507.60 38499.45	$12_4 - 508_3 \\ S_3 - 415_2 \\ S_3 - 414_3 \\ 13_3 - 518_4 \\ 15_3 - 539_2$	$^{+21}_{-30}_{+02}_{+07}_{+07}$	E Ef 3A? 1Ld E	2663.24 2663.93 2664.977 2665.800 2668.45	37537.11 37527.40 37512.65 37501.07 37463.85	$18_{1} - ?556_{2}$ $14_{2} - 525_{2}$ $D_{1} - 391$ $D_{4} - 437_{4}$ $19_{2} - 567_{3}$	$^{+25}_{-49}$
E E 1 2M5u?	2597.71 2598.39 2600.763 2601.979	38483.89 38473.82 38438.79 38420.83	$\begin{cases} 13_2 - 522_3; \\ 17_6 - 554_5 \\ 17_3 - 561_{34} \\ 17_4 - 555_3 \\ D_3 - 432_4 \end{cases}$	-15 + 29 + 34 - 11 - 15	1A? 3M6z E E	$\begin{array}{c} 2669.796\\ 2671.489\\ 2672.15\\ 2675.14\\ 2675.41 \end{array}$	37444.94 37421.20 37411.99 37370.18 37366.42	$\begin{array}{c} D_2 - 407_1 \\ D_3 - 422_3 \\ 13_1 - 507_2 \\ 13_3 - 507_2 \\ 15_5 - 524_4 \end{array}$	$-30 \\ -26 \\ +26 \\ -11 \\ -04$
ET 2z 2 E 2	$\begin{array}{r} 2602.419\\ 2602.825\\ 2603.567\\ 2604.42\\ 2605.518\end{array}$	38414.32 38408.34 38397.40 38384.77 38368.64	$14_2 - 533_3 D_2 - 417_2 D_3 - 432_2 17_4 - 554_5 D_2 - 416_3$	$+05 \\ -23 \\ -25 \\ -30 \\ -14$	2 E 3M5A E 3AT	2675.893 2676.44 2677.296 2677.90 2678.883	37359.62 37352.04 37340.05 37331.68 37317.94	$\begin{array}{c} D_1 - 390_2 \\ 12_4 - 495_3 \\ D_2 - 406_3 \\ 17_3 - 550_2 \\ S_3 - 402_3 \end{array}$	$-34 \\ -34 \\ -31 \\ +19 \\ -08$
3EfM1z E 2M3z 2M2z E	2606.406 2607.10 2607.398 2608.338 2609.90	38355.57 38345.47 38340.99 38327.17 38304.19	$D_3 - ?431_4 \\ 13_3 - 516_2 \\ D_1 - 400_2 \\ D_4 - 445_5 \\ 19_4 - 575_5$	+15 +18 -18 -22 -34	2 E 4M20Az E E	2680.060 2680.37 2681.431 2681.60 2682.14	37301.54 37297.14 37282.47 37280.05 37272.54	$17_6 - 543_5 \\ 19_5 - 568_4 \\ S_3 - 402_4 \\ 14_2 - 522_3 \\ 18_2 - 553_3$	-18 +44 -17 +47 +09
$E \\ E \\ 2Ef \\ 3M10 = \\ 3M8z \end{bmatrix} A \Big\{$	$\begin{array}{c} 2610.23\\ 2611.41\\ 2612.210\\ 2613.090\\ 2613.830\\ \end{array}$	38299.37 38282.06 38270.36 38257.46 38246.64	$\begin{array}{c} 13_1 - 2516'_2 \\ 17_4 - 553_3 \\ 19_6 - 2579_6 \\ D_2 - 415_2 \\ S_3 - 411_4 \end{array}$	$+06 \\ -21 \\ -27 \\ -20 \\ -14$	$egin{array}{c} E \ E \ E \ E \ 1 \end{array}$	2682.65 2685.14 2686.62 2687.14 2687.389	37265.46 37230.91 37210.41 37203.21 37199.81	$18_2 - 555_3 \\ 19_2 - 7564_3 \\ 17_3 - 549_3 \\ 17_4 - 543_5 \\ 18_3 - 561_{34}$	+03 +10 +03 +02 -35

TABLE II—Continued.

Intensity (See text)	λ_{air}	^ν vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$	Intensity (See text)	λ_{air}	^ν vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
Ef E 2 E E	2688.27 2690.40 2691.113 2691.26 2692.15	37187.57 37158.15 37148.33 37146.27 37134.00	$\begin{array}{c} 13_1 - 504_2 \\ 17_3 - 548_3 \\ D_3 - 419_2 \\ 13_3 - 504_2 \\ 18_3 - 561_3 \end{array}$	-02 + 18 - 28 + 12 - 02	4rz 4rz 2 4rzM1? 2	2768.988 2769.746 2770.211 2770.883 2771.624	36103.65 36093.77 36087.70 36078.95 36069.31	$\begin{array}{c} D_1 - 377_1 \\ D_3 - 409_3 \\ 17_4 - 531_5 \\ S_3 - 390_2 \\ 13_3 - 494_3 \end{array}$	$-02 \\ -01 \\ +49 \\ +01 \\ -06$
3M8z 2 $3M7 =$ $3M4z$ Eu A	2695.683 2697.531 2698.857 2699.607 2700.022 2700.20	37085.36 37059.96 37041.75 37031.47 37025.77 37023.32	$D_2 - 404_1$ $S_3 - 400_2$ $D_3 - 418_4$ $D_4 - 432_4$ $12_4 - 491_5$ $13_4 - 508_2$	-19 -21 -17 -20 -14 2 ± 60	2 5rzA 5rzM3 2 E	2772.481 2774.007 2774.483 2776.091 2779.31	36058.17 36038.32 36032.14 36011.26 35969.54	$18_3 - 550_2 \\ D_3 - 408_2 \\ D_4 - 422_3 \\ 17_4 - 531_4 \\ 19'_5 - 557_5$	$00 \\ 00 \\ -01 \\ -02 \\ +01$
E E 2 Ef	2701.06 2701.82 2702.537 2703.60	37011.54 37001.14 36991.31 36976.78	$15_{5} - 520_{5}$ $18_{1} - 2550_{2}$ $19_{5} - 565_{6}$ $15_{3} - 524_{4}$	$+36 \\ -11 \\ -27 \\ +38$	2 2 1A 2 2	2779.729 2780.290 2785.889 2786.520 2787.986	35964.14 35956.88 35884.62 35876.50 35857.64	164 - 5235 195 - 5545 183 - 5483 181 - 5392 $D_2 - 3911$	$-04 \\ -20 \\ -03 \\ -04 \\ -03$
E ?1 ?2z 1	2704.38 2706.022 2706.590 2707.894 2708.195	36966.11 36943.68 36945.93 36918.15 36914.04	$\begin{array}{c} D_4 - ?431_4 \\ D_2 - 402_3 \\ 13_3 - 502_4 \\ 19_4 - 561_{34} \\ 16_4 - 533_4 \end{array}$	$00 \\ -11 \\ -11 \\ -27 \\ -26$	3 1 3 2 <i>Ef</i>	2789.076 2789.376 2789.683 2790.569	35843.63 35839.77 35835.83 35824.45	$19_6 - 554_5 \\ 15_5 - 509_4 \\ D_3 - 406_3 \\ 14_2 - 508_3; \\ 15_5 - 508_4;$	$^{+03}_{-02}_{+19}_{+34}$
3z E E ET	2708.935 2710.00 2712.56 2713.847	36903.96 36889.48 36854.67 36837.16	$\begin{array}{c} D_3 - 417_2 \\ 19_3 - 567_3 \\ (17_6 - 538_6; \\ 19_2 - 561_3 \\ 13_3 - 501_3 \end{array}$	$-12 \\ -01 \\ +02 \\ -24 \\ +01$	3 1 2 5 <i>M</i> 3	2791.960 2792.216 2792.528 2792.702	35806.61 35803.32 35799.32 35797.09	$16_{4} - 522_{3}$ $12_{4} - 479_{4}$ $13_{3} - 491_{2}$ $13_{3} - 491_{4}$ $S_{3} - 387_{4}$	+02 +01 -05 -07
3Az 1uEfA? 1u 4M20sz	2715.506 2716.905 2717.540 2718.911	36814.66 36795.71 36787.12 36768.57	$\begin{array}{c} D_4 - 430_4 \\ 15_3 - 522_3 \\ 14_2 - 517_1 \\ S_3 - 397_4 \end{array}$	$-13 \\ -04 \\ +01 \\ -06$	T E 2 2	2792.796 2793.50 2796.152 2797 202	35795.88 35786.88 35752.91	$D_1 - 374_2 19_4 - 550'_5 \{ D_3 - 405_4; \{ 19_4 - 550_5 \\12_4 - 05_5 \\12_4 - 05_5 \\12$	11 16 07 00
$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} A \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} A \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} A \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right\} A \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2719.333 2719.867 2720.056 2721.650 2722.469	36762.86 36755.65 36753.09 36731.57 36720.52	$16_4 - 531_5 \{ S_3 - 397_2; \\ 17_4 - 538_5 \\ D_3 - 415_2 \\ 19_4 - 559_5 \\ 19_5 - 562_4 \\ \end{bmatrix}$	-06 -10 -07 -08 -07 -12	2 2 2 4 3Efz	2797.473 2797.630 2798.454 2799.929 2801.175	35736.03 35734.03 35723.51 35704.69 35688.80	$13_{2} - 493_{2}$ $15_{5} - 508_{5}$ $20_{2} - 567_{3}$ $13_{3} - 490_{3}$ $D_{2} - 390_{2}$ $12_{4} - 478_{5}$	-09 -06 -05 -04
$ \begin{cases} T \\ \frac{1}{4}M10s = \\ \frac{2}{3}y \end{cases} A \left\{ $	2722.683 2723.959 2724.359 2724.637 2725.054	36717.62 36700.43 36695.04 36691.29 36685.68	$14_{2}-516_{2}$ $19'_{5}-565_{6}$ $S_{3}-396_{3}$ $D_{4}-429_{4}$ $D_{2}-400_{2}$	$-03 \\ -13 \\ -04 \\ -11 \\ -26$	1 1 1	2801.956 2802.959 2804.021	35678.86 35666.09 35652.60	$\begin{cases} 18'_2 - 539_2 \\ 13_2 - 494_1; \\ 18_1 - 7537_2; \\ 19'_5 - 554_5 \\ D_4 - 418_4 \end{cases}$	-04 +08 +03 +03 -01
E 1 u E 2 2	2726.24 2727.970 2732.79 2733.193 2735.976	36669.66 36646.46 36581.80 36576.44 36539.24	$\begin{array}{c} D_3-414_3\\ D_4-428_5\\ 19_2-558_2\\ 09_0-461_1\\ 19_4-557_5\end{array}$	$^{+28}_{-17}$ $^{+27}_{-10}$ $^{-09}$	3 E 2 2 1	2804.244 2804.70 2805.633 2807.725 2807.933	35649.76 35644.02 35632.10 35605.56 35602.92	$16_4 - 520_5 17_3 - 533_4 18_2 - 7537_2 19_2 - 548_3 19_4 - 548_3$	$-06 \\ -42 \\ +03 \\ +02 \\ +01$
2 3 1 1 u	2738.008 2743.437 2744.909 2745.328	36512.13 36439.87 36420.33 36414.77	$164 - 5293 \\ \{133 - 4974; \\ 182 - 5453 \\ 195 - 55934? \\ 183 - 5533 \end{bmatrix}$	$+05 \\ -20 \\ +14 \\ -08 \\ -03$	1 1 2 1 <i>E</i>	2809.228 2809.589 2813.126 2815.419 2816.64	35586.51 35581.94 35537.20 35508.26 35492.84	$ \begin{array}{r} 18_1 - 536_2 \\ 18_3 - 545_3 \\ 17_3 - 532_4 \\ 19_5 - 550'_5 \\ 13_2 - 492_2 \end{array} $	-07 -14 -03 00 +33
1 2 E 2	2745.843 2746.740 2746.98 2747.839	36407.95 36396.05 36392.88 36381.49	$\begin{array}{c} 13_2 - 501_3 \\ 15_3 - 518_4 \\ 13_1 - 497_2 \\ D_2 - 397_2; \\ D_4 - 426_3 \end{array}$	$-02 \\ -01 \\ -05 \\ -02 \\ -33$	5rz 2 E 1 E	2818.068 2818.126 2820.10 2821.317 2821.51	35474.89 35474.16 35449.30 35434.05 35431.59	$D_4 - 416_3$ $19_5 - 550_5$ $15_3 - 509_4$ $15_3 - 508_4$ $12_4 - 475_3$	-09 +03 +10 00 +18
4rAz 2 1 2 E	2748.853 2749.002 2750.767 2753.170 2754.44	36368.08 36366.11 36342.77 36311.05 36294.35	$D_3 - 411_4 \\ 19_2 - ?556_2 \\ 16_4 - 527_5 \\ D_2 - 396_1 \\ D_2 - 425_3$	$+02 \\ 00 \\ +03 \\ -01 \\ -49$	2 1 1 <i>Eu</i> <i>E</i> 3 <i>A</i> z	2823.718 2826.093 2827.159 2828.79 2829.833	35403.91 35374.15 35360.82 35340.43 35327.41	$D_3 - 402_4 13_2 - 491_2 19_6 - 550_5 15_3 - 508_3 13_3 - 486_4$	$-01 \\ +02 \\ +17 \\ 00 \\ -24$
3 2 3	2754.922 2755.270 2755.947 2758.685 2758.880	36287.97 36283.37 36274.47 36238.48 36235.86	$\begin{array}{c} 13_{3} - 496_{4} \\ 17_{4} - 533_{3} \\ D_{3} - 411_{2} \\ 17_{4} - 533_{4} \\ 19_{4} - 554_{5} \end{array}$	$-08 \\ -06 \\ 00 \\ -11 \\ 00$	3EfH 5M7sAK4z 1 4M2Z	2830.296 2831.387 2832.479 2832.959 2833.634	35321.62 35308.01 35294.41 35288.43 35280.03	$124 - 4743 \\ S_3 - 3824 \\ 132 - 4903 \\ 174 - 5235 \\ D_4 - 4143$	-12 -06 +03 -04 00
2 2 4rZ	2759.039 2760.035 2761.142 2762.346 2762.705	36233.82 36220.74 36206.22 36190.44 36185.75	$ \begin{array}{r} 15_3 - 516_2 \\ 15_5 - 512_5 \\ 14_2 - 511_{32} \\ D_0 - 361_1 \\ 17_6 - 531_5 \end{array} $	$\begin{array}{c} 00 \\ -03 \\ -09 \\ +02 \\ -01 \end{array}$	$\begin{array}{c} T\\ 3\\ 3\\ 1\\ 2 \end{array}$	2834.146 2835.644 2837.353 2838.681 2838.897	35273.64 35255.02 35233.78 35217.31 35214.62	$ \begin{array}{r} 18_2 - 533_3 \\ S_3 - 382_3 \\ D_1 - 369_2 \\ 19'_5 - 550'_5 \\ 15_5 - 502_4 \end{array} $	$+03 \\ -03 \\ -06 \\ +07 \\ -01$
। इ.	2764.007 2765.68 2766.735 2767.147	36168.71 36146.76 36133.04 36127.66	$13_3 - 495_2 \\ \{15_3 - 7516'_2; \\ 19_6 - 557_5 \\ 19_4 - 553_3 \\ 19_3 - 559_{34} \end{bmatrix}$	-02 + 36 - 31 - 02 - 08	3M4 1u 1u	2839.343 2840.104 2840.226	35209.09 35199.65 35198.14	$\begin{cases} 09_0 - 447_1; \\ 14_2 - 501_3 \\ 12_4 - 473_3 \\ 19_5 - 547_6 \\ 20_1 - 2556_2: \end{cases}$	$-08 \\ -42 \\ -08 \\ -02 \\ -07$

TABLE II—Continued.

Intensity (See text)	λ _{air}	^v vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$	Intensity (See text)	λ _{air}	^v vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
3z 1u 1 2M2?	2841.574 2842.569 2847.359 2847.831	35181.45 35169.13 35109.96 35104.15	$\begin{array}{c} D_3-400_2\\ 16_4-?516_3\\ 18'_2-533_3\\ D_2-?384_1\end{array}$	$00 + 05 \\ 00 - 17$	$ \begin{array}{c} 2\\ 1\\ 4z\\ 4 \end{array}\right\}A\left\{ \end{array} $	2921.121 2921.906 2923.100 2923.548	34223.47 34214.26 34200.29 34195.04	$\begin{array}{c} 12_4 - 463_3 \\ 19_6 - 538_5 \\ D_3 - 390_2 \\ S_3 - 371_4 \end{array}$	-01 + 01 + 05 + 02
3 <i>M</i> 3 <i>AK</i> 2 <i>Z</i> 1 <i>Ed</i> 1 2	2848.029 2849.474 2850.394 2850.806	35101.71 35083.92 35072.58 35067.51	$S_3 - 380_3 \\ \{19_3 - 549_3; \\ 22_4 - 575_5 \\ 17_6 - 520_5 \\ 15_5 - 501_5 \end{cases}$	-06 + 05 - 18 - 06 - 07	3z E 3 2 2	2925.132 2926.44 2926.984 2927.933 2928.196	34176.52 34161.29 34154.90 34143.82 34140.76	$\begin{array}{c} 15_3 - 496_4 \\ 23_3 - 580_3 \\ 17_3 - 518_4 \\ 18_3 - 531_4 \\ D_2 - 374_2 \end{array}$	$-06 \\ -24 \\ 00 \\ +01 \\ 00$
3 2 4 <i>K</i> 1 <i>z</i> 3 3	2853.501 2855.354 2856.033 2857.144 2858.047	35034.40 35011.66 35003.35 34989.73 34978.68	$\begin{array}{c} 15_3 - 504_2 \\ 13_1 - 483_2 \\ D_1 - 366_2 \\ 14_2 - 499_3 \\ D_4 - 411_4 \end{array}$	-28 -05 -05 -14 -07	2 3 1 5rK2z 2	2928.661 2930.155 2932.047 2934.994 2935.632	34135.34 34117.93 34095.93 34061.71 34054.29	$13_{3} - 474_{3} \\ 15_{5} - 491_{5} \\ 14_{2} - 490_{3} \\ D_{1} - 357_{2} \\ 15_{3} - 495_{3}$	$^{+17}_{00}_{+01}_{+06}_{-05}$
1 2 1 2 <i>E</i>	$\begin{array}{c} 2858.428\\ 2858.747\\ 2860.174\\ 2861.451\\ 2862.43 \end{array}$	34974.22 34970.12 34952.67 34937.07 34925.11	$174 - 520_{5} \\ 13_{3} - 483_{2} \\ 174 - 520_{4} \\ 13_{1} - 482_{2} \\ 18_{2} - 530_{1}$	$+11 \\ -15 \\ -04 \\ -08 \\ -08$	4 3 1 3	2936.014 2937.149 2937.673 2939.055	34049.86 34036.70 34030.64 34014.63	$\begin{array}{c} D_4 - 402_3 \\ 19'_5 - 538_5 \\ 13_1 - 473_2 \\ D_4 - 402_4; \\ 20_2 - 550_2 \end{array}$	$-13 \\ -01 \\ -03 \\ +02 \\ +28$
$ \begin{array}{c} ?2\\ 2\\ 4M5uK1-z\\ 2\\ E \end{array} \Big\} A \Big\{ $	2863.893 2865.320 2866.071 2866.383 2870.54	34907.29 34889.90 34880.76 34876.97 34826.46	$\begin{array}{c} 19'_5 - 547_6 \\ D_3 - 397_4 \\ D_2 - 382_3 \\ D_3 - 397_2 \\ 18_2 - 529_3 \end{array}$	$^{+15}_{-01}$ -06 -06 -09	2 2 2 <i>E</i> 2	2939.185 2940.954 2941.255 2942.14 2942.459	34013.14 33992.66 33989.19 33978.93 33975.28	$13_{3} - 473_{3}$ $17_{3} - 516_{2}$ $13_{3} - 473_{2}$ $22_{5} - 568_{4}$ $18'_{2} - 522_{3}$	$-02 \\ 00 \\ -04 \\ +05 \\ +01$
E 3 3 1 2	2870.62 2870.914 2871.376 2872.504 2875.216	34825.50 34821.92 34816.33 34802.65 34769.83	$\begin{array}{c} 09_0 - 443_1 \\ 13_3 - 481_3 \\ D_3 - 396_3 \\ 17_3 - 525_2 \\ 12_4 - 469_4 \end{array}$	$+09 \\ -08 \\ -03 \\ +38 \\ -02$	2 2 7rM20HAK10Z 1Ef 8rM20K8Z 6z	2943.338 2943.972 2944.410 2946.527 {2946.992 2947.393	33965.13 33957.81 33952.77 33928.37 33923.01 33918.40	$17_4 - 510_{34} \\ 15_3 - 494_3 \\ S_3 - 369_2 \\ 20_2 - 549_3 \\ S_3 - 368_3 \\ D_2 - 387_4$	$-03 \\ -09 \\ -07 \\ -10 \\ -03 \\ -04$
$2 \\ 1 \\ 4M3 \\ 5rM10K1 \\ 5rM2?K3z \} HA \Big\{$	2876.936 2878.081 2878.721 2879.110 2879.400	34749.03 34735.07 34727.49 34722.80 34719.31	$174 - 5184 173 - 5244 D_2 - 3803 S_3 - 3763 D_0 + 3471 $	$-02 \\ -17 \\ +01 \\ -03 \\ -01$	1 1 <i>E</i> <i>E</i>	2949.130 2951.418 2951.79 2956.81	33898.43 33872.06 33867.88 33810.40	$18_{2} - 520_{3}$ $18'_{2} - 7521_{2}$ $247_{4} - 758_{5}$ $\{15_{3} - 492_{2};$ $\{19_{5} - 533_{4}\}$	$+03 \\ 00 \\ +28 \\ +18 \\ -20$
2 3 1 3 1 <i>Eu</i>	2880.632 2884.181 2885.921 2887.660 2888.788	34704.45 34661.76 34640.85 34620.00 34606.49	$\begin{array}{c} D_4 - 409_3 \\ 19_6 - 543_5 \\ 16_4 - 510_{34} \\ 13_3 - 479_4 \\ 19_4 - 538_5 \end{array}$	-02 +04 -02 -02 -02 -02	<i>E</i> 1 1 1	2957.54 2957.931 2958.730 2958.846	33802.06 33797.58 33788.45 33787.13	$\begin{array}{r} 17_4 - 509_4 \\ 17_6 - 508_5 \\ 19_2 - 530_1 \\ 17_4 - 508_4 \end{array}$	$^{+27}_{-00}_{+12}_{+09}$
1 E 2 2 2 2	2892.121 2892.44 2893.125 2893.622 2894.255	34566.60 34562.73 34554.60 34548.66 34541.11	$15_{5} - 496_{4}$ $20_{2} - 555_{3}$ $17_{3} - 522_{3}$ $13_{2} - 483_{3}$ $(13_{2} - 483_{2};$ $14_{2} - 495_{2}$	-04 +09 +01 -03 +02 +02	3 1 E 1 5AK2Z	2960.146 2961.715 2963.44 2963.783 2964.520	33772.28 33754.39 33734.78 33730.85 33722.47	$13_1 - 470_2 \\ 16_4 - 501_3 \\ 18_2' - 520_3 \\ 13_3 - 470_2 \\ S_3 - 366_2$	+01 +01 +03 +02 +07
$E_{4rz} \\ {}_{6rM7HK4Z} A \Big\{$	2894.52 2896.010 2896.445 2897.197	34537.90 34520.17 34514.99 34506.03	$\begin{array}{c} 14_2 - 495_3 \\ D_1 - 361_1 \\ S_3 - 374_2 \\ 15_3 - 499_3 \end{array}$	$-27 + 02 \\ 00 \\ -01$	E E 3 2	2965.88 2965.98 2966.578 2967.073	33707.03 33705.89 33699.07 33693.45	$12_4 - 458_4 \\ \{13_2 - 474_3; \\ 16_4 - 501_5 \\ 17_4 - 508_5 \\ 17_4 - 508_3 \end{bmatrix}$	$-01 \\ -10 \\ -33 \\ +02 \\ +03$
2 3 2 2	2898.252 2900.515 2900.809 2901.787	34493.47 34466.56 34463.07 34451.45	$17_4 - ?516_3 \\ 13_2 - 482_2 \\ \{12_4 - 466_4; \\ 16_4 - 508_4 \\ 17_3 - ?521_2 \}$	$^{+10}_{+03}$ 00 $^{+32}_{+07}$	E E 3 1	2968.23 2968.78 2971.22 2971.675 2972.497	33680.35 33674.12 22646.47 33641.28 33631.97	$18_1 - ?517_1 22_5 - 565_6 18_2 - ?517_1 D_1 - 353_2 22_4 - 561_3 $	-09 + 36 + 02 + 09 + 12
2 2 1 3	2902.041 2902.200 2902.606 2904.783	34448.44 34446.56 34441.73 34415.94	$D_2 - 377_1 \\ D_4 - 406_3 \\ 14_2 - 494_3 \\ \{18_3 - 533_3; \\ 19_2 - 536_2 \}$	$00 + 02 \\ 00 - 02 + 11$	3 3 3 E	2972.919 2976.802 2977.104 2977.67	33627.18 33583.33 33578.68 33573.50	$12_4 - 457_5 \\ \{13_3 - 469_4; \\ 19_5 - 531_4 \\ D_2 - 369_2 \\ 20_2 - 545_3 \end{bmatrix}$	+03 +05 +04 +07 +01
1 2 2 2 3 <i>A</i>	2905.598 2906.731 2907.260 2908.264 2909.125	34406.27 34392.87 34386.60 34374.73 34364.56	$20_2 - 553_3 \\ 13_2 - 481_3 \\ 18_2 - 525_2 \\ 16_4 - 508_5 \\ 09_0 - 438_1$	$^{+26}_{+05}$ $^{00}_{-03}$ $^{-03}_{-03}$	E 5K3z E 1	2978.63 2979.860 2981.14 2981.636	33562.68 33548.87 33534.43 33528.89	$ \begin{array}{c} 19_3 - 533_3 \\ D_2 - 368_3 \\ 16_4 - 499_3 \\ 18_3 - 525_2 \end{array} $	-09 +06 -31 -06
1 4z 4Z 2 2	2909.632 2910.481 2911.001 2912.245 2915.112	34358.59 34348.56 34342.42 34327.75 34293.98	$17_3 - 520_4$ $D_2 - 376_3$ $D_0 - 343_1$ $19_5 - 538_5$ $14_2 - 492_2$	+03 +02 +05 +02 -07	3 Eu 3 1	2982.620 2982.8 2984.154 2985.668	33517.82 33515.4 33500.60 33483.61	181 - (51012); 194 - 5275; 193 - 5334 124 - 4563 D4 - 3974 182 - (51612); 181 - (51012); 193 - (51012); 194 - 5275; 194 - 5275; 193 - (51012); 194 - 5275; 193 - (51012); 194 - 5275; 193 - (51012); 194 - 5275; 193 - (51012); 194 - (51012); 1	$^{+28}_{00}$ $^{-11}_{-3}$ $^{00}_{+06}$
2 2 4 <i>A</i> ?K1z 1 <i>u</i> Eu	2916.109 2917.669 2918.253 2919.300 2919.69	34282.27 34263.94 34257.08 34244.80 34240.24	$176 - 5125 \\ 183 - 5324 \\ D_4 - 4045 \\ 133 - 4753 \\ \{153 - 4972; \\ 224 - 5673 \}$	+02 +03 +01 -04 +22 -27	E 1 3 3 E	2985.86 2987.968 2990.512 2990.719 2991.96	33481.43 33457.83 33429.37 33427.06 33413.19	$\begin{array}{c} 17_3 - 511_{32} \\ 13_3 - 468_2 \\ D_3 - 382_4 \\ D_4 - 396_3 \\ 18'_2 - 516_2 \end{array}$	$+11 \\ -04 \\ +02 \\ +01 \\ -15$

TABLE II—Continued.

Intensity (See text)	^{\lambda} air	^v vac	Assignment	ν_{obs} $-\nu_{calc}$	Intensity (See text)	λ _{air}	^v vac	Assignment	ν_{obs} $-\nu_{calc}$
1 2 4z 3 1	2992.181 2992.932 2993.616 2995.264 2995.745	33410.73 33402.35 33394.71 33376.35 33370.98	$19_{3} - 532_{4} \\ 22_{5} - 562_{4} \\ D_{4} - 396_{5} \\ D_{3} - 382_{3} \\ 17_{3} - 510_{34}$	$+01 \\ -47 \\ +03 \\ +02 \\ -03$	E 1A E E	3066.42 3069.470 3070.94 3071.72	32601.86 32569.50 32553.88 32545.62	$ 18_2 - 507_2 \\ 19_5 - 523_5 \\ 13_3 - 459_2 \\ 19_5 - 520_5? $	-13 +04 -04 -50
2 2 2 5 z 1	2995.994 2996.982 2997.612 2997.794 2998.290	33368.21 33357.21 33350.20 33348.17 33342.66	$19_{5} - 531_{5} \\ 16_{4} - 497_{4} \\ 14_{2} - 483_{3} \\ D_{2} - 366_{2} \\ 14_{2} - 483_{2} \\ \end{cases}$	$+01 \\ -09 \\ +01 \\ 00 \\ +03$	$ \begin{array}{c} 1K1-?\\2\\3\\1 \end{array} $	3073.287 3073.695 3074.094 3075.227	32529.04 32524.73 32520.50 32508.53	$\begin{cases} D_4 - 387_4; \\ 17_4 - 496_4 \\ 19_5 - 520_4 \\ 13_3 - 458_4; \\ 18'_2 - 508_3 \\ 15_3 - 479_4 \end{cases}$	-09 -53 +01 +03 +55 -02
3 E 3 2 Eu	3000.243 3000.38 3001.983 3002.827 3004.23	33320.95 33319.45 33301.64 33292.28 33276.76	$20_1 - 2537_2 \\ 22_4 - 557_5 \\ 13_2 - 470_2 \\ 19'_5 - 531_4 \\ 13_3 - 466_4$	-13 +55 -01 +01 +26	E 2 E 2	3075.34 3081.875 3084.41 3084.834	32507.32 32438.40 32411.76 32407.28	$14_2 - 474_3 \\ 18'_2 - 507_2 \\ 18_1 - 504_2 \\ (17_4 - 495_3; \\ 20_2 - 533_3)$	-21 + 06 - 08 - 05 - 09
2 1 1 5 2	3005.012 3006.660 3007.410 3009.085 3010.426	33268.07 33249.84 33241.55 33222.76 33208.25	$14_2 - 482_2 \\ 19_2 - 525_2 \\ 20_1 - 536_2 \\ D_3 - 380_3 \\ 17_3 - 509_4$	$00 \\ 00 \\ -05 \\ -23 \\ +01$	2 E 2 1 2	3084.918 3085.61 3086.981 3087.650 3089.193	32406.40 32399.16 32384.74 32377.73 32361.56	$\begin{array}{c} D_2 - 357_2 \\ 214_2 - 53_1 \\ 12_4 - 445_5 \\ 18_2 - 504_2 \\ 14_2 - 473_2 \end{array}$	-02 +01 +01 -12 -03
Eu 2 3z 5z	3010.68 3011.682 3013.206 3013.796 3016.475	33205.44 33194.29 33177.61 33171.12 33141.65	$16_4 - 496_4 \\ 14_2 - 481_3 \\ 17_4 - 502_4 \\ D_3 - 380_4 \\ D_4 - 393_5$	$^{+16}_{-07}$ +05 +01 -03	2 E 2 2 E	3089.321 3090.05 3090.593 3092.293 3092.52	32360.22 32352.62 32346.89 32329.12 32326.79	$\begin{array}{r} S_3 - 353_2 \\ 19_2 - 7516'_2 \\ 19_2 - 7516_3 \\ 13_3 - 456_3 \\ 13_2 - 461_1 \end{array}$	$+03 \\ -19 \\ +10 \\ -01 \\ -05$
6rK4z 1 2 2 1	3017.447 3017.942 3020.220 3021.620 3023.162	33130.98 33125.55 33100.56 33085.23 33068.36	$\begin{array}{r} S_3 - 360_4 \\ 19_6 - 527_5 \\ 12_4 - 452_4 \\ 18_3 - 520_4 \\ 15_5 - 481_5 \end{array}$	$-02 \\ -01 \\ +01 \\ -01 \\ -03$	5K1z 1 1 E 2	3093.515 3094.034 3096.013 3096.45 3098.449	32316.34 32310.92 32290.26 32285.66 32264.88	$\begin{array}{c} D_3 - 371_4 \\ 17_4 - 494_3 \\ 13_2 - 460_3 \\ 230_3 - 55_4 \\ 17_3 - 499_3 \end{array}$	$^{+04}_{+03}_{00}_{-18}_{00}$
$ \begin{array}{c} 5K4Z \\ 3 \\ 3z \\ E \end{array} \Big\} A \Big\{ \begin{array}{c} \\ \\ \end{array} \Big\} A \Big\{ \begin{array} c} \\ \end{array} \Big\} A \Big\{ \begin{array}{c} \\ \\ \end{array} \Big\} A \Big\{ \begin{array} c} \\ \end{array} \Big\} A \Big\{ \\ \end{array} \Big\} A \Big\{ \begin{array} c} \\ \end{array} \Big\} A \Big\{ \\ \end{array} \Big\} A \Big\{ \\ \end{array} \Big\} A \Big\{ \\ A \Big\{ \end{array} \Big\} A \Big\{ \\ A \Big\{ \\ \end{array} \Big\} A \Big\{ \\ A \Big\{ \\ \end{array} \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\} \Big\} A \Big\{ A \Big\{ \\ A \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\} A \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\} A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\{ \\ A \Big\} A \Big\{ \\ A \Big\{ A \Big\{$	3024.931 3025.268 3026.683 3026.794 3027.50	33049.02 33045.33 33029.89 33028.68 33020.96	$\begin{array}{c} D_1 - 347_1 \\ 09_0 - 425_1 \\ 17_4 - 501_5 \\ 13_2 - 468_2 \\ 13_1 - 463_2 \end{array}$	$-03 \\ -02 \\ ?-55 \\ -01 \\ +34$	E 1 4 4z 3K1	3103.91 3104.422 3105.879 3107.233 3108.019	32208.09 32202.81 32187.70 32173.68 32165.54	$\begin{array}{c} 18_3 - 511_{32} \\ 13_3 - 455_3 \\ 19_3 - 520_3 \\ D_2 - 354_3 \\ S_3 - 351_4 \end{array}$	$^{+09}_{+02}_{+14}_{+08}_{+08}$
2 E 2 3 E	3027.804 3031.35 3033.585 3034.204 3038.45	33017.66 32979.03 32954.74 32948.02 32901.99	$17_{3} - 507_{2} \\ 13_{3} - 463_{2} \\ 12_{4} - 451_{4} \\ 19'_{5} - 527_{5} \\ \{18'_{2} - 511_{32}; \\ 23_{2} - 568_{4} \}$	$ \begin{array}{r} 00 \\ -15 \\ 00 \\ 00 \\ -01 \\ +36 \end{array} $	$\begin{array}{c} 2Ef\\ 1\\ E\\ 1\\ 1\\ 1\\ 1 \end{array}$	3111.122 3111.961 3112.87 3114.583 3116.215	32133.46 32124.80 32115.41 32097.76 32080.95	$\begin{array}{r} 15_3 - 475_3 \\ 13_2 - 459_2 \\ 13_1 - 454_2 \\ 18_3 - 510_{34} \\ 17_4 - 491_5 \end{array}$	$^{+09}_{+06}_{+26}_{+07}_{+09}$
1 ?2 5rK2z	3038.720 3041.749 3041.876	32899.05 32866.29 32864.92	$\begin{cases} 15_5 - 497_4; \\ 19_2 - 7521_2 \\ 15_3 - 483_3 \\ D_2 - 361_1 \end{cases}$	$^{+30}_{+44}$ $^{+10}_{-11}$ $_{00}$	E 1 1 3z 1	3116.33 3116.869 3117.389 3117.580 3118.360	32079.76 32074.22 32068.87 32066.90 32058.89	$\begin{array}{c} 22_4 - 545_3 \\ D_3 - 369_2 \\ 18_2 - 501_3 \\ 13_1 - 453_1 \\ 20_2 - 530_1 \end{array}$	-15 +10 +02 -08 -06
$ \begin{array}{l} 1\\ E\\ 1\\ 6K1 = \end{array} $	3042.287 3042.42 3043.020 3043.819	32860.48 32859.07 32852.57 32843.95	$ \begin{array}{c} 19_5 - 523_5 \\ \{15_3 - 483_2; \\ 17_4 - 499_3 \\ 12_4 - 450_3 \\ D_3 - 376_3 \end{array} $	00 + 27 + 04 - 01 - 10	3K2 3K1?z 2 Eu	3119.773 3120.192 3120.738 3121.170 3121.82	32044.40 32040.06 32034.45 32030.02 32023.36	$\begin{array}{c} D_3 - 368_3 \\ D_4 - 382_4 \\ 19_4 - 512_5 \\ 19'_5 - 518_4 \\ 15_3 - 474_3 \end{array}$	+08 +02 -04 -02 -34
1 5rK3z ?2 1 2	3045.585 3046.452 3047.572 3048.131 3048.667	32824.90 32815.56 32803.50 32797.49 32791.72	$\begin{array}{c} 19_4 - 520_5 \\ D_1 - 344_2 \\ 19_4 - 520_4 \\ 13_1 - 461_1 \\ 18'_2 - 510_{34}? \end{array}$	$00 \\ 00 \\ 00 \\ +03 \\ +03$	3 Eu 1 1Eu 4z	3125.363 3127.94 3130.465 3133.724 3133.895	31987.05 31960.73 31934.91 31901.71 31899.97	$\begin{array}{c} D_4 - 382_3 \\ 20_2 - 539_3 \\ 18_3 - 509_4 \\ 15_3 - 473_3 \\ 13_2 - 456_3 \end{array}$	+03 +42 -01 +02 +02
1 6rK5z Eu 1Ed	3049,360 3049,694 3051,43 3051,935	32784.27 32780.68 32762.07 32756.61	$ \begin{array}{c} 15_3 - 482_2 \\ S_3 - 357_2; \\ 15_5 - 478_5 \\ 19_2 - 520_3 \\ 16_4 - 491_5 \end{array} $	$+03 \\ +03 \\ -14 \\ +43 \\ +04$	3 2 1 1 1	3136.076 3137.641 3137.921 3138.886 3139.430	31877.78 31861.89 31859.05 31849.25 31843.74	$15_{3} - 473_{2} \\ 15_{5} - 469_{4} \\ 12_{4} - 440_{3} \\ 18_{2} - 449_{3} \\ D_{3} - 366_{2}$	$+02 \\ +02 \\ +03 \\ +04 \\ +07$
1 3A 3 2	3052.827 3054.020 3055.401 3056.229	32747.04 32734.25 32719.45 32710.59	$\substack{19_6-523_5\\09_0-422_1\\\{13_3-460_3;\\18_3-516_2\\15_3-481_3}$	$^{+04}_{00}_{+01}_{+11}_{+06}$	2 3 1 3	3140.420 3140.758 3141.183 3141.430	31833.69 31830.27 31825.96 31823.46	$\begin{cases} D_4 - 380_3; \\ 22_4 - 543_5 \\ 14_2 - 468_2 \\ 18_3 - 508_3 \\ 12_4 - 439_4 \end{cases}$	$+01 \\ +14 \\ +04 \\ +01 \\ +06$
Eu Eu 1 1 3	3058.53 3058.77 3059.825 3062.893 3063.183	32685.93 32683.37 32672.16 32639.43 32636.34	$20_2 - 536_2 \\ 18_2 - 508_3 \\ D_1 - 343_1 \\ 22_5 - 554_5 \\ \{D_3 - 374_2; \\ 18_4 - 507_5 \}$	$-42 \\ -23 \\ +06 \\ +17 \\ +07 \\ +26$	3 E 3 2	3142.154 3145.20 3145.545 3146.359	31816.13 31785.28 31781.83 31773.60	$\begin{cases} 17_3 - 495_2; \\ 19_4 - 510_{34} \\ 15_5 - 468_5 \\ D_4 - 380_4 \\ 13_2 - 455_3 \end{cases}$	$^{+03}_{+18}_{?+46}_{+03}_{-01}$
E 1 E E	3063.59 3064.938 3065.65 3065.89	32631.96 32617.66 32610.04 32607.49	$ \begin{array}{r} 18_3 - 307_2 \\ 18_3 - 359_3 \\ 19'_5 - 524_4 \\ 13_2 - 463_3 \end{array} $	$+04 \\ -01 \\ -34 \\ -24$	1Ed 3 2K1 2 E	3152.000 3152.958 3155.095 3155.518 3157.02	31716.74 31707.11 31685.63 31681.38 31666.31	$\begin{array}{c} 17_3 - 494_3 \\ 16_4 - 481_5 \\ 18'_2 - 499_3 \\ S_3 - 346_4 \\ 13_3 - 450_3 \end{array}$	00 + 08 + 07 + 06 + 30

TABLE II—Continued.

Intensity (See text)	م _{air}	^v vac	Assignment	ν_{obs} $-\nu_{calc}$	Intensity (See text)	λ _{air}	^{<i>v</i>} vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
1 1Ed E 4z E	3159.185 3159.420 3161.92 3163.419 3163.99	31644.62 31642.27 31617.25 31602.26 31596.57	$132 - 4542 \\ 196 - 5125 \\ 181 - 4972 \\ 155 - 4666 \\ 132 - 4531$	+09+04+07+05+21	4z 2z 3z 2 2z	3254.353 3255.959 3256.227 3258.137 3259.659	30719.25 30704.10 30701.56 30683.57 30669.25	$ \begin{array}{r} 15_5 - 457_5 \\ 12_4 - 428_5 \\ 14_2 - 456_3 \\ D_0 - 306_1 \\ \begin{cases} D_3 - 354_3; \\ 13_2 - 444_2 \end{cases} $	+08 +13 +07 +12 +14 +01
4z 1 1	3164.442 3166.744 3168.975	31592.04 31569.07 31546.86	$\begin{array}{c} 13_3 - 449_4 \\ \{17_4 - 486_4; \\ 17_3 - 492_2 \\ 19_2 - 508_3 \\ \{16_4 - 479_4; \end{array}$	$^{+10}_{-10}$ +01 +02 +03	3 3A 1	3261.160 3263.099 3264.337	30655.13 30636.92 30625.30	$\begin{array}{c} D_4 - 368_3 \\ 13_3 - 439_4 \\ 17_3 - 483_3 \end{array}$	$^{+12}_{+09}_{+06}$
2 3 <i>EK</i> 1? 4 <i>K</i> 1?z	3170.212 3171.62 3176.602	31537.28 31534.54 31520.58 31471.11	$ \begin{array}{c} 19_5 - 510_{34} \\ S_3 - 344_2 \\ 18_3 - 504_2; \\ 20_2 - 525_2 \\ D_1 - 331_2 \end{array} $?+11 +38 +22 -02	2 E 2z 2	3265.145 3266.16 3266.762 3268.128	30617.72 30608.18 30602.56 30589.78	$\begin{cases} 17_3 - 483_2; \\ 20_2 - ?516_{12}; \\ 247_4 - 55_5 \\ 15_3 - 460_3 \\ 19_5 - 501_5 \\ 13_2 - 443_2 \end{cases}$	+08 +29 +15 +21 +04 +04
2 <i>Ef</i> 2 3z 1 4 <i>Ef</i>	3177.187 3178.254 3179.064 3180.307 3180.750	31465.31 31454.76 31446.75 31434.45 31430.07	$\begin{array}{r} 19_2 - 507_2 \\ D_4 - 376_3 \\ 17_3 - 491_4 \\ 18_1 - 495_2 \\ 13_1 - 447_1 \end{array}$	$^{+08}_{-04}$ $^{-04}_{-02}$	1 2 2z 2 <i>E</i>	3268.582 3268.924 3269.626 3270.269 3273.13	30585.53 30582.33 30575.77 30569.75 30543.02	$131 - 4381 \\ 174 - 4764 \\ 132 - 4431 \\ 2474 - 554 \\ \{173 - 4822; \\ 173 - 4822; \\ \}$	+02 +05 +06 +02 -06 +24
2z 3 3 1 3z	3181.819 3182.860 3183.518 3183.750 3184.051	31419.52 31409.24 31402.74 31400.46 31397.49	$18'_2 - 497_2 \\ 14_2 - 463_3 \\ S_3 - 343_3 \\ 18_2 - 495_2 \\ 18_2 - 495_3$	$-02 \\ -03 \\ +02 \\ +03 \\ -02$	E E 2	3273.47 3278.51 3279.16 3279.588	30539.85 30492.92 30486.88 30482.89	$\begin{array}{c} 183 - 4953 \\ 183 - 4953 \\ 225 - 5534 \\ 174 - 4753 \\ 131 - 7437_0 \end{array}$	+24 -01 +14 ?+52 -02
3 1 2 1 3 <i>Ef</i>	3184.423 3185.210 3186.746 3187.769 3189.239	31393.82 31386.07 31370.93 31360.97 31346.42	$\begin{array}{c} D_2 - 347_1 \\ 224 - 538_5 \\ 17_3 - 490_3 \\ 18_1 - 494_1 \\ 15_3 - 468_2 \end{array}$	$00 \\ -01 \\ 00 \\ -01 \\ +02$	1 <i>E</i> <i>E</i> <i>E</i>	3283.561 3284.28 3285.99 3288.71	30446.01 30439.36 30423.53 30398.37	$\begin{cases} 14_2 - 454_2; \\ (19_2 - 497_2) \\ 12_4 - 426_3 \\ 16_4 - 468_5 \\ 14_2 - 453_1 \end{cases}$	$-06 \\ -42) \\ +20 \\ +07 \\ +47$
E 1K3Z 1 E 2	3191.22 3191.577 3192.392 3192.89 3195.071	31326.95 31323.45 31315.46 31310.57 31289.20	$\begin{array}{c} 18_2 - 494_1 \\ D_0 - 313_1 \\ 14_2 - 462_2 \\ 18_3 - 502_4 \\ 13_1 - 445_2 \end{array}$	$+06 \\ +04 \\ +02 \\ +48 \\ +02 $	1 E E 3z	3290.513 3290.63 3291.02 3291.51 3293.711	30381.68 30380.64 30377.04 30372.52 30352.18	$\begin{array}{r} 15_5 - 454_5 \\ 19_4 - 496_4 \\ 17_4 - 474_3 \\ 13_3 - 437_4 \\ 12_4 - 425_3 \end{array}$	$^{+04}_{+28}$ $^{+35}_{+19}$
<i>Ef</i> 5 <i>K</i> 1 <i>z</i> 1 2	3198.24 3198.843 3199.308 3199.966	31258.21 31252.30 31247.76 31241.34	$ \begin{array}{c} 16_4 - 476_4 \\ D_3 - 360_4 \\ 13_3 - 445_2 \\ \{ 13_2 - 450_2; \\ 19_2 - 504_2 \end{array} $	$^{+22}_{+02}_{+02}_{+03}_{+25}$	2z Euf E 5K5z E	3298.128 3299.71 3300.35 3300.819 3303.31	30311.54 30296.97 30291.10 30286.82 30263.96	$19'_{5} - 501_{5} \\ 22_{4} - 527_{5} \\ 20_{1} - 507_{2} \\ D_{3} - 351_{4} \\ 19_{2} - 495_{2}$	$^{+04}_{-42}$ +10 +08 +29
E 1 2 2	3200.40 3200.729 3203.054 3205.503	31237.11 31233.89 31211.22 31187.37	$\begin{cases} 13_2 - 450_3; \\ 18'_2 - 495_2 \\ 18'_2 - 495_3 \\ 18_3 - 501_3 \\ 18_1 - 492_2 \end{cases}$	+38 +33 +02 +02 -01	E 2 E 2 E	3303.62 3305.565 3306.33 3309.475 3311.11	30261.12 30243.34 30236.33 30207.62 30192.69	$19_2 - 495_3 \\ 13_2 - 440_3 \\ 18_1 - 483_2 \\ 13_1 - 435_2 \\ 15_5 - 452_4$	+37 +07 +37 +04 +12
$5K2z$ $\frac{1}{2}$ $4K1 = 2$	3207.248 3207.799 3208.098 3208.279 3208.566	31170.41 31165.06 31162.15 31160.39 31157.61	$\begin{array}{c} S_3 - 341_4 \\ 15_3 - 466_4 \\ 16_4 - 475_3 \\ D_2 - 344_2 \\ 19_6 - 508_5 \end{array}$	+08 +03 +08 +06 +03	4K5Z 1 E	3311.389 3314.021 3314.52	30190.16 30166.18 30161.64	$\begin{cases} S_3 - 331_2; \\ 19_2 - 494_1 \\ 13_3 - 435_2 \\ (18_1 - 482_2; \\ 19_4 - 494_3 \end{cases}$	$+03 \\ +03 \\ +04 \\ +24 \\ -04$
1 2EfGK5?z Euf E 3z	3213.142 3215.578 3216.20 3217.70 3218.612	31113.23 31089.66 31083.61 31069.12 31060.36	$\begin{array}{c} D_4 - 359_3 \\ D_4 - 373_5 \\ 19'_5 - 509_4 \\ 18_1 - 491_2 \\ 13_1 - 443_2 \end{array}$	$^{+05}_{-17}$ $^{+23}_{+12}$ $^{00}_{00}$	3z E 2 E 3Z	3316.091 3317.07 3317.997 3319.65 3320.364	30147.34 30138.46 30130.03 30115.04 30108.55	$\begin{array}{c} D_1 - 318_2 \\ 19_3 - 499_3 \\ 13_3 - 434_3 \\ 13_2 - 438_1 \\ 09_0 - 396_1 \end{array}$	$00 \\ +09 \\ -03 \\ +15 \\ 00$
3 2 3z 2	3220.070 3221.625 3221.919 3223.126	31046.29 31031.31 31028.48 31016.86	$ \begin{array}{c} 13_1 - 443_1 \\ 17_4 - 481_5 \\ \left\{ \begin{array}{c} D_2 - 343_3; \\ 19_4 - 502_4 \\ D_2 - 343_1 \end{array} \right. \end{array} $	$-04 \\ -01 \\ -01 \\ +13 \\ -01$	E 2z 2 E E	3321.12 3321.569 3322.253 3324.06 3324.96	30101.71 30097.63 30091.43 30075.10 30066.96	$\begin{array}{c} 19_5 - 496_4 \\ 18_3 - 490_3 \\ 15_3 - 455_3 \\ 16_4 - 465_5 \\ 20_1 - 504_2 \end{array}$	$^{+13}_{+01}$ +11 +05 +10
2 E 2 2 1	3225.636 3225.94 3227.498 3232.135 3232.232	30992.72 30989.78 30974.85 30930.41 30929.48	$S_3 - 339_2 \\ 18'_2 - 492_2 \\ 17_3 - 486_4 \\ 16_4 - 473_3 \\ \{19_4 - 501_3; \\ 17_4 - 548_2\}$	+01 +04 -17 +02 +02 +42	5K1?z 2 2z E	3326.194 3327.629 3328.121 3330.56	30055.78 30042.82 30038.38 30016.42	$D_4 - 362_5 \\ 14_2 - 450_2 \\ \{ 14_2 - 450_3, \\ 18'_2 - 483_2 \\ 19_2 - 492_2 \}$	$00 \\ -03 \\ +01 \\ -06 \\ -21$
2 2z 2Edz 3Z	3232.489 3232.654 3234.996 3237.091	30927.03 30925.45 30903.06 30883.05	$\begin{array}{c} D_4 - 371_4 \\ 15_3 - 463_3 \\ D_2 - 342_3 \\ 09_0 - 404_1 \end{array}$	+04 +01 +02 +01	5K3 = Ef E E	3331.678 3336.55 3336.85 3337.49	30006.31 29962.46 29959.76 29954.02	$\begin{array}{c} S_3 - 329_3 \\ \{ 15_3 - 454_2; \\ 19'_5 - 497_4 \\ 22_4 - 524_4 \\ 16_4 - 463_3 \end{array}$	$^{+02}_{+22}_{-12}_{+01}_{-12}$
1Eu 1 3K1z E 2 =	3238.692 3241.409 3242.026 3249.83 3251.219	30867.79 30841.91 30836.05 30762.04 30748.86	$15_3 - 463_2 \\ 17_6 - 478_5 \\ 214_2 - 52_{23} \\ 22_4 - 532_4 \\ 12_4 - 429_4$	$^{+08}_{-37}$ 00 $^{+30}_{+12}$	3Ef 1 3Efz E	3343.247 3344.446 3345.858 3346.10	29902.47 29891.76 29879.14 29876.97	$ \begin{array}{c} 13_3 - 432_4 \\ \{(17_3 - 475_3; \\ 19_4 - 491_4 \\ 13_3 - 432_2 \\ S_3 - 328_4 \end{array} $	$+03 \\ -45) \\ +03 \\ +03 \\ +13$

TABLE II—Continued.

Intensity (See text)	λ_{air}	^{<i>v</i>} vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$	Intensity (See text)	λ_{air}	^{<i>v</i>} vac	Assignment	$-\frac{\nu_{\rm obs}}{-\nu_{\rm cal}}$
E E E 1	3350.61 3352.00 3352.96 3353.552	29836.76 29824.39 29815.86 29810.60	$13_{3} - ?431_{4} \\ 17_{4} - 469_{4} \\ \{ D_{2} - 331_{2}; \\ 19_{4} - 490_{3} \\ 19'_{5} - 496_{4} \}$	-12 -41 -04 -01 +04	$ \begin{array}{c} \overline{ET} \\ 1 \\ 3y = \\ 1 \\ 2z \end{array} $	3438.966 3441.975 3443.014 3445.411	29069.95 29044.80 29036.03 29015.84	$ \begin{array}{r} 19_4 - 483_3 \\ 14_2 - 440_3 \\ 12_4 - 411_4 \\ 20_1 - 494_1 \\ \int D_1 - 306_1; \end{array} $	-23 -01 -00 -00
2z 5K1?z E E	3353.736 3354.451 3356.71 3357.10	29808.96 29802.61 29782.56 29779.10	$\begin{array}{c} 193 - 4964 \\ \left\{ \begin{array}{c} D3 - 3464; \\ 153 - 4524 \\ 173 - 4743 \\ 224 - 5223 \end{array} \right.$	+05 +01 +10 +02 00	22 ET E 32 E	3445.720 3446.900 3447.68 3448.842 3449.28	29013.18 29003.30 28996.77 28986.97 28983.32	$\begin{cases} 23_3 - 529_3 \\ 22_5 - 518_4 \\ 18_1 - 470_2 \\ 15_3 - 444_3 \\ 20_2 - 499_3 \end{cases}$	-13 +00 +25 +02 +35
E E 2z	3360.76 3361.87 3361.97 3363.341	29746.68 29736.86 29735.97 29723.84	$\begin{cases} 13_1 - ?430_0; \\ 17_6 - ?467_7 \\ 13_2 - 435_2 \\ 20_2 - 507_2 \\ D_4 - 359_3 \end{cases}$	$-05 \\ -10 \\ -10 \\ +19 \\ -03$	$egin{array}{c} 2 \\ E \\ 1 E f z \\ E \\ 2 \end{array}$	3451.752 3451.91 3452.630 3456.35 3457.372	28962.53 28961.16 28955.17 28923.97 28915.46	$18_{2} - 470_{2}$ $17_{4} - 460_{3}$ $13_{1} - 422_{1}$ $17_{3} - 466_{4}$ $15_{5} - 439_{4}$	00 + 20 + 01 + 10 + 10 + 04
Eu 1 E E	3364.90 3365.941 3367.21 3367.56	29710.09 29700.88 29689.71 29686.63	$12_4 - 418_4 \\ 13_2 - 434_3 \\ 19_3 - 495_2 \\ \{19_3 - 495_3; \\ 28_5 - 7579_6$	$^{+14}_{00}_{+12}_{-04}_{-07}$	3z 2 E 2 E	3457.726 3458.325 3459.00 3459.527 3461.33	28912.50 28907.49 28901.82 28897.45 28882.37	$\begin{array}{c} D_2 - 322_3 \\ 15_3 - 443_2 \\ 09_0 - 7384_1 \\ D_4 - 351_4 \\ 19_4 - 481_5 \end{array}$	00 + 04 + 04 + 04 + 04 + 04 + 04 + 04 +
$E \\ E \\ 1 \\ 2y = 2 = 2$	3367.64 3370.17 3370.520 3371.052 3371.358	29685.92 29663.64 29660.53 29655.85 29653.16	$ \begin{array}{c} 13_3 - 430_4 \\ 17_6 - 466_6 \\ 17_3 - 473_3 \\ D_3 - 344_2 \\ D_1 - 313_1; \\ 19_5 - 491_3 \end{array} $	$+36 \\ -03 \\ 00 \\ +01 \\ +02 \\ +29$	3A? E 3z E 3z	3463.252 3465.38 3468.405 3471.34 3475.836	28866.36 28848.62 28823.48 28799.11 28761.86	$S_3 - 318_2$ $19_3 - 486_4$ $13_2 - 426_3$ $18'_2 - 470_2$ $\{12_4 - 409_3;$ $17_4 - 458_4$	+02 +11 +07 +23 +05 -13
E 3K2z 2z	3373.24 3373.756 3375.120	29636.57 29632.08 29620.11	$\begin{cases} 16_4 - 460_3; \\ 17_3 - 473_2 \\ D_2 - 329_3 \\ 14_2 - 445_2 \end{cases}$	$-10 \\ -03 \\ +02 \\ +01$	E E E 3z	3477.25 3478.90 3480.48 3481.828	28750.17 28736.54 28723.50 28712.36	$12_4 - 409_5 \\ 13_2 - 425_3 \\ 18_1 - 468_2 \\ 19_4 - 479_4$	+21 +11 -06 +03
E E 2 1 y	3376.90 3378.51 3379.26 3381.735 3382.097	29604.45 29590.35 29583.79 29562.17 29559.00	$22_4 - 520_5 \\ 19_3 - 494_3 \\ 22_5 - 524_4 \\ 13_3 - 429_4 \\ 15_3 - 450_2$	-02 + 12 + 21 - 00 - 02	E 1 .3z 2z 1	3482.79 3485.295 3485.507 3489.293 3491.836	28704.45 28683.80 28682.05 28650.94 28630.07	$\begin{array}{r} 266_5 - 55_5 \\ 17_3 - 463_3 \\ 17_4 - 457_5 \\ 15_5 - 437_4 \\ 13_3 - 419_2 \end{array}$	$ \begin{array}{c} -01 \\ ?-48 \\ -05 \\ +02 \\ 00 \end{array} $
2z 2z 2A E 2z	3382.606 3384.340 3386.102 3386.79 3391.102	29554.56 29539.42 29524.04 29518.03 29480.52	$\begin{array}{c} 15_3 - 450_3 \\ 19_6 - 491_5 \\ D_3 - 343_3 \\ 17_4 - 466_4 \\ 15_3 - 449_4 \end{array}$	$+02 \\ +03 \\ +04 \\ +01 \\ +05$	$E \\ 1 \\ 3Az \\ 2z \\ 2Ef$	3492.29 3493.198 3500.287 3503.044 3503.567	28626.31 28618.90 28560.94 28538.47 28534.21	$17_3 - 463_2 \\ 18_3 - 475_3 \\ 15_3 - 440_3 \\ 14_2 - 435_2 \\ 20_2 - 495_2$	-24 + 01 - 04 - 03 + 02
2z E E 2z	3391.531 3394.62 3395.47 3395.817	29476.79 29449.96 29442.59 29439.59	$\begin{cases} 15_5 - 445_5; \\ 18_2 - 475_3 \\ 13_2 - 432_2 \\ 19_2 - 492_2 \\ 13_2 - 432_1 \end{cases}$	$^{+04}_{+25}_{+03}_{+04}_{+03}$	$1 \\ 2 = 2z \\ E$	3504.658 3506.649 3507.294 3507.89	28525.33 28509.13 28503.89 28499.04	$15_{3} - 439_{4} \\ \{ 16_{4} - 449_{4}; \\ 18_{3} - 474_{3} \\ 12_{4} - 406_{3} \\ 19_{3} - 483_{3} \end{cases}$	$-03 \\ -04 \\ -09 \\ +01 \\ +31$
2 AK2z E E E	3398.099 3398.59 3400.51 3401.396 3402.76	29419.81 29415.57 29398.97 29391.29 29379.53	$194 - 4864 \\ 23_3 - 533_4 \\ D_3 - 342_3 \\ 14_2 - 443_2 \\ 22_4 - 518_4$	-15 +04 +05 +01 +12	3z 2z 1 5z E	3508.746 3509.025 3509.674 3510.041 3512.62	28492.10 28489.83 28484.57 28481.58 28460.68	$D_2 - 318_2 \\19_6 - 481_5 \\13_2 - 422_1 \\S_3 - 314_4 \\20_2 - 494_1$	$-01 \\ -02 \\ +02 \\ -02 \\ +03$
Ef	3404.229 3404.802 3405.276 3406.834 3407.639	29366.84 29361.90 29357.81 29344.38 29337.45	$\begin{array}{r} 18_2 - 474_3 \\ 19'_5 - 491_5 \\ 16_4 - 457_5 \\ 18_3 - 483_2 \\ 12_4 - 414_3 \end{array}$	-03 + 05 00 + 06 + 04	1z E 2 3 2z	3515.971 3516.74 3517.516 3518.485 3521.717	28433.55 28427.34 28421.06 28413.23 28387.16	$19_{5} - 479_{4} \\ 13_{1} - 417_{2} \\ 12_{4} - 405_{4} \\ D_{4} - 346_{4} \\ 18_{3} - 473_{3}$	00 + 36 + 05 - 06 - 05
3 6 6	3409.442 3409.61 3410.50 3411.01	29321.94 29320.53 29312.88 29308.50	$19'_{5} - 491_{4} \\ \{15_{5} - 443_{6}; \\ 19_{3} - 491_{4} \\ 18'_{2} - 475_{3} \\ 23_{3} - 532_{4} \end{bmatrix}$	$^{+01}_{+14}_{+25}_{-01}_{+18}$	3z 1z E 3Efz E	3521.916 3524.243 3524.64 3527.004 3527.59	28385.55 28366.81 28363.64 28344.61 28339.93	$13_{3} - 417_{2} \\ 17_{3} - 460_{3} \\ 18_{3} - 473_{2} \\ 17_{4} - 454_{5} \\ 19_{2} - 475_{3}$	$^{+01}_{00}_{+36}_{+04}_{+18}$
z 2 2 2	3412.969 3413.539 3415.54 3418.24 3418.49	29291.64 29286.75 29269.55 29246.44 29244.32	$\begin{array}{c} D_3-341_4\\S_3-322_3\\18_3-482_2\\16_4-456_3\\19_3-490_3\end{array}$	+03 +02 -21 +08 -10	E 1z 1z E 1z	3527.91 3530.761 3531.027 3531.08 3535.551	28337.36 28314.45 28312.31 28311.85 28276.09	$\begin{array}{r} 19_4 - 475_3 \\ 12_4 - 404_5 \\ 19'_5 - 481_5 \\ D_3 - 331_2 \\ 13_1 - 415_2 \end{array}$	$+21 \\ +04 \\ 00 \\ +44 \\ +02$
Eu =	3419.288 3420.358 3423.302 3425.03 3427.720	29237.52 29228.37 29203.23 29188.47 29165.59	$\begin{array}{c} 230_3-52_{23}\\ 22_5-520_5\\ 18'_2-474_3\\ 23_3-531_4\\ 13_3-425_3\end{array}$	00 + 07 + 01 + 25 - 02	4z 2z E E	3537.455 3538.634 3539.30 3539.90	28260.87 28251.45 28246.11 28241.33	$\begin{cases} 15_5 - 433_6; \\ 15_3 - 437_4 \\ 14_2 - 432_2 \\ 09_0 - 377_1 \\ 14_2 - 432_1 \end{cases}$	00 +01 -02 +18 +23
Z Z Z	3430.269 3430.38 3433.08 3433.791 3434.79	29143.91 29142.96 29120.05 29114.02 29105.56	$\begin{array}{c} 261_3 - 55_4 \\ 13_1 - 424_2 \\ 16_4 - 455_3 \\ D_3 - 339_2 \\ 17_3 - 468_2 \end{array}$	-01 +49 +03 +03 +32	2z 2z ET 1	3540.741 3541.648 3542.655 3543.719 3544.801	28234.64 28227.41 28219.38 28210.92 28202 31	$13_{3} - 415_{2} \\ 19_{4} - 474_{3} \\ 22_{5} - 510_{34}? \\ 18_{2} - 463_{2} \\ 10_{2} - 478_{2}$	$+01 \\ -07 \\ +03 \\ +04 \\ +03$

TABLE II—Continued.

Intensity (See text)	^{\lambda} air	^{<i>v</i>} vac	Assignment	ν_{obs}	Intensity (See text)	^{\lambda} air	^v vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$
23 6K2Z 12 2z	3544.981 3545.234 3547.480 3548.269	28200.88 28198.86 28181.01 28174.74	$\begin{cases} 13_2 - 419_2; \\ (17_3 - 459_2) \\ D_0 - 281_1 \\ 15_5 - 432_4 \\ 18_2 - 462_2 \end{cases}$	$-01 \\ -41) \\ +02 \\ -02 \\ -04$	$ \begin{bmatrix} E \\ E \\ 3Az \\ 1 $	3643.29 3647.13 3647.531 3649.023	27439.96 27411.00 27408.03 27396.82	$174 - 4455 \\ 183 - 4633 \\ D_3 - 3223 \\ \{(18'_2 - 4563; \\ 195 - 4694 \}$	+28 +04 +02 -36) +01
1 3z 1 E 3z	3550.694 3550.850 3551.282 3552.34 3554.220	28155.50 28154.26 28150.84 28142.46 28142.57	$174 - 4524 \\ 195 - 4764 \\ 133 - 4143 \\ 19'5 - 4794 \\ D_3 - 3293$	${ \begin{array}{c} 00 \\ -03 \\ 00 \\ -07 \\ 00 \end{array} }$	3z E 3z Eu 1	$3651.008 \\ 3652.75 \\ 3654.204 \\ 3656.15 \\ 3656.680$	27381.93 27368.84 27357.98 27343.40 27339.49	$\begin{array}{c} 17_6 - 443_6 \\ 19_4 - 466_4 \\ D_2 - 306_1 \\ 20_2 - 483_3 \\ 18_1 - 454_2 \end{array}$	$^{+08}_{+03}_{+03}_{+07}_{+06}$
1 E 2z E	3555.760 3559.08 3559.714 3561.26	28115.39 28089.18 28084.16 28071.99	$\begin{cases} 15_5 - ?431_4; \\ 16_4 - 445_5 \\ 20_2 - 490_3 \\ 19_2 - 473_2 \\ 12_4 - 402_4 \end{cases}$	$-08 \\ 00 \\ +16 \\ -01 \\ +04$	1 1z E 1 1	3658.368 3659.315 3659.53 3660.171 3660.369	27326.85 27319.78 27318.15 27313.38 27311.90	$13_2 - 411_2 \\ 19_5 - 468_5 \\ 17_3 - 450_2 \\ 17_3 - 450_3 \\ 22_4 - 497_4$	$^{+10}_{+02}_{+29}_{00}_{-05}$
2z E E Eu 1z	3563.457 3565.17 3567.25 3567.66 3568.045	28054.66 28041.21 28024.86 28021.64 28018.59	$\begin{array}{r} 15_3 - 435_2 \\ 22_5 - 508_4 \\ 19^\prime_5 - 478_5 \\ 18_1 - 461_1 \\ 15_3 - 434_3 \end{array}$	$-01 \\ -02 \\ +12 \\ -07 \\ 00$	2z E 1 3 1	3660,609 3661,24 3663,150 3663,360 3663,824	27310.11 27305.39 27291.17 27289.60 27286.15	$16_4 - 437_5 \\ 18_2 - 454_2 \\ 18_1 - 453_1 \\ 16_4 - 437_4 \\ 14_2 - 422_1$	$^{+08}_{-02}$ $^{-06}_{+04}$ $^{+06}$
E 3z 2z E 6	3568.40 3568.993 3569.233 3569.59 3570.662	28015.83 28011.15 28009.27 28006.50 27998.05	$\begin{array}{c} 16_4 - 444_3 \\ 18'_2 - 462_2 \\ D_4 - 342_3 \\ 19_5 - 475_6 \\ \{D_2 - 313_1; \\ \{D_2 - 313_2\} \} \end{array}$	+18 +02 +03 +01 +14 +07	2z 3z 3z 3z	3665.881 3667.183 3667.719 3668.664	27270.84 27261.16 27257.17 27250.15	$18'_2 - 455_3 \{ D_2 - 305_3; (20_2 - 482_2 18_2 - 453_1 19_4 - 465_5 $	00 + 05 - 01 - 07 + 02
2 = 2z = 3Edz	3573.415 3575.230 3575.979 3576.384	27976.48 27962.28 27956.43 27953.25	$(D_3 - 328_4)$ $17_3 - 456_3$ $17_6 - 499_7$ $13_2 - 417_2$ $22_5 - 508_5$	-07 -02 +04 +07 +01	1 ET 3z 3z E	3670.771 3672.95 3674.584 3675.559 3680.87	27234.51 27218.35 27206.26 27199.04 27159.82	$\begin{array}{r} 13_3 - 405_4 \\ 266_0 - 53_1 \\ 19_6 - 468_5 \\ 12_4 - 393_5 \\ 22_4 - 496_4 \end{array}$	$+02 \\ +05 \\ -02 \\ +02 \\ -11$
$ \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ 1z\\E\\3\\\end{array} = \\ 1\end{array} \end{array} $	3581.233 3582.242 3582.92 3584.109 3589.699	27915.41 27907.55 27902.26 27893.01 27849.58	$17_6 - 449_6 \\ 17_4 - 450_3 \\ D_4 - 341_4 \\ 19_6 - 475_6 \\ 13_3 - 411_4$	$^{+11}_{-02}$ $^{-04}_{-01}$ $^{+06}$	$\begin{vmatrix} 5z \\ 3 \\ 3 \\ 3z \end{vmatrix} = \begin{cases} \\ \end{cases}$	3682.101 3683.316 3683.399 3683.945	27150.72 27141.76 27141.14 27137.12	$\begin{array}{c} D_4 - 333_5 \\ \{18'_2 - 454_2; \\ \{23_3 - 510_{34} \\ 15_3 - 426_3 \\ 19_5 - 466_6 \end{array}$	$-04 \\ 00 \\ -34 \\ +02 \\ -03$
4K1z 1u E E E	3590.830 3591.771 3591.98 3592.98 3593.55	27840.81 27833.51 27831.90 27824.15 27819.74	$15_5 - 429_4 \\ 17_4 - 449_4 \\ 18_3 - 468_2 \\ 18'_2 - 461_1 \\ 18_1 - 459_2$	$^{+05}_{-02}_{+08}_{+13}$	2z 2z 5z 2	3684.663 3685.023 3688.069 3688.423	27131.84 27129.19 27106.78 27104.18	$19_2 - 463_3 \\ 19_4 - 463_3 \\ 19_6 - ?467_7 \\ \{13_1 - 404_1; \\ 19_3 - 469_4 \}$	$-01 \\ -03 \\ 00 \\ +22 \\ +04$
2A?z T E E 3z	3593.979 3595.386 3596.45 3596.63 3597.271	27816.41 27805.52 27797.31 27795.92 27790.96	$\begin{array}{r} 20_1 - 482_2 \\ 13_2 - 415_2 \\ 13_1 - 411_2 \\ 15_5 - 428_5 \\ 18_3 - 432_4 \end{array}$	-01 +07 -06 -07 +03	$ \begin{bmatrix} 3z \\ 3z \\ E \\ E \end{bmatrix} A \begin{cases} E \end{bmatrix} $	3689.877 3690.261 3695.21 3697.45	27093.50 27090.68 27054.37 27037.99	$\begin{cases} 18'_2 - 453_1; \\ 18_3 - 460_3 \\ 13_2 - 408_2 \\ 15_3 - 425_3 \\ 19_2 - 462_2; \\ 22_2 - 405_2 \end{cases}$	-09 +01 +08 +23 -03 -30
1 E 3Z E	3597.721 3597.97 3598.885 3600.30	27787.48 27785.57 27778.50 27767.60	$\begin{array}{c} 18'_2 - 460_3 \\ 18_2 - 459_2 \\ D_0 - 277_1 \\ \{15_3 - 432_2; \\ 19_3 - 475_3\end{array}$	$-0f \\ -05 \\ +04 \\ -04 \\ +26$	$\begin{array}{c} 2z \\ 3 = \\ 3z \\ 2z \end{array}$	3698.715 3699.411 3702.316 3703.596	27028.76 27023.67 27002.47 26993.13	$ \begin{array}{r} (224 - 493) \\ 19'_5 - 468_5 \\ 19_6 - 466_6 \\ 14_2 - 419_2 \\ 13_2 - 407_1 \end{array} $	$+02 \\ +04 \\ +10$
E 3z 2Edz 3z EA	3601.84 3606.074 3606.344 3607.070 3614.24	$\begin{array}{c} 27755.73\\ 27723.11\\ 27721.03\\ 27715.46\\ 27660.45\end{array}$	$\begin{array}{r} 13_3 - 411_2 \\ D_1 - 293_2 \\ 17_3 - 454_2 \\ 19'_5 - 475_6 \\ 22_4 - 501_5 \end{array}$	-20 00 -05 00 ?-42	2z 6K1?Z 1 2z	3705.485 3707.929 3711.481 3714.238	26979.38 26961.59 26935.79 26915.80	$\begin{cases} 23_3 - 509_4 \\ S_3 - 299_3 \\ \{(18_1 - 450_2; \\ 22_5 - 497_4 \\ 17_6 - 439_5 \end{cases}$	$^{+05}_{-39)}_{+01}_{+11}$
E 8rK10Z E 3z	3614.80 3615.52 3617.522 3619.78 3622.352	27656.17 27650.66 27635.39 27618.13 27598.54	$\begin{array}{r} 19_{3}-474_{3}\\ 18_{3}-466_{4}\\ S_{3}-305_{3}\\ 262_{2}-53_{1}\\ 19_{4}-468_{5} \end{array}$	$^{+14}_{+08}_{+05}_{00}_{00}$	$ \begin{array}{c} 2\\ 1z\\ 2z\\ 3z\\ 2= \end{array} $	3715.046 3716.735 3717.099 3719.412 3720.522	26909.94 26897.71 26895.08 26878.36 26870.34	$\begin{array}{c} 20_1 - 473_2 \\ 18_2 - 450_3 \\ 17_3 - 445_2 \\ 17_4 - 439_4 \\ 23_3 - 508_3 \end{array}$	$00\\-03\\+01\\-02$
3 = 3z Ef 3z	3625.408 3627.246 3628.39 3630.324	27575.28 27561.30 27552.61 27537.93	$\begin{array}{c} 133 -409_{3} \\ \{13_{1} -408_{2}; \\ 17_{3} -452_{4} \\ 19_{2} -468_{2} \\ \{14_{2} -425_{3}; \\ 17_{3} -425_{3}; \end{array}$	$+04 \\ +08 \\ -05 \\ -20 \\ +02 \\ -20$	3Az E Eu 1 3z	3722.254 3723.85 3727.85 3728.285 3728.285 3730.429	26857.84 26846.29 26817.49 26814.39 26798.97	$19_{6} - 465_{5}$ $19_{5} - 466_{6}$ $17_{4} - 439_{5}$ $19_{2} - 460_{3}$ $19_{5} - 466_{4}$	-03 + 16 + 33 + 01 - 04
3z 5z 2 1	3630.830 3631.959 3632.719 3636.740	27534.09 27525.54 27519.78 27489.35	(176 - 445) $19_3 - 473_3$ $D_1 - 291_2$ $13_3 - 408_2$ $22_4 - 499_3$	-28 +07 -03 00 -04	1z E E 2	3732.552 3737.85 3738.13 3738.899	26783.74 26745.76 26743.76 26738.27	$\begin{array}{c} 22_{5} - 496_{4} \\ 17_{3} - 446_{3} \\ 17_{4} - 438_{3} \\ \{ \begin{array}{c} D_{4} - 329_{3} \\ 18'_{2} - 450_{2} \end{array} \right.$	$-02 \\ -03 \\ 00 \\ +01 \\ -27$
3z 1 3z 2z E	3637.393 3637.942 3640.144 3641.862 3642.81	$\begin{array}{r} 27484.42\\ 27480.27\\ 27463.65\\ 27450.70\\ 27443.58\end{array}$	$\begin{array}{r} 12_{4} - 396_{3} \\ 263_{2} - 53_{1} \\ 13_{1} - 407_{1} \\ 15_{3} - 429_{4} \\ 278_{4} - 55_{4} \end{array}$	$^{+03}_{-32}_{+08}_{00}_{+11}$	$\begin{vmatrix} 2z \\ 3Efz \\ 2 \\ 2 = \\ Euf \end{vmatrix}$	3739.488 3741.714 3742.689 3743.820 3750.67	26734.06 26718.15 26711.19 26703.13 26654.37	$18'_2 - 450_3 \\ 14_2 - 416_3 \\ 22_4 - 491_5 \\ 18_3 - 456_3 \\ 18_1 - 447_2$	$00 \\ +04 \\ -03 \\ -05 \\ +03$

TABLE II—Continued.

Intensity (See text)	λ _{air}	^ν vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$	Intensity (See text)	λ_{air}	^{<i>v</i>} vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm cale}$
2z 1uEf Eu E E	3751.432 3753.487 3754.15 3754.87 3755.49	26648.94 26634.35 26629.67 26624.56 26620.17	$19_2 - 459_2 \\ 17_4 - 437_5 \\ 214_2 - 48_2 \\ 214_1 - 48_2 \\ 18_2 - 447_1$	$+08 +03 \\ +03 \\ -18$	4Efz ET 2Ef 5EfZ	3838.514 3839.257 3842.307 3846.225	26044.39 26039.35 26018.68 25992.17	$\begin{cases} 12_4 - 382_3; \\ 18_3 - 450_2 \\ 15_3 - 414_3 \\ D_4 - 322_3 \\ D_1 - 276_2 \end{cases}$	$+03 \\ -15 \\ -02 \\ -02 \\ 00$
E 1 3 1	3756.38 3756.878 3757.093 3757.345	26613.86 26610.31 26608.79 26607.00	$ \begin{array}{c} 17_4 - 437_4 \\ 20_2 - 475_3 \\ D_4 - 328_4; \\ 230_3 - 49_3 \\ 14_2 - 415_2 \end{array} $	$^{+01}_{-02}$ $^{+03}_{+01}$	3EfK1?Z 1 3z 1 3z	3847.501 3852.834 3855.548 3857.293 3859.298	25983.56 25947.59 25929.33 25917.60 25904.14	$\begin{array}{c} D_0 - 259_1 \\ 14_2 - 409_3 \\ 13_2 - 397_2 \\ 263_2 - 52_{23} \\ 18_2 - 440_3 \end{array}$	$-01 \\ -01 \\ +02 \\ +11 \\ -01$
3 <i>Efz</i> 4 <i>Efz</i> 2 2z	3757.929 3760.133 3760.644 3761.623	26602.87 26587.27 26583.66 26576.75	$\begin{cases} D_3 - 314_4; \\ 16_4 - 430_4 \\ D_2 - 299_3 \\ 287_4 - 55_5 \\ 18_3 - 455_3 \end{cases}$	$-01 \\ +08 \\ -03 \\ 00 \\ -09$	$\begin{vmatrix} 2\\ 2\\ 1\\ 3 = \end{vmatrix}$	3861.060 3861.240 3863.475 3864.335	25892.31 25891.11 25876.13 25870.37	$\begin{cases} 14_2 - 408_2; \\ 18_1 - 439_2 \\ 12_4 - 380_3 \\ 13_1 - 391_1 \\ D_2 - 291_2 \end{cases}$	$^{+17}_{-05}_{+09}_{+05}_{+03}$
2z 1z 2 5K2Z 3z	3764.316 3767.419 3767.846 3768.448 3769.213	$\begin{array}{r} 26557.74\\ 26535.86\\ 26532.86\\ 26528.62\\ 26523.24 \end{array}$	$\begin{array}{r} 19_3 - 463_3 \\ 287_4 - 55_4 \\ 19_4 - 457_5 \\ D_1 - 281_1 \\ 14_2 - 414_3 \end{array}$	-03 + 04 - 03 + 05 + 04	1 2 E	3865.324 3866.054 3867.38	25863.75 25858.86 25850.01	$ \begin{array}{c} 20_1 - 462_2 \\ \{ 13_2 - 396_1; \\ (23_3 - 497_4) \\ \{ 19_3 - 456_3; \\ 22_4 - 483_3 \end{array} $	-04 +01 +33) +02 +26
3y 1 2z 4 <i>Efz</i> 2	3769.869 3770.608 3772.430 3773.707 3775.447	26518.62 26513.42 26500.62 26491.65 26479.44	$15_{3} - 419_{2} \\ 18_{1} - 445_{2} \\ 20_{2} - 474_{2} \\ 13_{2} - 402_{3} \\ 16_{4} - 429_{4}; \\ 18_{2} - 445_{2}$	$+02 \\ -01 \\ -01 \\ +07 \\ +04 \\ 00$	5EfK4?Z 2 E 4z	3867.986 3868.579 3869.05 3872.835	25845.95 25841.99 25838.86 25813.59	$S_3 - 287_4 \\ 15_5 - 409_5 \\ 12_4 - 380_4 \\ \{ D_2 - 291_3; \\ 17_3 - 453_2 \}$	$+01 \\ +01 \\ -28 \\ -01 \\ +08$
2z 1 5 <i>EfK3z</i> 2	3778.684 3779.971 3780.770 3781.836	$\begin{array}{c} 26456.76\\ 26447.75\\ 26442.16\\ 26434.70\end{array}$	$ \begin{array}{r} 18'_2 - 447_1 \\ 18_3 - 454_2 \\ S_3 - 293_2 \\ 16_4 - 428_5 \end{array} $	$+08 \\ -01 \\ +05 \\ +07$	2z 2z E 1	3874.414 3875.691 3878.51 3880.081	25803.08 25794.57 25775.85 25765.39	$\begin{cases} 19_6 - 454_5; \\ 328_4 - 258_5 \\ 14_2 - 407_1 \\ 18_2 - 438_1 \\ 19_2 - 450_2 \end{cases}$	-02 + 29 -01 + 08 -04
3z E 2z E 4z	3783.731 3785.05 3786.375 3790.98 3792.768	$\begin{array}{r} 26421.47\\ 26412.26\\ 26403.02\\ 26370.96\\ 26358.52 \end{array}$	$19_4 - 456_3 \\ 15_3 - 418_4 \\ 17_6 - 434_7 \\ 13_3 - 397_4 \\ 13_3 - 397_2$	$+03 \\ +35 \\ +04 \\ -41 \\ +03$	E ET 5EfK?z 1 2z	3880.74 3881.141 3881.402 3883.837 3886.451	25760.98 25758.34 25756.62 25740.47 25723.16	$19_2 - 450_3 \\ 19_4 - 450_3 \\ D_3 - 305_3 \\ 18'_2 - 440_3 \\ 13_1 - 390_2$	$^{+03}_{-03}$ $^{+02}_{-03}$ $^{+02}$
E 3z 2z E	3793.31 3794.349 3796.290 3796.92	26354.77 26347.53 26334.06 26329.72	$\begin{cases} 20_2 - 473_2; \\ 23_3 - 502_4 \\ 15_5 - 414_6 \\ 19_5 - 458_4 \\ \{13_1 - 396_1; \\ 18_2 - 444_2 \end{cases}$	+08 +27 +04 +06 +25 -40	E 1z E 1z 3z	3888.89 3890.750 3891.26 3892.338 3892.729	25707.02 25694.73 25691.35 25684.25 25681.68	$18_1 2437_0 \\ 18_2' 439_2 \\ 239_2 49_3 \\ 19_4 449_4 \\ 13_3 390_2$	$-14 +01 -02 \\ 00 \\ -02$
2	3798.926 3801.527	26315.79 26297.78	$ \begin{array}{c} (13_2 - 445_2 \\ 13_3 - 396_3; \\ 19_2 - 455_3 \end{array} $	-40 00 -04 +05	$ \begin{array}{c} 1\\1z\\1y\\1z\\2z\end{array} $	3893.478 3901.835 3903.301 3903.987 3905.980	25676.73 25621.74 25612.12 25607.62 25594.55	$\begin{array}{r} 20_1 - 461_1 \\ 18_3 - 445_2 \\ 18'_2 - 438_1 \\ 297_5 - 55_5 \\ 19_3 - 454_2 \end{array}$	$\begin{array}{c} 00 \\ -05 \\ 00 \\ +02 \\ -02 \end{array}$
3z 3 3	3801.925 3802.938 3803.45 3804.98	26295.03 26288.03 26284.46 26273.89	$ \begin{array}{c} 194 - 4553;\\ 225 - 4914\\ 183 - 4524\\ 173 - 4394;\\ 181 - 4432\\ 153 - 4172;\\ 172 - 4430; \end{array} $	-07 -10 00 +26 -15 -18 15	$Eu \\ 1z \\ E \\ 2z \\ 1A =$	3911.30 3912.824 3916.39 3918.603 3922.339	25559.76 25549.79 25526.55 25512.10 25487.80	$\begin{array}{c} 297_5 - 55_4 \\ 17_3 - 432_4 \\ 17_3 - 432_2 \\ 12_4 - 376_3 \\ 23_3 - 494_3 \end{array}$	$\begin{array}{c} 00 \\ -02 \\ +07 \\ +02 \\ -03 \end{array}$
	3805.48 3807.65 3809.239 3809.90	26270.44 26255.47 26244.55 26239.97	$ \begin{array}{r} 18_{1} - 439_{2} \\ 18_{1} - 443_{1} \\ 23_{3} - 501_{3} \\ S_{3} - 291_{2} \\ 19_{3} - 460_{3} \end{array} $	-14 -14 -02 -33	2 = 2z = 2z Ez $2z$	3924.377 3924.699 3926.040 3930.21 3930.485	25474.57 25472.48 25463.78 25436.75 25434.98	$20_1 - 459_2$ $18_3 - 444_3$ $15_3 - 409_3$ $19'_5 - 452_4$ $\{14_2 - 404_1;$	-06 +01 +01 +26 +10
z Z Z	3810.395 3810.804 3815.76 3816.393 3817.489	26236.58 26233.77 26199.68 26195.35 26187.83	$18_2 - 443_1 \\ 13_2 - 400_2 \\ 22_4 - 486_4 \\ 19_4 - 454_5 \\ S_3 - 291_3$	$-01 \\ +04 \\ +15 \\ -01 \\ 00$	2z E 3z	3930.976 3934.59 3935.048	25431.80 25408.44 25405.49	$ \begin{array}{c} (19_3 - 432_4) \\ 18_1 - 435_2 \\ 15_3 - 408_2 \\ (13_2 - 391_1; \\ 19_5 - 449_4) \end{array} $	$+14 \\ -03 \\ +13 \\ +03 \\ +02$
Az uz z	3820.115 3824.148 3824.392 3826.198	26169.82 26142.23 26140.57 26128.22	$16_4 - 426_3 \\ 18_3 - 451_4 \\ 19_6 - 457_5 \\ \{14_2 - 411_2; \\ 15_5 - 411_4 \}$	$00 \\ +01 \\ -06 \\ -07 \\ +11$	2z 3Ef 2z E 2z	3936.239 3936.993 3937.637 3939.93 3941.837	25397.80 25392.93 25388.78 25374.01 25361.73	$18_2 - 435_2 \\ 18_3 - 443_2 \\ 19_5 - 449_6 \\ 22_4 - 478_5 \\ 18_2 - 434_3$	$-04 \\ -04 \\ 00 \\ -10 \\ -04$
2 = 2u	3826.90 3827.33 3829.133 3830.723 3830.98	26123.44 26120.50 26108.20 26097.36 26095.62	$15_{3} - 415 \\ 19_{2} - 453_{1} \\ D_{1} - 277_{1} \\ 12_{4} - 382_{4} \\ 261_{3} - 52_{23}$	$^{+28}_{+02}_{+01}_{-02}_{+02}$	1z E 1 3z E	3944.803 3945.18 3946.313 3947.991 3950.10	25342.66 25340.26 25332.96 25322.20 25308.70	$19_2 - 445_2 \\ 23_3 - 492_2 \\ 17_3 - 430_4 \\ 19_6 - 449_7 \\ 20_2 - 462_2$	-02 +11 +03 -04 +16
EfZ	3832.26 3832.85 3834.047 3835.058 3836.966	26086.91 26082.90 26074.74 26067.86 26054.90	$18'_2 - 443_2 \\ 16_4 - 425_3 \\ 19_3 - 459_2 \\ D_2 - 293_2 \\ 262_2 - 52_{23}$	$ \begin{array}{c} -06 \\ +06 \\ -04 \\ -02 \\ -13 \end{array} $	3z 2z 3z 1	3952.529 3952.909 3953.166 3953.720	25293.13 25290.70 25289.05 25285.51	$\begin{array}{c} 14_2 - 402_3 \\ \left\{ \begin{array}{c} 19_4 - 445_5; \\ 19'_5 - 451_4 \\ 19_3 - 451_4 \\ 22_5 - 481_5 \end{array} \right.$	$+01 \\ +23 \\ +02 \\ +02 \\ 00$

TABLE II—Continued.

				<u></u>			······································		
Intensity (See text)	λ_{air}	^ν vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$	Intensity (See text)	λ_{air}	^ν vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
$ \begin{array}{l} 4 = \\ 3z \\ E \\ E \\ 2 \end{array} $	3955.317 3958.884 3961.75 3963.70 3965.003	25275.30 25252.53 25234.24 25221.83 25213.56	$\begin{array}{r} 19_6 - 449_6 \\ 13_2 - 390_2 \\ 18'_2 - 435_2 \\ 23_3 - 491_2 \\ D_4 - 344_4 \end{array}$	00 +01 +05 +06 +01	E 2z 4 2 2z 2z 4 2 2z 2z	4069.17 4069.804 4070.618 4071.939 4073.161	24568.15 24564.30 24559.38 24551.42 24544.05	$\begin{array}{r} 20_2 - 455_3 \\ 19'_5 - 443_6 \\ D_1 - 262_2 \\ 15_3 - 400_2 \\ 15_5 - 396_5 \end{array}$	$-10 \\ -01 \\ -03 \\ -02 \\ +01$
3Ef = 1 $2z$ $E = E$	3965.150 3968.173 3968.594 3969.18 3972.83	25212.62 25193.42 25190.74 25187.01 25163.88	$\begin{array}{r} 22_4 - 476_4 \\ 19_2 - 444_3 \\ 19_4 - 444_3 \\ 19_3 - 450_3 \\ 15_5 - 402_4 \end{array}$	-02 + 06 + 01 + 14 - 09	$E \\ 6E\rho'K5 = 1 \\ E \\ 4z$	4073.88 4074.374 4079.794 4082.07 4082.972	24539.70 24536.75 24504.16 24490.48 24485.09	$\begin{array}{r} 19_3 - 443_2 \\ S_3 - 274_3 \\ 18_3 - 434_3 \\ 18_1 - 425_1 \\ 19_4 - 437_5 \end{array}$	$-08 \\ -03 \\ +05 \\ -04 \\ -02$
E 3z 1z 1	3973.30 3975.470 3975.897 3976.289	25160.90 25147.17 25144.47 25141.99	$\begin{array}{c} 200_{1}-45_{0} \\ 12_{4}-373_{5} \\ \{ 17_{4}-422_{3}; \\ (18_{1}-432_{2} \\ 23_{3}-490_{3} \end{array}$	$-02 \\ 00 \\ +03 \\ -37) \\ -03$	1z 4z 2z 2z 2	4083.722 4088.340 4088.778 4089.392 4090.646	24480.58 24452.94 24450.32 24446.64 24439.14	$\begin{array}{r} 16_4 - 409_5 \\ D_2 - 277_1 \\ 19_5 - 439_4 \\ 266_5 - 51_4 \\ 20_2 - 454_2 \end{array}$	$-04 \\ -02 \\ -04 \\ -03 \\ -03$
2z E 3z Ez	3979.293 3980.32 3980.649 3981.28	25123.01 25116.54 25114.45 25110.49	$\begin{cases} 13_1 - ?384_1; \\ 15_3 - 405_4 \\ 22_4 - 475_3 \\ 19'_5 - 449_4 \\ 18_2 - 432_2 \end{cases}$	$^{+28}_{+04}_{-18}_{00}_{-32}$	2 3z 2z E 2z	4092.398 4095.710 4097.673 4098.52 4099.029	24428.68 24408.93 24397.07 24392.21 24389.22	$132 - 3823 \\ 176 - 4146 \\ 182 - 4253 \\ 174 - 4143 \\ 195 - 4395$	$+07 \\ -02 \\ -24 \\ -15 \\ +05$
1 2z 3 <i>EfK</i> 1?z 1z 2z	3982.876 3982.969 3983.294 3988.017 3991.232	25100.41 25099.83 25097.77 25068.05 25047.86	$\begin{array}{r} 18_2 - 432_1 \\ 19_2 - 443_1 \\ 19_5 - 449_6 \\ 16_4 - 414_3 \\ 214_2 - 46_3 \end{array}$	$-03 \\ 00 \\ +01 \\ -02 \\ +02$	$ \begin{array}{l} 1 \\ 5 E \rho' f K 1? z \\ E \\ 2 z \\ 4 = \end{array} $	4101.855 4102.713 4107.83 4108.538 4109.758	$\begin{array}{r} 24378.30\\ 24367.27\\ 24336.94\\ 24332.73\\ 24325.50\end{array}$	$\begin{array}{c} 22_4 - 468_5 \\ D_4 - 305_3 \\ D_2 - 276_2 \\ 18_2 - 424_2 \\ 13_3 - 376_3 \end{array}$	$^{+19}_{-04}$ $^{00}_{00}$ $^{-01}$
1z 2z Ez Ez 2 =	3993.913 3997.142 3997.35 3997.77 3998.165	25031.05 25010.83 25009.50 25006.88 25004.43	$\begin{array}{r} 230_3 - 48_2 \\ 18_3 - 439_4 \\ 214_2 - 46_1 \\ 22_4 - 474_3 \\ 214_1 - 46_1 \end{array}$	$-09 \\ -05 \\ -04 \\ -17 \\ +03$	2z 4Z 1u 2z	4110.573 4111.819 4112.487 4115.588	24320.67 24313.31 24309.36 24291.04	$\begin{array}{c} 18'_2 - 426_3 \\ D_1 - 259_1 \\ \left\{ \begin{array}{c} D_3 - 291_3; \\ 20_1 - 447_1 \\ 15_5 - 393_5 \end{array} \right.$	$^{+03}_{+01}_{+25}_{00}_{00}$
2z E 3z 3Z 8GK10Z	3998.762 3999.19 4001.379 4005.408 4008.769	25000.70 24998.00 24984.34 24959.21 24938.30	$\begin{array}{r} 18_3 - 439_2 \\ 22_5 - 478_5 \\ 12_4 - 371_4 \\ D_1 - 266_0 \\ S_3 - 278_4 \end{array}$	-02 +06 +01 -03 +01	3z 2z 2z 1z	4118.060 4118.189 4120.863 4122.025	24276.46 24275.69 24259.94 24253.11	$ \begin{array}{c} 18_3 - 432_4 \\ \{ (13_2 - 380_3; \\ 19_6 - 439_5 \\ 15_3 - 397_4 \\ 18_3 - 432_2 \end{array} $	$-03 + 42) \\ 00 + 04 - 05$
2z E Ez 1 4Efz	4010.384 4011.81 4013.20 4014.943 4015.229	24928.25 24919.38 24910.75 24899.95 24898.17	$\begin{array}{r} 230_3 - 47_4 \\ 20_2 - 459_2 \\ 13_3 - 382_4 \\ 17_3 - 426_3 \\ 19_6 - 445_5 \end{array}$	$-01 \\ 00 \\ -06 \\ -01 \\ -04$	1z $3z$ Ez $1y =$ $1Ldy =$	4123.064 4126.808 4130.05 4132.216 4133.492	24247.00 24225.00 24205.98 24193.29 24185.82	$15_{3} - 397_{2} \\ 19_{2} - 434_{3} \\ 19_{5} - 437_{5} \\ 19_{3} - 440_{3} \\ 19_{5} - 437_{4}$	-02 00 ?-35 -02 -04
1 E 4Z 3	4016.114 4017.34 4019.238 4022.123	24892.68 24885.10 24873.34 24855.50	$274_4 - 49_3 \\ \{22_4 - 473_3; \\ 28_5 - 531_4 \\ D_2 - 281_1 \\ \{19_5 - 443_6; \\ 200_1 - 44_2\}$	+03 +06 +22 00 +17 +02	Ez 5Efz 2z 2	4136.38 4137.475 4138.030 4138.308	24168.95 24162.55 24159.31 24157.68	$18' \underline{i} - 424_2 \\ D_2 - 274_3 \\ \{13_1 - 374_2; \\ 19_6 - 439_4 \\ 19_3 - 439_4 \end{bmatrix}$	$-13 \\ 00 \\ +14 \\ -03 \\ -01$
<i>ET</i> 3 <i>Z</i> 1 = 1	4025.19 4028.798 4029.030 4029.615	24836.56 24814.32 24812.88 24809.28	$\begin{array}{c} 225 - 476_4 \\ 09_0 - 343_1 \\ 17_3 - 425_3 \\ 15_3 - 402_3 \end{array}$	$+09 \\ -04 \\ -10 \\ -01$	1 = 1z $1uz$ $2z$ $2z$	4139.325 4140.044 4140.410 4142.261 4145.168	$\begin{array}{c} 24151.75\\ 24147.55\\ 24145.41\\ 24134.63\\ 24117.71 \end{array}$	$16_4 - 405_4 \\ 19_3 - 439_2 \\ 18_2 - 422_1 \\ 18_2 - 422_3 \\ 13_3 - 374_2$	+07 +02 -02 +01 -02
E 2z 3z	4031.66 4035.368 4036.870	24796.67 24773.91 24764.70	$274_{3} - 52_{23}$ $15_{3} - 402_{4}$ $\{19_{4} - 440_{3};$ $17_{4} - 418_{4}$	$+01 \\ 00 \\ -06 \\ -20 \\ -06 \\ -00 \\ -06 \\ -00 \\ -06 \\$	2z 1z 1y E 2Z	4145.953 4149.445 4149.749 4152.60 4154.678	24113.14 24092.84 24091.08 24074.51 24062.51	$12_4 - 362_5 \\ 19_6 - 437_5 \\ 17_4 - 411_4 \\ 19_4 - 433_5 \\ 193_0 - 43_1$	$+02 \\ -01 \\ +04 \\ -08 \\ 00$
2z 2 = 1z 1z	4039.869 4040.600 4042.402 4043.909	24746.32 24741.84 24730.81 24721.60	$\begin{cases} 133 - 4374; \\ 233 - 4864; \\ (3053 - 554) \\ 196 - 4436 \\ 142 - 3972 \\ 192 - 4392 \end{cases}$	-00 +21 -10 -01 -04 -01	$ \begin{array}{c} 1\\ 1z\\ 1z\\ E\\ E\\ E \end{array} $	4159,793 4160,039 4160,353 4161,52 4165,18	24032.91 24031.49 24029.67 24022.99 24001.82	$\begin{array}{r} 17_{3} - 417_{2} \\ 20_{2} - 450_{3} \\ 22_{4} - 465_{5} \\ 19_{3} - 438_{3} \\ 22_{5} - 468_{5} \end{array}$	00 + 02 - 03 - 11 - 12
5K1?Z $2 =$ 1 E	4045.615 4046.716 4047.948 4048.266 4052.35	$\begin{array}{c} 24711.16\\ 24704.44\\ 24696.93\\ 24694.98\\ 24670.10\\ \end{array}$	$\begin{array}{c} S_3 - 276_2 \\ 13_3 - 380_3 \\ D_1 - 263_2 \\ 20_2 - 456_3 \\ 14_2 - 396_3 \end{array}$	$-01 \\ -01 \\ -02 \\ +39 \\ -08$	2 2 <i>Ef</i> <i>E</i> 3z 5z	4166.151 4168.664 4170.04 4170.538 4171,189	23996.23 23981.78 23973.86 23970.99 23967.25	$\begin{array}{r} 13_{2}-377_{1} \\ 18'_{2}-422_{1} \\ 19_{2}-432_{2} \\ 18'_{2}-422_{3} \\ D_{3}-287_{4} \end{array}$	$00 \\ 00 \\ -19 \\ +02 \\ +03$
3z 1z E Ez	4053.948 4055.243 4055.64 4057.45	24660.37 24652.50 24650.09 24639.10	$\substack{14_2-396_1\\ \{13_3-380_4;\\ 13_2-7384_1\\ 15_5-397_4\\ 19_2-438_1 \end{tabular}$	$-02 \\ -07 \\ +39 \\ +15 \\ +09$	$\begin{vmatrix} E \\ E \\ E \\ 1 \\ 1 = \end{vmatrix}$	4171.83 4176.03 4176.64 4177.835 4180.245	23963.58 23939.48 23935.98 23929.13 23915.33	$\begin{array}{r} 19_2 - 432_1 \\ 20_1 - 443_2 \\ 18_3 - 429_4 \\ 19_4 - ?431_4 \\ 19'_5 - 437_5 \end{array}$	-10 -15 -24 -16 +02
2 = 3z E 1z	4060.716 4064.799 4065.35 4066.005	24619.27 24594.55 24591.23 24587.25	$ \begin{array}{c} 19_{3}-444_{3} \\ 19_{4}-438_{3} \\ 20_{1}-450_{2}; \\ 247_{4}-49_{5} \\ 17_{4}-416_{3} \end{array} $	$-01 \\ 00 \\ +03 \\ -05 \\ -02$	E E 1z 2z	4181.39 4182.34 4182.88 4183.674 4183.834	23908.80 23903.37 23900.29 23895.72 23894.81	$\begin{array}{r} 22_4 - 463_3 \\ 17_6 - 409_5 \\ 314_4 - 55_4 \\ 18_1 - 419_2 \\ 19_5 - 437_4 \end{array}$	$+01 \\ -07 \\ +13 \\ -04 \\ -03$

TABLE II—Continued.

Intensity		· · · ·		^v obs	Intensity				^v obs
(See text) 1uz E E 2y =	λ _{air} 4186.016 4193.82 4197.56 4199.631	^v vac 23882.36 23837.90 23816.67 23804.94	Assignment 173-4152 164-4023 174-4093 174-4095	$^{-\nu}$ calc ?+36 -09 -09 +03	$\begin{array}{c} \text{(See text)} \\ \hline \\ \hline \\ T \\ 2 \\ 1 \\ 1 \\ 1 \end{array}$	^λ air 4311.10 4312.354 4318.587 4322.754	^v vac 23189.44 23182.70 23149.24 23126.92	Assignment $15_5 - 382_4$ $16_4 - 396_5$ $23_3 - 470_2$ $17_4 - 402_4$	$-\nu_{calc}$ +04 +02 -05 +02
2 E 2z 3z 1u 3z	$\begin{array}{r} 4200\ 031\\ 4200.90\\ 4203.825\\ 4204.415\\ 4205.560\\ 4207.056\end{array}$	23802.66 23797.73 23781.19 23777.85 23771.38 23762.93	$16_{4} - 402_{4}$ $13_{3} - 371_{4}$ $12_{4} - 359_{3}$ $19_{4} - 430_{4}$ $214_{1} - 45_{0}$ $19_{6} - 434_{7}$	+05 -03 -02 -02 00 -05	E E $3z$ $3z$ T	4328.44 4330.34 4330.670 4330.979 4332.140 4335.357	23096.55 23086.41 23084.65 23083.00 23076.81 23059.69	$13_{2} - 368_{3}$ $20_{1} - 435_{2}$ $19'_{5} - 429_{4}$ $19_{3} - 429_{4}$ $14_{2} - 380_{3}$ $D_{2} - 278_{4}$	-05 ? -44 -03 -03 00 +12
2 <i>Ef</i> 2 5 <i>z</i> <i>E</i> <i>E</i>	4215.387 4218.561 4219.383 4220.29 4220.55	23715.96 23698.13 23693.51 23688.43 23686.97	$\begin{array}{c} 195 - 4324 \\ 18'_2 - 419_2 \\ D_4 - 299_3 \\ 13_2 - 374_2 \\ 19_3 - 435_2 \end{array}$	-01 + 01 + 01 - 12 - 03	$ \begin{array}{c} L \\ 1 \\ 2z \\ E \\ 1 \end{array} $	4338.230 4339.080 4339.463 4343.53 4344.977	23044.42 23039.91 23037.88 23016.29 23008.64	$18_1 - ?411_0$ $19'_5 - 428_3$ $20_2 - 440_3$ $22_5 - 458_4$ $19_2 - 422_1$	$-02 \\ 00 \\ +47 \\ +11 \\ -03$
3z 2 1	4222.061 4224.768 4226.348 4226.922	23678.48 23663.30 23654.45 23651.24	$15_5 - 387_4 \\ 23_3 - 475_3 \\ 19_4 - 429_4 \\ \left\{ \begin{array}{c} 18_1 - 417_2; \\ (19_3 - 434_3) \end{array} \right.$	$-01 \\ 00 \\ -03 \\ -02 \\ +32)$	3z 1 $3z$ $2z$ $2Efz$	4345.846 4346.294 4347.014 4347.517 4348.129	23004.03 23001.67 22997.85 22995.19 22991.96	$18_3 - 419_2 \\ 23_3 - 469_4 \\ 19_2 - 422_3 \\ 19_4 - 422_3 \\ 20_2 - 439_2$	09 07 01 04 17
E E 1z 2z E	4231.34 4231.97 4233.006 4234.358 4236.60	23626.53 23623.01 23617.24 23609.71 23597.21	$\begin{array}{r} 18_3 - 426_3 \\ 28_5 - 518_4 \\ 18_2 - 417_2 \\ 19_4 - 428_5 \\ 13_1 - 369_2 \end{array}$	$-11 + 36 \\ 00 \\ 00 + 19$	E 2 3 = 3z 4z	4348.95 4353.304 4355.179 4361.822 4364.795	22987.61 22964.62 22954.74 22919.78 22904.17	$182 - 4112 \\ 173 - 4063 \\ 124 - 3514 \\ D4 - 2913 \\ D2 - 2622$	02 06 03 02 01
2z 3z 4K1?z E	4240.150 4241.451 4244.374 4245.54	23577.46 23570.22 23554.00 23547.53	$ \begin{array}{c} 18_2 - 416_3 \\ 15_3 - 390_2 \\ D_4 - 297_5; \\ (23_3 - 474_3 \\ 20_1 - 439_2 \end{array} $	$+01 \\ -01 \\ +03 \\ +37) \\ +15$	3z 1Eu 1 3z	4366.080 4366.359 4368.773 4371.738 4372.539	22897.43 22895.96 22883.33 22867.74 22863.60	$18_{3} - 418_{4} \\ 13_{2} - 366_{3} \\ 13_{1} - 361_{1} \\ 20_{2} - 438_{3} \\ D_{2} - 261_{3}$	$00 \\ 00 \\ 00 \\ +04 \\ -01$
2 E 22 1 <i>uz</i>	$\begin{array}{r} 4249.464\\ 4250.85\\ 4253.24\\ 4254.066\\ 4254.29\end{array}$	23525.78 23518.12 23504.91 23500.33 23499.11	$13_3 - 368_3 \\ 21_0 - 453_1 \\ 19'_5 - 433_5 \\ 18_1 - 415_2 \\ 19_5 - 430_4$	00 + 35 + 12 + 01 + 02	3 1 3z 2 E	4378.501 4380.130 4384.868 4386.780 4387.47	22832.42 22823.98 22799.33 22789.39 22785.79	$D_3 - 276_2 \\ 18'_2 - 411_2 \\ 15_3 - 382_4 \\ 20_1 - 432_1 \\ \{18_1 - 408_2; \\ 22_4 - 452_4\}$	$-03 \\ 00 \\ -01 \\ -06 \\ +32 \\ -07$
E 1z 5 = 1 3z	4254.64 4258.532 4259.362 4259.942 4260.299	23497.17 23475.69 23471.11 23467.92 23465.95	$17_{3} - 411_{4} \\ 17_{4} - 405_{4} \\ 214_{2} - 44_{2} \\ 17_{6} - 404_{5} \\ (18_{2} - 415_{2}; \\ 214_{1} - 44_{2})$	$+28 \\ -27 \\ -03 \\ +03 \\ -38) \\ +01$	3 2z 2 E	4389.851 4394.092 4395.089 4397.55	22773.45 22751.47 22746.30 22733.57	$\begin{array}{r} 19_3 - 426_3 \\ 18_2 - 408_2 \\ 15_3 - 382_3 \\ 13_3 - 360_4 \end{array}$	$ \begin{array}{c} 00 \\ -01 \\ -02 \\ -13 \end{array} $
5 = 3 E 1u	4263.318 4266.547 4267.77 4268.054	23449.33 23431.59 23424.86 23423.31	$\begin{array}{c} 230_3 - 46_3 \\ 23_3 - 473_3 \\ 19'_5 - 432_4 \\ 19_3 - 432_4 \end{array}$	$+01 \\ +02 \\ -03 \\ -09 \\ +01$	$E \\ 1Ef \\ E \\ E \\ 1$	4399.28 4400.222 4404.48 4405.06 4406.404	22724.64 22719.76 22697.82 22694.83 22687.89	$19_2 - 419_2 \\ 18_3 - 416_3 \\ 14_2 - 376_3 \\ 23_3 - 466_4 \\ 18_1 - 407_1$?-37 -04 -05 -13 -01
5EfK2Z $1u$ $2 =$	4269.399 4269.784 4270.910 4272.314 4273.694	$\begin{array}{c} 23415.94\\ 23413.83\\ 23407.65\\ 23399.95\\ 23392.40\end{array}$	$\begin{array}{r} S_3 - 263_2 \\ 18'_2 - 416_3 \\ 23_3 - 473_2 \\ 19_3 - 432_2 \\ 22_4 - 458_4 \end{array}$	-01 + 03 - 04 - 02 + 05	E = 3 = 1 $E = 4Ef$	4406.72 4408.285 4408.720 4411.73 4412.206	22686.29 22678.22 22675.97 22660.53 22658.06	$ \begin{array}{c} 19_3 - 425_3 \\ 266_5 - 49_5 \\ 28_5 - 509_4 \\ 28_5 - 508_4 \\ \{D_2 - 259_1; \\ D_3 - 274_3 \end{array} $	-18 +05 -02 -11 -01 00
3EfZ 1u 3z 2z E	$\begin{array}{r} 4274.554\\ 4275.153\\ 4275.497\\ 4276.752\\ 4277.89\end{array}$	$\begin{array}{r} 23387.69\\ 23384.41\\ 23382.54\\ 23375.67\\ 23369.46\end{array}$	$\begin{array}{r} 200_1 - 43_1 \\ 20_2 - 443_2 \\ 18_2 - 414_3 \\ 19_5 - 429_4 \\ 17_4 - 404_5 \end{array}$	$+06 +03 \\ 00 \\ -03 +10$	1 Ez 2 2Z	4413.020 4415.10 4415.719 4418.458	22653.88 22643.19 22640.03 22626.00	$18_2 - 407_1 \\ 18_2 - 409_3 \\ 22_4 - 451_4 \\ 20_1 - ?430_0$	$-03 \\ -10 \\ -02 \\ 00$
1z Ez 2z 3z E	4278.416 4282.41 4283.813 4286.021 4287.00	23366.58 23344.80 23337.15 23325.13 23319.81	$13_1 - 366_2 \\ 19_4 - 426_3 \\ 12_4 - 354_3 \\ 13_3 - 366_2 \\ 19_2 - 425_1$	$00 \\ -10 \\ +01 \\ -01 \\ +04$	$ \begin{array}{c} 1 \\ 3 = \\ 2z \\ 2z \\ E \end{array} $	4419.264 4420.474 4421.015 4421.852 4422.51	22621.88 22615.68 22612.91 22608.63 22605.26	$19_{3} - 424_{2} \\ 19_{4} - 418_{4} \\ 17_{4} - 397_{4} \\ 18_{3} - 415_{2} \\ 17_{6} - 396_{5}$	$-01 \\ -01 \\ +02 \\ -05 \\ -24$
1y? 1 6rGK15z	4290.152 4292.743 4294.623	23302.66 23288.60 23278.41	$\begin{cases} 18'_2 - 415_2 \\ 15_3 - 387_4; \\ 16_4 - 397_4; \\ 263_2 - 49_3 \\ S_3 - 262_2 \end{cases}$	$-02 \\ -17 \\ 00 \\ -13 \\ 00$	2z 1 Eu 1	4423.785 4424.914 4433.63 4435.43 4435.745	22598.76 22592.98 22548.57 22539.42 22537.83	$\begin{array}{r} 22_5 - 454_5 \\ 15_3 - 380_3 \\ 18_2 - 406_3 \\ 17_4 - 396_3 \\ 22_4 - 450_3 \end{array}$	$00 \\ 00 \\ ?-44 \\ +08 \\ -06$
1 6GK4Z E Eu 1	4298.420 4302.123 4303.49 4304.92 4305.634	23257.85 23237.83 23230.42 23222.71 23218.88	$\begin{array}{r} 19_4 - 425_3 \\ S_3 - 261_3 \\ 14_2 - 382_3 \\ 17_3 - 409_3 \\ 18'_2 - 414_3 \end{array}$	$-07 \\ -01 \\ +27 \\ +10 \\ -01$	3z 2z 2z	4436.912 4438.300 4441.820	22531.89 22524.85 22507.00	$\begin{cases} 20_2 - 435_2; \\ 239_2 - 46_3 \\ 18_3 - 414_3; \\ (313_1 - 53_1 \\ 17_4 - 396_5 \end{cases}$	$^{+29}_{-03}_{-04}_{+46)}_{+03}$
$ E \\ 1 = \\ 4z \\ 2z \\ E $	4306.36 4306.886 4307.645 4308.963 4309.89	23214.94 23212.13 23208.01 23200.94 23195.94	$\begin{array}{r} 16_4 - 396_3 \\ 247_4 - 47_4 \\ 19'_5 - 430_4 \\ 22_4 - 456_3 \\ 19_2 - 424_2 \end{array}$	$-11 \\ -02 \\ -06 \\ -07 \\ -03$	$E \\ E \\ 2 = \\ 3z$	4444.05 4444.45 4445.161 4449.018	22495.72 22493.70 22490.08 22470.59	$\begin{array}{c} 20_2 - 434_3\\ 239_2 - 46_1\\ \left\{\begin{array}{c} 14_2 - 374_2;\\ 18'_2 - 407_1\\ 12_4 - 346_4\end{array}\right.$	+20 +08 -01 -18 -04

TABLE II—Continued.

Intensity (See text)	λ _{air}	^v vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$	Intensity (See text)	λ _{air}	^v vac	Assignment	$\frac{\nu_{\rm obs}}{-\nu_{\rm calc}}$
2 E 2z 2 2z	4450.361 4452.06 4455.471 4458.100 4458.304	22463.80 22455.21 22438.04 22424.81 22423.79	$\begin{array}{r} 22_4 - 449_4 \\ 23_3 - 463_3 \\ 19_4 - 416_3 \\ 13_1 - 357_2 \\ 19_3 - 422_3 \end{array}$	$-02 \\ -16 \\ -02 \\ -02 \\ +01$	1 E 2 E E	4614.869 4623.18 4623.696 4624.47 4625.17	21663.04 21624.10 21621.68 21618.07 21614.80	$ \begin{array}{r} 19_5 - 411_4 \\ 18_1 - 397_2 \\ 16_4 - 380_3 \\ 20_2 - 426_3 \\ 19_2 - 408_2 \end{array} $	$-01 \\ -08 \\ 00 \\ +02 \\ +08$
3Z 2z 3 Eu Eu	4460.507 4463.507 4466.357 4470.79 4471.85	22412.71 22397.64 22383.35 22361.16 22355.86	$ \begin{array}{r} 13_2 - 361_1 \\ 23_3 - 463_2 \\ 13_3 - 357_2 \\ 23_3 - 462_2 \\ 362_5 - 758_5 \end{array} $	$00 \\ 00 \\ -04 \\ -38 \\ +04$	Eu E 3z E	4630.17 4630.42 4634.830 4637.92	21591.46 21590.29 21569.75 21555.39	$\begin{array}{c} 19'_5 - 414_6 \\ \{ 18_2 - 397_2; \\ \{ 20_2 - 425_1 \\ 16_4 - 380_4 \\ 28_5 - 497_4 \end{array}$	$+05 +10 \\ 00 \\ -05 +20$
1 E E u E u E f	4472.528 4475.60 4477.13 4477.36 4477.83	22352.47 22337.13 22329.50 22328.36 22326.01	$17_6 - 393_5 \\ 19_5 - 418_4 \\ 19_2 - 415_2 \\ 18_1 - 404_1 \\ 287_4 - 51_4$	-03 + 22 -07 + 15 + 14	1u 1 $3 = 2$	4640.318 4641.812 4642.579 4643.169	21544.24 21537.30 21533.75 21531.01	$\begin{array}{c} 22_4 - 440_3 \\ \{ \begin{array}{c} D_3 - 263_2; \\ 22_5 - 443_6 \\ 13_2 - 353_2 \\ 20_2 - 425_3 \end{array}$	-09 + 07 - 21 00 - 06
E 6LdK2Z Eu	4479.58 4480.99 4484.197 4490.33	22317.29 22310.27 22294.31 22263.88	$ \begin{array}{c} 164 - 3874 \\ 17_3 - 400_2 \\ \left\{ \begin{array}{c} D_1 - 239_2; \\ 18_2 - 404_1 \\ 22_5 - 451_4 \end{array} \right. \end{array} $	$+16 \\ -01 \\ 00 \\ +09 \\ 00$	2 Eu 3 6Z 2	4646.159 4657.04 4657.450 4659.886 4661.248	21517.15 21466.88 21464.99 21453.77 21447.50	$\begin{array}{r} 19_{2} - 407_{1} \\ 20_{2} - 424_{2} \\ 278_{4} - 49_{5} \\ D_{0} - 214_{1} \\ 22_{4} - 439_{5} \end{array}$	00 + 39 - 03 - 03 - 02
1z 2z 2z 3 E	4492.334 4493.978 4494.518 4495.315 4496.27	22253.93 22245.78 22243.11 22239.17 22233.93	$174 - 3935 \\ 192 - 4143 \\ 194 - 4143 \\ 155 - 3735 \\ 202 - 4321$	04 00 04 02 27	3 Ef 3 E	4661.990 4665.80 4668.480 4668.90	21444.09 21426.58 21414.27 21412.36	$15_3 - 369_2 \\ 18'_2 - 397_2 \\ 15_3 - 368_3 \\ \{13_1 - 347_1; \\ 19_2 - 406_3 \}$	-02 + 04 - 04 + 13 + 13
E 2 3z Eu 3z	4497.69 4498.474 4504.865 4510.33 4512.913	22227.41 22223.54 22192.02 22165.14 22152.45	$15_5 - ?372_6 \\ 18_3 - 411_4 \\ 12_4 - 343_3 \\ 13_2 - 359_3 \\ 18_2 - 402_3$	-2 -03 -01 -32 -01	2 3 3z 2 6 <i>K</i> ? <i>Z</i>	4671.663 4676.647 4677.710 4679.058 4680.539	21399.68 21376.87 21372.02 21365.87 21359.11	$\begin{array}{c} D_3 - 262_2 \\ 19_5 - 409_5 \\ 19_5 - 411_4 \\ 18_2 - 396_3 \\ D_3 - 261_3 \end{array}$	$-01 \\ -05 \\ -01 \\ 00 \\ -01$
2 = 1 1 2 2	4513.305 4514.320 4515.890 4517.375 4529.777	22150.53 22145.54 22137.84 22130.57 22069.98	$13_{3} - 354_{3} \\ 20_{1} - 425_{1} \\ 23_{3} - 460_{3} \\ 18'_{2} - 404_{1} \\ 22_{4} - 445_{5}$	$-04 \\ 00 \\ -06 \\ 00 \\ -06$	1 E E 1	4681.203 4682.57 4686.37 4687.11 4687.654	21356.07 21349.82 21332.51 21329.15 21326.68	$18'_2 - 396_1 \\ 297_5 - 51_4 \\ 23_3 - 452_4 \\ 17_3 - 390_2 \\ 19_4 - 405_4$	-01 +01 +07 +08 -09
2 2z 3z 2Z E	4530.479 4534.726 4535.065 4536.668 4539.68	22066.56 22045.90 22044.24 22036.46 22021.83	$12_4 - 342_3 \\ 19'_5 - 418_4 \\ 19_3 - 418_4 \\ 21_0 - 438_1 \\ 20_1 - 424_2$	$-02 +01 \\ 00 +2 +09$	Eu 5K?z 1 2 2	4692.14 4693.748 4694.677 4698.120 4698.647	21306.29 21298.99 21294.77 21279.17 21276.79	$\begin{array}{r} 20_1 - 417_2 \\ 266_5 - 47_4 \\ 18_3 - 402_3 \\ 20_2 - 422_1 \\ 19_3 - 411_2 \end{array}$	$+04 \\ -05 \\ -04 \\ -02 \\ 00$
E 2 1 3	4540.29 4542.900 4543.290 4543.524	22018.87 22006.23 22004.34 22003.20	$\begin{cases} 17_3 - 397_4 \\ 15_3 - 374_2; \\ (17_3 - 397_2 \\ 13_1 - 353_2 \\ 214_2 - 43_1 \end{cases}$	$+13 \\ -03 \\ +37 \\ -03 \\ -03$	3z E 3	4700.422 4701.61 4702.486	21268.75 21263.39 21259.42	$\begin{cases} D_4 - 274_3; \\ 20_2 - 422_3 \\ 19_6 - 409_5 \\ 18_3 - 402_4; \\ 341_4 - 55_5 \end{cases}$	00 + 37 - 05 - 01 + 15
1 3z 1 3z	4544.585 4546.498 4550.332 4551.860	21998.06 21988.81 21970.28 21962.91	$\begin{array}{c} 214_1 - 43_1 \\ 18'_2 - 402_3 \\ 22_4 - 444_3 \\ \{ 13_3 - 353_2; \\ 333_5 - 55_4 \end{array}$	$-03 \\ 00 \\ -02 \\ -02 \\ -06$	2 2 3 Eu E	4706.184 4711.199 4712.504 4713.43 4713.88	21242.72 21220.10 21214.23 21210.08 21208.06	$\begin{array}{r} 16_4 - 376_3 \\ 19_4 - 404_5 \\ 14_2 - 361_1 \\ 299_3 - 51_4 \\ 12_4 - 333_5 \end{array}$	-02 -05 -02 -20 -04
1 1 E Eu 3r	4552.540 4553.661 4554.68 4556.20 4556.859	21959.62 21954.23 21949.32 21942.00 21938.81	$12_4 - 341_4 \\ 13_2 - 357_2 \\ 18_3 - 409_3 \\ 19_4 - 411_4 \\ 23_3 - 458_4$	-02 + 02 + 03 + 17 - 12	1 2 2 2 3	4714.528 4716.878 4718.643 4720.409 4725.148	21205.12 21194.55 21186.62 21178.70 21157.46	$15_5 - 362_5 \\ 17_6 - 382_6 \\ 23_3 - 451_4 \\ 13_1 - 344_2 \\ 19_2 - 404_1$	$-02 \\ 00 \\ -01 \\ -04 \\ 00$
2 2 3z 1u 2	4558.984 4559.121 4563.602 4564.084 4565.325	21928.59 21927.93 21906.39 21904.09 21898.14	$18_1 - 400_2 \\ 14_2 - 369_2 \\ 19_3 - 417_2 \\ 28_5 - 501_5 \\ 14_2 - 368_3$	$-01 \\ -01 \\ -01 \\ -02 \\ 00$	E 1 4y Eu	4725.61 4726.293 4729.664 4730.68	21155.38 21152.33 21137.26 21132.71	$\begin{cases} 09_0 - 306_1 \\ 20_1 - 415_2 \\ 17_4 - 382_4 \\ 13_3 - 344_2 \\ 22_5 - 439_4 \end{cases}$	$-06 +04 \\ +04 \\ 00 \\ -04 \\ +17$
1 E 4K?Z 1 Eu	4566.229 4568.55 4570.665 4571.910 4579.95	21893.79 21882.66 21872.54 21866.59 21828.20	$18_3 - 408_2 \\ 19_5 - 414_6 \\ 230_3 - 44_2 \\ 19_3 - 416_3 \\ 16_4 - 382_4$	-04 +23 -01 -02 +16	2 E E 1	4738.173 4741.53 4745.58 4749.88 4751.378	21099.30 21084.37 21066.34 21047.31 21040.66	$174 - 3823 \\ 233 - 4503 \\ 182 - 3911 \\ 173 - 3874 \\ 193 - 4082$	$-01 \\ -10 \\ 00 \\ +04 \\ +02$
3Z $4z$ Eu $2 = 2$	4586.856 4588.766 4591.22 4592.429 4592.584	21795.34 21786.27 21774.63 21768.89 21768.17	$\begin{array}{c} 09_0 - 313_1 \\ 261_3 - 47_4 \\ 16_4 - 382_3 \\ 19_6 - 414_6 \\ 13_3 - 351_4 \end{array}$	-06 -07 -39 -06 -03	2 2 E 4K1z	4752.222 4752.598 4757.02 4757.565	21036.92 21035.26 21015.69 21013.30	$ \begin{array}{c} 18_3 - 400_2 \\ 13_1 - 343_1 \\ 19_2 - 402_3 \\ \{ \begin{array}{c} S_3 - 239_2; \\ 19_4 - 402_3 \end{array} \end{array} $	$-04 \\ -02 \\ -01 \\ -01 \\ +23$
$ \begin{array}{l} 4z\\E\\3z\\4=\end{array} $	4599.972 4608.83 4609.928 4613.328	21733.20 21691.41 21686.26 21670.27	$247_4 - 46_3 \\ 18_3 - 406_3 \\ 15_3 - 371_4 \\ \{D_4 - 278_4; \\ 19_2 - 409_3 \}$	00 + 05 - 03 + 01 + 09	3 2 Eu Eu Eu	4757.790 4758.225 4759.37 4760.21 4761.62	21012.30 21010.39 21005.31 21001.61 20995.39	$15_5 - 360_4 \\ 23_3 - 449_4 \\ 13_3 - 343_6 \\ 22_4 - 434_3 \\ 20_2 - 419_2$	$ \begin{array}{r} -03 \\ -01 \\ -15 \\ -33 \\ -14 \end{array} $

TABLE II—Continued.

Intensity (See text)	λ_{air}	vac	Assignment	$^{\nu \rm obs}_{-\nu \rm calc}$	Intensity (See text)	λ_{air}	^ν vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
Eu E E 3	4765.65 4768.06 4770.76 4772.51 4773.911	20977.64 20967.04 20955.18 20947.49 20941.35	$ \begin{array}{r} 19_4 - 402_3 \\ 14_2 - 359_3 \\ 239_2 - 44_2 \\ 18_1 - 390_2 \\ \{13_2 - 347_1; \\ 19_5 - 404_5 \end{array} $	-05 +04 +02 +10 +26 -02	T T Eu Eu T	5019.511 5022.484 5025.32 5025.67 5027.435	19920.72 19904.93 19893.69 19892.30 19885.33	$\begin{array}{r} 23_3 - 438_3 \\ 28_5 - 481_5 \\ 19'_5 - 397_4 \\ 19_3 - 397_4 \\ 20_2 - 408_2 \end{array}$	+02 +01 -19 +07 +07 +09
Eu Eu 2	4780.34 4785.99 4787.943 4788.442	20913.19 20888.51 20879.98 20877.80	$ \begin{array}{r} 18_2 - 390_2 \\ 22_5 - 437_5 \\ 13_3 - 342_3 \\ 16_4 - 373_5 \end{array} $	$-21 \\ 00 \\ -03 \\ -03$	Eu 2 Eu E	5028.97 5040.369 5041.82 5044.32	19879.25 19834.31 19828.60 19818.78	$\begin{cases} 19_3 - 397_2; \\ 281_1 - 48_2 \\ 13_1 - 331_2 \\ 266_0 - 46_1 \\ 19_3 - 396_3 \end{cases}$	$-10 \\ -24 \\ 00 \\ -09 \\ +10$
E Eu 2 2 E	4792.82 4793.88 4797.548 4807.369 4812.62	20858.71 20854.10 20838.17 20795.61 20772.92	$\begin{array}{r} 287_4 - 49_3 \\ 22_4 - 433_5 \\ 19_3 - 406_3 \\ 12_4 - 329_3 \\ 13_3 - 341_4 \end{array}$	$-03 \\ -06 \\ 00 \\ +01 \\ -15$	E 8K3Z 5K?z 1Ef T	5052.27 5053.300 5054.615 5055.528 5056.103	19787.60 19783.55 19778.40 19774.83 19772.58	$\begin{array}{c} 20_2 - 407_1 \\ D_1 - 214_1 \\ D_1 - 214_2 \\ 22_4 - 422_3 \\ 18'_2 - 380_3 \end{array}$	-07 +02 +01 +03 +08
1 E E E Eu	4816.108 4816.82 4817.69 4818.34 4818.92	$\begin{array}{c} 20757.87\\ 20754.81\\ 20751.06\\ 20748.27\\ 20745.77\end{array}$	$\begin{array}{r} 19_{2}-400_{2} \\ ?285_{6}-49_{5} \\ 20_{2}-417_{2} \\ 346_{4}-55_{5} \\ 18_{3}-397_{4} \end{array}$	$^{+02}_{+04}_{+06}_{-01}_{+35}$	E Eu T 6K1?z	5058.05 5063.65 5065.677 5069.148	19764.96 19743.11 19735.21 19721.70	$17_3 - 374_2 \\ \{ 14_2 - 347_1; \\ 299_3 - 49_3 \\ 28_5 - 479_4 \\ D_2 - 230_3 \end{bmatrix}$	$-04 \\ -04 \\ +01 \\ +07 \\ +01$
E T 1 E	4826.99 4828.084 4835.031 4837.52	20711.09 20706.38 20676.64 20665.98	$\begin{array}{c} 20_2 - 416_3\\ 331_2 - 53_1\\ 20_1 - 411_2\\ \{12_4 - 328_4;\\ 23_3 - 445_2\end{array}$	$-12 -03 \\ 00 \\ -17 \\ -22$	Eu E T 2 E	5071.59 5077.02 5085.900 5105.489 5110.36	19712.20 19691.12 19656.74 19581.32 19562.66	$19_{6} - 393_{5} \\ 18_{1} - 377_{1} \\ 15_{3} - 351_{4} \\ 297_{5} - 49_{5} \\ 15_{5} - 346_{4}$	-30 +02 +01 +01 +01
6K8Z E 3 E Eu	4843.829 4844.32 4854.095 4858.61 4863.01	20639.08 20636.98 20595.43 20576.30 20557.69	$D_2 - 239_2$ $13_1 - 339_2$ $13_3 - 339_2$ $13_2 - 343_3$ $\{22_4 - 430_4;$	00 + 09 - 02 + 02 + 25 - 24	E E 2 E 2	5111.77 5117.59 5124.240 5128.53 5130.123	19557.26 19535.03 19509.67 19493.37 19487.30	$18_2 - 376_3 \\ 19'_5 - 393_5 \\ 14_2 - 344_2 \\ 18'_2 - 377_1 \\ 239_2 - 43_1$	+05 +07 +01 -09 -01
E Eu Eu	4867.98 4872.81 4875.40	20536.66 20516.32 20505.42	$ \begin{array}{c} 305_{3}-51_{4} \\ 20_{2}-414_{3}; \\ (291_{3}-49_{3} \\ 17_{3}-382_{3} \end{array} $	-24 +19 +02 -53) +26	1 E 2 E Eu	5138.403 5141.28 5145.774 5154.43 5154.88	19455.90 19445.00 19428.40 19395.41 19393.71	$\begin{array}{r} 28_5 - 476_4 \\ 17_3 - 371_4 \\ 20_2 - 404_1 \\ 22_4 - 418_4 \\ 18_2' - 376_3 \end{array}$	$^{+02}_{-13}$?+42 +16 +15
E 6K5?z 2u 1	4880.72 4886.922 4888.386 4890.295	20483.07 20457.08 20450.95 20442.97	$15_3 - 359_3$ $D_4 - 266_5$ $13_2 - 342_3$ $\{16_4 - 368_3;$ $28_5 - 486_4$	$-10 \\ -03 \\ +12 \\ -04 \\ +20$	Eu Eu Bu 3 Eu	5162.1 5162.7 5177.78 5183.974 5188.89	19366.5 19364.2 19307.92 19284.87 19266.59	$142 - 3431 \\ 132 - 3312 \\ 285 - 4756 \\ 183 - 3824 \\ 176 - 3625$	$^{+3}_{+5}_{-16}_{+01}_{-01}$
1 2 <i>Ef</i> 7 2 <i>Ef</i> Ef	4890.892 4892.442 4896.784 4902.332 4902.97	20440.48 20434.01 20415.88 20392.78 20390.14	$\begin{array}{r} 20_1 - 408_2 \\ 22_4 - 429_4 \\ 276_2 - 48_2 \\ 19_2 - 396_3 \\ 19_4 - 396_3 \end{array}$	$-01 \\ -04 \\ -01 \\ +02 \\ +01$	3z 1u 3 3 3	5192.725 5195.63 5203.258 5204.516 5206.189	19252.37 19241.61 19213.39 19208.75 19202.58	142 - 3423 2591 - 450 195 - 3874 201 - 3961 193 - 3902	$00 \\ 00 \\ -04 \\ +01 \\ +02$
l Eu E Eu Eu	4910.763 4912.18 4914.32 4916.193 4922.92	20357.77 20351.89 20343.02 20335.29 20307.49	$\begin{array}{r} 19_4 - 396_5 \\ 17_3 - 380_3 \\ 20_1 - 407_1 \\ 14_2 - 353_2 \\ 261_3 - 46_3 \end{array}$	$^{+01}_{+07}_{+10}_{00}_{+10}$	Eu 2Ef E 6K3Z 3z	5212.35 5212.804 5214.18 5224.680 5242.989	19179.87 19178.22 19173.14 19134.62 19067.79	$\begin{array}{r} 13_2 - 329_3 \\ 287_4 - 47_4 \\ 17_3 - 368_3 \\ D_3 - 239_2 \\ 16_4 - 354_3 \end{array}$	$+02 \\ -02 \\ -01 \\ +03 \\ -01$
EuT Eu Eu Eu	4924.565 4931.561 4932.77 4933.77 4948.57	20300.71 20271.92 20266.96 20262.85 20202.27	$17_6 - 373_5 \\ 15_3 - 357_2 \\ 262_2 - 46_3 \\ 293_2 - 49_3 \\ 17_4 - 373_5$	$^{+06}_{00}_{+14}_{+28}_{+15}$	Eu 2 2z E E	5247.38 5255.409 5259.356 5268.52 5269.28	19051.83 19022.73 19008.46 18975.40 18972.67	$15_{5} - 341_{4}$ $22_{4} - 414_{3}$ $274_{3} - 46_{3}$ $17_{4} - 360_{4}$ $17_{3} - 366_{2}$	+17 +01 +01 +14 +16
Ef 3 F C 3f	4953.07 4961.55 4967.670 4968.424 4972.57	20183.92 20149.39 20124.56 20121.51 20104.75	$\begin{array}{c} 19_3 - 400_2 \\ 18'_2 - 7384_1 \\ 22_4 - 426_3 \\ 20_2 - 411_2 \\ 19_4 - 393_5 \end{array}$	$^{+15}_{-13}$ $^{+09}_{+12}$ $^{-01}$	E 2 E E E	5274.78 5275.555 5278.55 5283.29 5285.51	18952.89 18950.09 18939.35 18922.33 18914.39	$19_{2} - 382_{3} \\ 19_{4} - 382_{3} \\ 291_{3} - 48_{2} \\ 19'_{5} - 387_{4} \\ 21_{0} - 407_{1}$	$+16 \\ -03 \\ +12 \\ -08 \\ 0$
Eu E K3Z E	4976.33 4977.22 4982.613 4984.11 4984.72	$\begin{array}{c} 20089.56\\ 20085.97\\ 20064.22\\ 20058.17\\ 20055.71 \end{array}$	$\begin{array}{c} 18_2 - 382_3 \\ 278_4 - 47_4 \\ D_0 - 200_1 \\ 22_5 - 429_4 \\ 18_3 - 390_2 \end{array}$	$^{+07}_{+08}_{-04}_{+30}_{00}$	Eu 2 Eu 1u Eu	5317.8 5318.880 5329.8 5337.360 5339.2	18799.5 18795.73 18757.2 18730.66 18724.2	$19_2 - 380_3$ $276_2 - 46_1$ $18_2 - 368_3$ $261_3 - 44_2$ $\{19_5 - 362_4;$	$+1 \\ -03 \\ +3 \\ +03 \\ -1 \\ +25$
2z 3 3 5 7 7 7	4986.943 4995.37 5002.82 5006.169	20046.79 20012.97 19983.17 19969.81	$\begin{cases} 15_5 - 351_4; \\ 322_3 - 52_{23} \\ 22_5 - 428_5 \\ 20_1 - 404_1 \\ D_4 - 261_3 \end{cases}$	${ \begin{smallmatrix} 00 \\ +08 \\ -14 \\ -06 \\ 00 \end{smallmatrix} }$	<i>Eu</i> 2 2 1	5339.9 5348.947 5350.440 5351.903	18721.2 18690.08 18684.87 18679.76	$\begin{array}{r} (202 - 3972) \\ 224 - 4114 \\ 2622 - 442 \\ 2932 - 482 \\ 2771 - 461 \end{array}$	$^{+25}_{-02}$ $^{+02}_{-08}$ $^{+02}$
} } K?z	5007.22 5013.48 5014.63 5015.334 5017.21	19965.62 19940.70 19936.12 19933.31 19925.84	$19_{6} - 396_{5} \\ 20_{2} - 409_{3} \\ 18_{2} - 380_{3} \\ D_{3} - 247_{4} \\ 18'_{2} - 382_{3}$	$^{+12}_{\begin{array}{c} 00\\ -03\\ 00\\ 00 \end{array}}$	1Z E E 2u	5354.463 5355.24 5356.69 5357.120	18670.83 18668.14 18663.40 18661.57	$\begin{cases} 09_0 - 281_1; \\ 23_3 - 426_3 \\ 19_5 - 382_6 \\ 20_2 - 396_3 \\ 15_3 - 341_4 \end{cases}$	$00 \\ -22 \\ +09 \\ +12 \\ -03$

TABLE II—Continued.

Intensity (See text)	λ _{air}	^v vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$	Intensity (See text)	λ _{air}	^v vac	Assignment	^ν obs ^{−−ν} calc
E E 3 Eu 2z	5368.60 5372.85 5374.163 5379.40 5388.023	18621.66 18606.93 18602.39 18584.29 18554.54	$\begin{array}{r} 28_5 - 468_5 \\ 278_4 - 46_3 \\ 20_1 - 390_2 \\ 23_3 - 425_3 \\ 19_6 - 382_6 \end{array}$	$+31 \\ -01 \\ -02 \\ +22 \\ -01$	E Eu 2Bu 1	5663.30 5664.0 5664.40 5673.41	17652.66 17650.5 17649.23 +.19 17621.2147	$\begin{array}{c} 23_3 - 415_2 \\ 19_2 - 369_2 \\ \{18_1 - 357_2; \\ 19_6 - ?372_6 \\ 19_2 - 368_3 \end{array}$	$-43 \\ 0 \\ +11 \\ +2 \\ +49$
E 1 1 E E	5388.60 5391.088 5397.970 5398.27 5400.96	18552.57 18543.99 18520.35 18519.30 18510.09	$\begin{array}{r} 263_2 - 44_2 \\ D_4 - 247_4 \\ 19_2 - 377_1 \\ 23_3 - 424_2 \\ 13_1 - 318_2 \end{array}$	$^{+05}_{00}_{-19}_{?-43}$	2 1 B2 B2	5674.45 5675.38 5676.608 5676.924	17617.98 + .10 17615.09 + .01 17611.28 17610.30	$19_4 - 368_3 \\ 18_2 - 357_2 \\ \{12_4 - 297_5; \\ 19_5 - 371_4 \\ 17_2 - 353_2 \}$	$-11 \\ 00 \\ -03 \\ -01 \\ 00$
E E E E E	5406.35 5408.59 5413.04 5413.89 5415.59	$18491.64 \\18483.98 \\18468.79 \\18465.89 \\18460.09$	$18_3 - 374_2 \\ 15_3 - 339_2 \\ 13_3 - 318_2 \\ 19_5 - 380_4 \\ 13_2 - 322_3$	-18 00 -29 -21 -20	Eu Eu E 1Eu	5690.13 5694.55 5697.86 5704.38 5715.35	17569.43 17555.79 17545.59 .14 17525.54 17491.91	$\begin{array}{r} 23_3 - 414_3 \\ 28_5 - 457_5 \\ 13_2 - 313_1 \\ 17_4 - 346_4 \\ 305_3 - 48_2 \end{array}$	+13 +09 -11 -04 +19
2 1u E 1 E	5419.400 5422.88 5423.48 5423.935 5427.25	18447.12 18435.29 18433.25 18431.69 18420.45	$\begin{array}{c} 22_4 - 409_3 \\ 22_4 - 409_5 \\ 19'_5 - 382_4 \\ 19_3 - 382_4 \\ 19_2 - 376_3 \end{array}$	$ \begin{array}{c} 00 \\ +02 \\ -07 \\ +02 \\ 00 \end{array} $	Eu 2Bu 1 4z 2Eu	5722.0 5723.19 5728.60 5735.11 5739.59	$17471.6 \\ 17467.95 + .37 \\ 17451.46 \\ 17431.62 + .05 \\ 17418.02$	$19'_{5} - ?372_{6}$ $259_{1} + 43_{1}$ $18'_{2} - 357_{2}$ $274_{3} - 44_{2}$ $322_{3} - 49_{3}$	$^{+1}_{-37}$ +02 -07 +07
Eu 3z Eu E	5428.04 5435.063 5435.64 5438.89	18417.76 18393.96 18391.99 18381.00	$ \begin{array}{c} 19_4 - 376_3 \\ D_1 - 200_1 \\ \{ \begin{array}{c} 17_4 - 354_3; \\ (28_5 - 466_4 \\ 17_3 - 360_4 \end{array} \right. $	$-06 \\ -03 \\ -10 \\ +37) \\ -11$	2Bu 2 1Eu 2Bu 2Bu	5747.26 5749.22 5753.41 5756.16 5759.66	17394.7803 17388.8605 17376.19 17367.89 + .24 17357.34 + .03	$\begin{array}{r} 306_1 - 48_2 \\ 305_3 - 47_4 \\ 13_1 - 306_1 \\ 15_3 - 328_4 \\ 291_3 - 46_3 \end{array}$	-10 + 02 - 17 - 22 - 06
E Eu E E	5439.59 5451.82 5456.593 5464.5 5475.09	18378.64 18337.42 18321.37 18294.9 18259.47	$\begin{array}{r} 19_3 - 382_3 \\ 19'_5 - 382_6 \\ 23_3 - 422_3 \\ 328_4 - 51_4 \\ 281_1 - 46_1 \end{array}$	$-01 \\ 00 \\ -01 \\ -1 \\ +11$	1 - T $1Eu$ 2 1 1	5771.988 5791.36 5793.02 5796.54 5799.53	17320.26 17262.33 17257.3907 17246.91 +.12 17238.02	$19'_{5} - 371_{4} \\ 291_{2} - 46_{1} \\ 276_{2} - 44_{2} \\ 17_{4} - 343_{3} \\ 13_{3} - 305_{3} \\ \end{cases}$	$-01 \\ -03 \\ +09 \\ -07 \\ -06$
5Z 1 2z T 6K?z	5477.802 5486.018 5487.786 5489.134 5492.331	18250.45 18223.10 18217.24 18212.76 18202.16	$\begin{array}{r} 09_{0}-277_{1}\\ 314_{4}-49_{3}\\ D_{3}-230_{3}\\ 19_{2}-374_{2}\\ 297_{5}-47_{4} \end{array}$	00 + 02 + 04 + 09 - 02	4 Eu 2Eu Eu E	5804.86 5806.10 5806.25 5814.2 5821.03	17222.17 +.05 17218.50 17218.05 17194.5 17174.34	$\begin{array}{c} 262_{2} - 43_{1} \\ 18'_{2} - 354_{3} \\ 28_{5} - 454_{5} \\ 18_{2} - 353_{2} \\ (23_{3} - 411_{2}; \\ 366_{2} - 53_{1} \end{array}$	$00 \\ -12 \\ -12 \\ -13 \\ -05 \\ +22$
Euf 1 2 2	5492.54 5496.245 5500.62 5503.53	18201.4718189.1918174.75 + .3118165.13 + .27	$164 - 3464 \\ 224 - 4063 \\ 19'_5 - 3804 \\ (142 - 3312; \\ (299_3 - 48_2; \\ (329_3 - 51_4) $	+18 00 -33 -10 -40) -39)	2 1 2 2	5822.60 5832.32 5833.62 5838.99	17169.71 +.04 17141.10 17137.28 +.13 17121.53 +.09	$\begin{array}{c} 22_4 - 396_3\\ 277_1 - 44_2\\ 22_4 - 396_5\\ 17_4 - 342_3;\\ 382_4 - 55_5\end{array}$	$+01 \\ -18 \\ -05 \\ 00 \\ 00$
7K? T Eu Ou	5514.77 5521.008 5528.05 5528.5	18128.09 +.20 18107.62 +.04 18084.56 18083.1	$\begin{array}{c} D_2 - 214_1 \\ 18_1 - 361_1 \\ 13_3 - 314_4 \\ 372_6 - 55_5 \end{array}$	-21 + 04 + 23 - 3	2 2 1 1	5845.28 5851.59 5854.45 5856.64	$\begin{array}{c} 17103.08 \pm .08 \\ 17084.64 \pm .08 \\ 17076.30 \\ 17069.92 \pm .09 \end{array}$	$\begin{array}{r} 293_2 - 46_3 \\ 263_2 - 43_1 \\ 19_3 - 369_2 \\ 20_2 - 380_3 \end{array}$	$-04 \\ -03 \\ -14 \\ +01$
1 1 Eu Eu Eu	5531.54 5537.80 5546.5 5548.9 5551.0	18073.15 +.43 18052.72 +.20 18024.4 18016.6 18009.8	$\begin{array}{r} 18_2 - 361_1 \\ 19_4 - 373_5 \\ 373_5 - 55_4 \\ 13_1 - 313_1 \\ 17_4 - 351_4 \end{array}$	$-44 \\ -19 \\ +5 \\ +3 \\ +1$	2 1Eu 1Eu 1Eu? 1Eu?	5864.64 5869.91 5871.58 5874.24 5875.68	17046.64 +.05 17031.33 17026.49 17018.79 17014.62	$19_{3} - 368_{3} \\ 18'_{2} - 353_{2} \\ 281_{1} - 45_{0} \\ 19_{4} - 362_{5} \\ 17_{4} - 341_{4} \\ \end{array}$	00 + 35 + 15 - 07 + 03
Eu E E Eu Eu	5553.2 5554.08 5559.78 5571.98 5575.85	18002.6 17999.80 17981.34 17941.97 17929.52	$\begin{array}{r} 20_1 - ?384_1 \\ 22_4 - 404_5 \\ 14_2 - 329_3 \\ 23_3 - 418_4 \\ 18_3 - 369_2 \end{array}$	$^{+6}_{-05}$ $^{+13}_{-11}$	$ \begin{array}{c} 2\\ 2Bu\\ E\\ 2\\ 1-Eu \end{array} $	5880.21 5891.59 5901.99 5902.66 5904.5	$\begin{array}{c} 17001.4802\\ 16968.6510\\ 16938.76\\ 16936.8403\\ 16931.6\end{array}$	$\begin{array}{r} 341_4 - 51_4 \\ 18_3 - 359_3 \\ 16_4 - 333_5 \\ 19_2 - 361_1 \\ 17_3 - 346_4 \end{array}$	$^{00}_{00} + ^{01}_{+2}$
Eu Eu Iz 1	5578.28 5588.13 5601.8 5604.32 5608.07	17921.71 17890.12 17846.5 17838.45 17826.52	$\begin{array}{r} 314_4 - 49_5 \\ 19_4 - 371_4 \\ 19_3 - 376_3 \\ 318_2 - 49_3 \\ 18_2 - 359_3 \end{array}$	00 + 05 + 1 + 11 + 18	1 Eu Eu Eu Eu	5913.51 5917.33 5921.03 5921.28 5927.03	16905.74 16894.84 16884.28 16883.58 16867.20	$13_2 - 306_1 \\ 342_3 - 51_4 \\ 22_4 - 393_5 \\ 28_5 - 451_4 \\ 22_5 - 397_4$	00 + 30 - 05 + 29 + 12
Eu Ez 2Bu E 1-T	5615.16 5617.03 5617.33 5618.69 5629.647	17804.00 17798.07 17797.11 17792.81 17758.19	$\begin{array}{r} 23_3 - 417_2 \\ 17_3 - 354_3 \\ 16_4 - 342_3 \\ 22_4 - 402_3 \\ 15_5 - 328_4 \end{array}$	00 + 13 - 13 + 17 + 02	1 1Eu Eu 4	5934.49 5940.90 5942.7 5947.56	16846.00 16827.82 16822.7 16808.9807	$ \begin{array}{c} 19_3 - 366_2 \\ D_4 - 230_3; \\ 328_4 - 49_3 \\ 266_0 - 43_1 \\ 13_2 - 305_3 \end{array} $	$00 \\ -07 \\ -02 \\ +3 \\ +08$
Eu 1Bu 2K? 2 4z	5629.93 5631.30 5631.94 5642.12 5648.42	$\begin{array}{c} 17757.37\\ 17752.97+.03\\ 17750.9509\\ 17718.93+.25\\ 17699.18+.09\end{array}$	$22_4 - 402_4$ $333_5 - 51_4$ $12_4 - 299_3$ $D_1 - 193_0$ $\begin{cases} 18_3 - 366_2; \\ 287_4 - 46_2 \end{cases}$	$+11 \\ -05 \\ +11 \\ -18 \\ -01 \\ -11$	1 2 Eu 1Ef 4	5953.97 5956.18 5958.6 5964.53 5965.88	$\begin{array}{r} 16790.86 \\ 16784.64 \\ 16777.8 \\ 16761.15 \\ 16757.36 + .06 \end{array}$	$\begin{array}{r} 20_2 - 377_1 \\ 17_3 - 344_2 \\ 15_3 - 322_3 \\ 22_5 - 396_5 \\ 18_3 - 357_2 \end{array}$	$-01 \\ -03 \\ -2 \\ -01 \\ -08$
Eu E E 2	5651.25 5654.12 5660.110 5660.67	17690.30 17681.32 17662.70 17660.8625	$\begin{array}{c} 16_4 - 341_4 \\ 15_3 - 331_2 \\ 18'_2 - 359_3 \\ 19_6 - 373_5 \end{array}$	$00 \\ -08 \\ +01 \\ +21$	2 Eu 2 2Bu 2ud-Eu	5972.46 5973.5 5978.91 5983.84 5986.98	$\begin{array}{c} 16738.8915\\ 16736.0\\ 16720.84+.08\\ 16707.07+.03\\ 16698.30\end{array}$	$\begin{array}{c} D_2 - 200_1 \\ 23_3 - 406_3 \\ 281_1 - 44_2 \\ 28_5 - 449_4 \\ 329_3 - 49_3 \end{array}$	$^{+13}_{+2}_{-06}_{+01}_{-09}$

TABLE II—Continued.

									<i>V</i> - 1 -
Intensity (See text)	λ_{air}	^{<i>v</i>} vac	Assignment	ν_{obs} $-\nu_{calc}$	(See text)	λ _{air}	^{<i>v</i>} vac	Assignment	$-\nu_{calc}$
2dBu Eu Eu 1Eu	5989.59 5990.11 5991.05 6003.30	16691.04 16689.57 16686.95 16652.90	$\begin{array}{c} 20_2 - 376_3 \\ 19_2 - 359_3 \\ 19_4 - 359_3 \\ \{17_3 - 343_3; \\ 23_3 - 405_4 \end{array}$	$+07 \\ -01 \\ 00 \\ +07 \\ -02$	3 1Eu 2 2u	6464.16 6474.78 6484.09 6500.29	15465.65 15440.27 15418.11 — . 15379.70	$19_2 - 347_1 \\ 17_3 - 331_2 \\ 13_2 - 291_2; \\ ?384_1 - 53_1 \\ \{ 18_3 - 343_3; \\ 432_4 - 258_5 \}$	-08 +03 -02 +12 +19 -23
1 4 Eu 4 2	6009.68 6012.79 6015.7 6021.52 6028.32	16635.23 16626.6208 16618.6 16602.5306 16583.7808	$\begin{array}{r} 12_4 - 287_4 \\ 19_6 - 362_5 \\ D_3 - 214_2 \\ 18_2 - 347_1 \\ 299_3 - 46_3 \end{array}$	-02 + 02 - 1 + 04 + 08	2 3 1Eu 4	6508.01 6532.40 6534.05 6538.16	15361.46 15304.09 15300.23 15290.61 +	$\begin{array}{c} 09 & 13_2 - 291_3 \\ 05 & 20_1 - 357_2 \\ 433_5 - 758_5 \\ 04 & 19'_5 - 351_4 \end{array}$	$+07 \\ -01 \\ +14 \\ -10$
1Eu 2Bu 3 Eu 2	6035.52 6041.62 6043.33 6049.0 6049.90	$\begin{array}{r} 16564.00 \\ 16547.2805 \\ 16542.6004 \\ 16527.1 \\ 16524.6407 \end{array}$	$13_{3} - 299_{3} \\ 19_{5} - 360_{4} \\ 314_{4} - 47_{4} \\ 17_{3} - 342_{3} \\ 18_{3} - 354_{3} \\ \end{cases}$	-27 + 01 + 02 - 3 + 02	2 1Eu 2 1Eu 3	6552.84 6553.81 6554.24 6562.88 6563.16	15256.34 15254.08 15253.08 15233.01 15232.36 —.	$ \begin{array}{r} 17_3 - 329_3 \\ 18_3 - 342_3 \\ 281_1 - 43_1 \\ 341_4 - 49_5 \\ 16 19_2 - 344_2 \end{array} $	-04 + 02 + 03 + 03 + 12
1Eu 2Bu 1 1 Eu	6055.90 6065.05 6066.82 6067.64 6077.7	16508.27 16483.36 — .14 16478.54 16476.31 16449.0	$\begin{array}{r} 22_5 - 393_5 \\ 20_2 - 374_2 \\ 19_2 - 357_2 \\ 20_1 - 369_2 \\ 19_5 - 362_5 \end{array}$	+11 + 17 + 21 + 02 - 0	3 2Eu 2	6573.96 6600.06 6607.17	15207.35 15147.20 15130.90+.	$\begin{array}{cccc} 00 & 20_2 - 361_1 \\ & & \left\{ \begin{array}{c} 18_3 - 341_4; \\ 328_4 - 47_4; \\ 402_4 - 55_5 \end{array} \right. \\ 03 & 17_4 - 322_3 \end{array}$	$00 \\ +08 \\ -14 \\ +24 \\ -09$
3 1 1 2 2	$\begin{array}{c} 6081.46\\ 6094.76\\ 6107.41\\ 6111.67\\ 6115.55 \end{array}$	$\begin{array}{r} 16438.8807 \\ 16403.01 \\ 16369.02 \\ 16357.6207 \\ 16347.2405 \end{array}$	$18'_2 - 347_1 \\ 18_1 - 344_2 \\ 18_2 - 344_2 \\ 15_3 - 318_2 \\ 14_2 - 313_1$	$+04 \\ +02 \\ +03 \\ +01 \\ 00$	2Еи 3Еи 1Еи	6609.06 6611.63 6620.60	15126.58 — 15120.70 15100.20	01 $15_3 - 305_3$ $329_3 - 48_2$ $\{19_2 - 343_3;$ $23_3 - 390_2$	$-03 \\ -07 \\ -20 \\ +04 \\ -07$
1 4 2 1 1 <i>Eu</i>	6119.35 6128.28 6143.91 6147.18 6148.22	16337.09 16313.2904 16271.7715 16263.12 16260.38	$18_{3} - 353_{2} \\ 28_{5} - 445_{5} \\ 22_{4} - 387_{4} \\ 17_{4} - 333_{5} \\ 318_{2} - 48_{2}$	$^{+11}_{+01}$ -01 +07 -34	3Eu 1u 1u	6621.69 6636.60 6654.45	15097.71 15063.80 15023.41	$\begin{cases} 194 - 3433_{1} \\ 195 - 3464_{1} \\ (285 - 4335 \\ 3144 - 463_{1} \\ 4023 - 554 \\ 3464 - 493 \end{cases}$	+12 +31) +17 +06 +05
2 2 2	6153.75 6154.88 6161.45	16245.76 + .03 16242.78 .00 16225.47 + .05	$\begin{cases} 19_2 - 354_3; \\ 20_1 - 366_2 \\ 17_3 - 339_2; \\ 19_4 - 354_3 \\ 18_2 - 343_1 \end{cases}$	+25 -09 -04 -10 -07	$ \begin{array}{c} 1\\ 1u\\ 1\\ 2\\ 4 \end{array} $	$\begin{array}{c} 6657.02 \\ 6664.16 \\ 6675.99 \\ 6677.19 \\ 6678.41 \end{array}$	15017.61 15001.50 14974.92 14972.23 14969.50 —	$\begin{array}{r} 28_5 - 432_4 \\ 16_4 - 314_4 \\ 19_2 - 342_3 \\ 19_4 - 342_3 \\ 04 18_3 - 339_2 \end{array}$	$+05 \\ -07 \\ -03 \\ -09 \\ 00$
2 1Eu 1 2u-B 4	6169.11 6187.54 6193.23 6195.986 6203.54	$\begin{array}{r} 16205.32+.02\\ 16157.05\\ 16142.21\\ 16135.03\\ 16115.39+.05\end{array}$	$\begin{array}{c} 18'_2 - 344_2 \\ 28_5 - 443_6 \\ 18_3 - 351_4 \\ 13_2 - 299_3 \\ 19_3 - 359_3 \end{array}$	-03 + 13 - 04 - 06 - 11	1 5Eu 2 2Eu	6682.65 6693.11 6713.30 6725.19	14960.00 14936.63 — 14891.70 — 14865.48	$\begin{array}{c} 20_2 - 359_3\\ 14_2 - 299_3;\\ 331_2 - 48_2\\ 04 13_1 - 281_1\\ 19_4 - 341_4 \end{array}$	$-10 \\ 00 \\ -30 \\ -05 \\ +10$
1u 1Eu 1 Eu 1	6219.50 6224.41 6225.80 6240.59 6245.74	16074.02 16061.85 16057.76 16019.73 16006.50	$\begin{array}{r} 377_1 - 53_1 \\ 18'_2 - 343_1 \\ 19_2 - 353_2 \\ 393_5 - 55_5 \\ 351_4 - 51_4 \end{array}$	$+17 \\ -04 \\ -11 \\ -16 \\ +15$	2Eu 2Eu 2Eu 2	6733.06 6740.03 6746.58 6754.56	14847.99 14832.63 14818.24 14800.74	$\begin{array}{c} 362_5-51_4\\ 22_4-373_5\\ \{ 23_3-387_4;\\ 374_2-52_{23}\\ 28_5-430_4 \end{array}$	-01 + 15 - 12 - 21 + 06
3 2u Eu 4 3	6254.33 6258.93 6259.19 6285.89 6291.04	$\begin{array}{c} 15984.50 + .05 \\ 15972.75 \\ 15972.12 \\ 15904.2404 \\ 15891.23 \end{array}$	$\begin{array}{c} 333_5 - 49_5 \\ 15_3 - 314_4 \\ 393_5 - 55_4 \\ 19_3 - 357_2 \\ 20_2 - 369_2 \end{array}$	$-02 \\ -12 \\ +07 \\ -01 \\ -01$	1 2 2 3Eu 2	6755.75 6778.34 6799.35 6805.31 6811.38	14798.13 14748.81 14703.25 14690.37 14677.26	$ \begin{array}{c} 405_4 - 55_5\\ 20_2 - 357_2\\ 15_5 - 297_5\\ 00\\ 19_2 - 339_2\\ \{18'_2 - 329_3;\\ 28_5 - 429_4 \end{array} $	$+25 \\ -04 \\ -08 \\ -02 \\ +18 \\ -03$
4 2 1 <i>Eu</i> 1 <i>Eu</i>	6292.02 6303.18 6308.47 6324.7 6331.38	15888.7507 15860.6317 15847.33 15806.7 15789.98	$\begin{array}{c} 13_1 - 291_2 \\ 19_4 - 351_4 \\ 13_3 - 291_2 \\ 16_4 - 322_3 \\ 23_3 - 397_4 \end{array}$	00 + 12 + 02 0 + 15	3 4 2 1	6814.93 6820.25 6828.43 6832.23	14669.62 14658.18 14640.63 14632.48	$\begin{array}{c} 22_4 - 371_4 \\ 111 & 19_3 - 344_2 \\ 318_2 - 46_1 \\ 28_5 - 428_5 \end{array}$	-02 + 02 + 04 - 04
Eu 1Eu Eu 1Eu	6335.2 6342.31 6346.8 6352.49 6359.15	$\begin{array}{c} 15780.5\\ 15762.78\\ 15751.6\\ 15737.54\\ 15721.05\end{array}$	$\begin{array}{c} 291_3 - 44_2 \\ 20_1 - 361_1 \\ 28_5 - 439_4 \\ 322_3 - 47_4 \\ 17_4 - 328_4 \end{array}$	-1 +18 -4 +09 -05	1 2 2 2 2 2	6844.88 6853.73 6874.93 6876.05 6877.60	14605.43 14586.58 14541.61 14539.24 14535.96	$\begin{array}{r} 333_5 - 47_4 \\ 19_5 - 341_4 \\ 306_1 - 45_0 \\ 351_4 - 49_3 \\ 19_3 - 343_3 \end{array}$	$+04 \\ -02 \\ -12 \\ +02 \\ ?-40$
1 1 2 Eu	6361.07 6364.77 6371.43 6378.5	15716.28 15707.14 15690.73 — .11 15673.3	$23_3 - 396_3 \\ 14_2 - 306_1 \\ \{20_2 - 366_2; \\ 28_5 - 439_5 \\ 277_1 - 43_1 \}$	$00 \\ -14 \\ +13 \\ -03 \\ -1$	3 1 1 2 4	6908.31 6915.49 6917.21 6920.98 6934.29	$\begin{array}{r} 14471.34 - \\ 14456.32 \\ 14452.73 \\ 14444.83 \\ 14417.12 + \end{array}$	$\begin{array}{rrr} .04 & 13_1 - 277_1 \\ & 22_5 - 373_5 \\ & 15_3 - 299_3 \\ & 22_5 - ?372_6 \\ .04 & 14_2 - 293_2 \end{array}$	-03 +01 -07 +2 -08
Eu 1 2Eu 2 4	6379.3 6382.51 6384.68 6402.07 6404.22	15671.4 15663.49 15658.17 15615.6302 15610.3902	$19_{3} - 354_{3} \\ 18'_{2} - 339_{2} \\ 18_{3} - 346_{4} \\ 2 13_{2} - 293_{2} \\ 2 14_{2} - 305_{3} $	$-03 \\ -01 \\ +06 \\ -04 \\ -05$	$\begin{vmatrix} 1\\ 3\\ 4\\ 2d\\ 2 \end{vmatrix}$	6943.72 6964.14 6984.28 6993.15 6994.06	14397.54 14355.34 + 14313.93 - 14295.76 14293.90	$\begin{array}{r} 22_4 - 368_3\\ .01 13_1 - 276_2\\ .04 13_3 - 276_2\\ 19'_5 - 341_4\\ 19_3 - 341_4\end{array}$	$-12 \\ -01 \\ +02 \\ +18 \\ -03$
2 2u-Eu 1 2 Eu	$\begin{array}{c} 6416.02\\ 6435.52\\ 6439.72\\ 6445.13\\ 6456.49\end{array}$	15581.68 15534.57 15524.33 15511.3102 15484.05	$\begin{array}{r} 19_5 - 351_4 \\ 341_4 - 49_3 \\ 22_4 - 380_4 \\ 2 \\ 18_3 - 344_2 \\ 19_3 - 353_2 \end{array}$	-05 + 22 - 12 - 04 + 26	$ \begin{array}{c} 1\\ 1d\\ 1u\\ 1\\ 2 \end{array} $	7002.73 7016.01 7020.23 7058.79 7098.23	$\begin{array}{c} 14276.21\\ 14249.20\\ 14240.63\\ 14162.84\\ 14084.15\end{array}$	$\begin{array}{r} 23_{3}-382_{3}\\ 368_{3}-51_{4}\\ 443_{6}-758_{5}\\ 14_{2}-291_{3}\\ 445_{5}-758_{5}\end{array}$	$^{-04}_{?+43}_{+06}_{-05}_{-06}$

TABLE II—Continued.

Intensity (See text)	λ_{air}	^v vac	Assignment	ν_{obs}	Intensity (See text)	λ _{air}	^v vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$
1 1 3 2	7111.20 7127.07 7140.51 7162.64	14058.45 14027.15 14000.74 13957.49	$\begin{cases} (20_1 - 344_2; \\ 293_2 - 43_1 \\ 12_4 - 261_3 \\ 13_2 - 277_1 \\ 18'_2 - 322_3 \end{cases}$	+44) -06 00 -01 -03	2 1 1 1 2	8338.02 8348.77 8350.25 8359.81 8382.88	11989.96 11974.53 11972.40 11958.72 11925.80	$19_{3} - 318_{2} \\ 20_{2} - 329_{3} \\ 344_{2} - 46_{1} \\ 466_{6} - ?58_{5} \\ 09_{0} - 214_{1}$	+02 +04 +03 -03 +01
1 1 u 1 1 2	7179.88 7184.71 7191.33 7198.62 7200.16	13923.99 13914.63 13901.81 13887.73 13884.76	$\begin{array}{r} 357_2 - 49_3\\ 20_1 - 343_1\\ 313_1 - 45_0\\ 19_2 - 331_2\\ 13_2 - 276_2 \end{array}$	-04 + 08 + 04 - 08 + 03	2 1 2 2 3	8402.53 8409.50 8417.08 8470.92 8475.15	11897.90 11888.05 11877.34 11801.86 11795.96	$\begin{array}{r} 19_5 - 314_4 \\ 361_1 - 48_2 \\ 22_4 - 343_3 \\ 23_3 - 357_2 \\ 18_2 - 299_3 \end{array}$	$^{+03}_{+14}$ $^{00}_{+01}$ $^{-01}$
2 1 2 2	7216.32 7218.16 7226.02 7237.08	13853.66 13850.12 13835.07 13813.93	$\begin{cases} 18_3 - 328_4; \\ 341_4 - 47_4 \\ 342_3 - 48_2 \\ 19_5 - 333_5 \\ 373_5 - 51_4 \end{cases}$	$+03 \\ -19 \\ +33 \\ +01 \\ -02 \\ -02 \\ +03 \\ +01 \\ -02 \\ +01 \\ +01 \\ +02 \\ +01 \\ +02 \\ +02 \\ +03 \\ +01 \\ +02 \\ +03 \\ +01 \\ +02 $	1 1 2 2 1	8486.81 8499.60 8506.95 8516.37 8577.75	11779.75 11762.04 11751.88 11738.87 11654.88	$\begin{array}{r} 22_5 - 346_4 \\ 393_5 - 51_4 \\ 22_4 - 342_3 \\ 347_1 - 46_1 \\ 380_4 - 49_3 \end{array}$	$-02 \\ -06 \\ -01 \\ -01 \\ +03$
1 2 3	7245.23 7278.21 7285.82	13798.39 13735.87 13721.52	$\begin{cases} 22_4 - 362_5 \\ 15_3 - 291_2; \\ (20_2 - 347_1; \\ 343_1 - 48_2 \\ 19_6 - 333_5 \end{cases}$	-04 +03 -38) -09 -06	3 3 3 2	8585.07 8594.38 8613.22 8614.49	11644.93 11632.31 11606.88 11605.17	$\begin{cases} 22_4 - 341_4 \\ \{18'_2 - 299_3; \\ 43_1 - ?550'_2 \\ 19'_5 - 314_4 \\ 19_3 - 314_4 \end{cases}$	$-02 \\ -01 \\ +11 \\ +03 \\ -03$
1 <i>u</i> 1 3 1 1	7291.83 7295.15 7296.57 7347.88 7355.00	$13710.20 \\ 13703.96 \\ 13701.30 \\ 13605.63 \\ 13592.46$	$13_2 - 274_3 \\ 19_2 - 329_3 \\ 19_4 - 329_3 \\ 22_4 - 360_4 \\ 344_2 - 48_2$	-14 -01 -04 +01 -04	2 1 2 2 1	8641.56 8710.56 8740.44 8746.59 8776.45	$11568.81 \\11477.17 \\11437.93 \\11429.89 \\11391.00$	$\begin{array}{r} 23_3 - 354_3 \\ 396_3 - 51_4 \\ 17_3 - 291_3 \\ 19_2 - 306_1 \\ 14_2 - 263_2 \end{array}$	$^{-22}_{?+44}_{-01}_{+03}_{-05}$
1 2 1 3 1	7365.15 7381.27 7384.04 7385.08 7389.00	13573.73 13544.08 13539.00 13537.09 13529.92	$\begin{array}{r} 360_4 - 49_3 \\ 19'_5 - 333_5 \\ 329_3 - 46_3 \\ 18'_2 - 318_2 \\ 15_5 - ?285_6 \end{array}$	$^{+05}_{+04}_{+06}_{-04}_{+05}$	1 1 2 15 4	8777.45 8821.12 8823.27 8865.43 8871.50	$\begin{array}{c} 11389.70\\ 11333.323\\ 11330.561\\ 11276.670\\ 11268.961 \end{array}$	$\begin{array}{r} 20_1 - 318_2 \\ 9 & 19_2 - 305_3 \\ 5 & 19_4 - 305_3 \\ 8 & 18_2 - 293_2 \\ 8 & 22_5 - 341_4 \end{array}$	-09 + 30 + 17 + 12 + 18
1 3 2 3	7448.26 7483.34 7504.07 7508.98	13422.26 13359.34 13322.45 13313.74	$\begin{cases} 22_5 - 362_5 \\ 20_2 - 343_1; \\ 347_1 - 48_2 \\ 13_1 - 266_0 \\ 19_3 - 331_2 \end{cases}$	$\begin{array}{c} 00 \\ +04 \\ +33 \\ +03 \\ +01 \end{array}$	4 7 3 2 3	8883.71 8915.70 8922.93 8936.67 8984.13	11253.47 + .0 11213.101 11204.01 11186.78 11127.690	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-04 +16 -01 +12 +12
3 2 3 2 3	7537.42 7550.46 7569.87 7582.85 7614.07	$\begin{array}{c} 13263.50\\ 13240.58\\ 13206.63\\ 13184.04\\ 13129.98\end{array}$	$18_3 - 322_3 \\ 18_1 - 313_1 \\ 18_2 - 313_1 \\ 28_5 - 414_6 \\ 19_3 - 329_3$	-02 +01 +05 +02 +09	4 1 0 5	8996.04 9023.80 9041.53 9069.98	11112.95 11078.77 11057.04 11022.36	$\begin{cases} 18_1 - 291_2; \\ 18'_2 - 293_2 \\ 18_2 - 291_2 \\ 16_4 - 274_3 \\ 18_2 - 291_3 \end{cases}$	-05 + 05 - 24 + 29 + 09
1 1 2 73 1	7630.24 7643.40 7654.78 7664.86 7679.15	13102.14 13079.59 13060.15 13042.96 13018.70	$\begin{array}{r} 318_2 - 44_2 \\ 362_5 - 49_5 \\ 13_1 - 263_2 \\ 18'_2 - 313_1 \\ 13_3 - 263_2 \end{array}$	+01 + 10 + 02 + 03 + 01	5 4 20 2	9082.15 9139.69 9158.86 9165.49	11007.59 10938.29 10915.400 10907.50	$ \begin{array}{c} 14_2 - 259_1 \\ 18_3 - 299_3 \\ 12 \\ \left\{ \begin{array}{c} 18'_2 - 291_2; \\ 44_2 - 558_2 \\ 15_3 - 263_2; \\ 387_4 - 49_3 \end{array} \right. $	$+19 \\ -03 \\ +04 \\ +02 \\ +28 \\ -02$
3 1 1 2 1	7688.93 7689.96 7699.42 7700.96 7736.16	$\begin{array}{c} 13002.14\\ 13000.40\\ 12984.41\\ 12981.82\\ 12922.75 \end{array}$	$19'_5 - 328_4 \\ 19_3 - 328_4 \\ 19_2 - 322_3 \\ 19_4 - 322_3 \\ 13_1 - 262_2$	$^{+05}_{-04}$ 00 $^{+04}_{+16}$	1 4 2 2	9175.47 9177.37 9206.67 9227.14	10895.64 10893.38 10858.71 10834.62	$20_1 - 313_1 \\ 22_4 - 333_5 \\ 18'_2 - 291_3 \\ 20_2 - 318_2$	$+05 \\ -03 \\ +09 \\ +08 \\ +08 \\ +12 \\ +08 $
1 2 3 2 2	7758.58 7761.13 7784.11 7808.95 7863.45	$\begin{array}{c} 12885.42 \\ 12881.19 \\ 12843.15 \\ 12802.29 \\ 12713.57 \end{array}$	$17_{3} - 305_{3} \\ 13_{3} - 262_{2} \\ 18_{3} - 318_{2} \\ 14_{2} - 277_{1} \\ 20_{1} - 331_{2}$	-03 +04 +02 00 -01	4 3u 3 4 3	9282.67 9291.96 9317.78 9320.37 9378.88	10769.81 10759.04 10729.23 10726.25 10659.33	$ \begin{array}{r} 15_3 - 262_2 \\ 19_3 - 305_3 \\ 15_3 - 261_3 \\ 357_2 - 46_1 \\ 19_2 - 299_3 \end{array} $	+13 +10 +12 -03 +12
2 2 1 2 2	7867.01 7880.34 7883.17 7886.45 7909.19	$\begin{array}{c} 12707.82 \\ 12686.33 \\ 12681.76 \\ 12676.49 \\ 12640.05 \end{array}$	$16_4 - 291_3 \\ 14_2 - 276_2 \\ 322_3 - 44_2 \\ 13_1 - 259_1 \\ 22_4 - 351_4$	+02 +06 +02 +01 -03	25 2 1 1	9381.29 9389.87 9485.21 9505.37	$10656.59 \\ 10646.86 \\ 10539.84 \\ 10517.49$	$\begin{array}{c} 19_4 - 299_3 \\ 404_5 - 51_4 \\ 405_4 - 51_4 \\ \{(19_4 - 297_5; \\ 22_5 - 333_5 \end{array}$	+01 + 15 - 25 + 44) + 25
3 1 2 1 4	7940.92 7955.43 7957.05 7991.67 8017.17	12589.54 12566.57 12564.02 12509.59 12469.81	$\begin{array}{r} 13_2 - 263_2 \\ 18_2 - 306_1 \\ 19_2 - 318_2 \\ 371_4 - 49_3 \\ 18_2 - 305_3 \end{array}$	$^{+03}_{-05}$ $^{00}_{-07}$ $^{+03}$	$ \begin{array}{c} 1 \\ 5 \\ 25 \\ 1 \\ 4 \end{array} $	9507.51 9515.89 9538.45 9590.68 9595.25	$\begin{array}{c} 10515.12\\ 10505.86\\ 10481.01\\ 10423.93\\ 10418.97 \end{array}$	$\begin{array}{r} 28_5 - 387_4 \\ 347_1 - 45_0 \\ 22_4 - 329_3 \\ 23_3 - 343_3 \\ 18_3 - 293_2 \end{array}$	$+10 \\ 00 \\ +10 \\ +01 \\ +07$
1 1 3 2 3	8043.11 8054.87 8055.61 8060.35 8123.78	$12429.51 \\12411.44 \\12410.31 \\12403.01 \\12306.16$	$15_{3} - 278_{4} \\ 13_{2} - 261_{3} \\ 19_{3} - 322_{3} \\ 18'_{2} - 306_{1} \\ 18'_{2} - 305_{3}$	-05 + 04 - 02 + 04 + 03	2 1 1 4 8	9667.99 9707.53 9736.31 9747.98 9764.48	$\begin{array}{c} 10340.58\\ 10298.46\\ 10268.02\\ 10255.73\\ 10238.40 \end{array}$	$20_{2}-313_{1}$ $23_{3}-342_{3}$ $361_{1}-46_{1}$ $20_{1}-306_{1}$ $19_{5}-297_{5}$	$+24 \\ -01 \\ +24 \\ +10 \\ +13$
1 ?2 1 <i>u</i> 1	8165.71 8210.20 8222.52 8311.60 8321.98	$\begin{array}{c} 12242.98\\ 12176.64\\ 12158.38\\ 12028.08\\ 12013.08 \end{array}$	$\begin{array}{r} 28_5 - 404_5 \\ 19_4 - 314_4 \\ 20_2 - 331_2 \\ 15_3 - 274_3 \\ 23_3 - 359_3 \end{array}$	$+02 \\ -01 \\ +05 \\ +03 \\ -02$	7 20 10 10 4	9780.72 9809.30 9813.74 9835.20 9859.30	10221.40 10191.61 10187.00 10164.73 10139.93	$18_{3} - 291_{2} \\ 23_{3} - 241_{4} \\ 13_{2} - 239_{2} \\ 18_{3} - 291_{3} \\ 19_{2} - 293_{2} \\ \end{array}$	$+04 \\ +08 \\ +13 \\ +16 \\ +14$

TABLE II—Continued.

Intensity (See text)	λ_{air}	^{<i>v</i>} vac	Assignment	$\nu_{\rm obs}$ $-\nu_{\rm calc}$	Intensity (See text)	λ_{air}	^v vac	Assignment	νobs νcalc
12 3 18 0 2	9873.87 9912.76 9915.78 9963.75 9983.22	$\begin{array}{c} 10124.97\\ 10085.24\\ 10082.17\\ 10033.63\\ 10014.06\end{array}$	$19_6 - 297_5 \\ 19_3 - 299_3 \\ 18_2 - 281_1 \\ 422_3 - 52_{23} \\ 23_3 - 339_2$	+18 +11 +16 +16 +37 +15	0 4 0 3 2	10217.38 10241.63 10306.04 10347.27 10409.77	9784.56 9761.40 9700.39 9661.75 9603.71	$\begin{array}{r} 366_2 - 46_1 \\ 224 - 322_3 \\ 202 - 306_1 \\ 18_2 - 277_1 \\ 202 - 305 \end{array}$	+03 +05 +01 +12 +17
2un 4n 1 3 2	$\begin{array}{c} 10021.50\\ 10050.31\\ 10079.52\\ 10115.52\\ 10126.93 \end{array}$	9975.81 9947.21 9918.39 9883.08 9871.95	$\begin{array}{c} 22_5 - 328_4 \\ 19'_5 - 297_5 \\ 18'_2 - 281_1 \\ 19_4 - 291_3 \\ 382_3 - 48_2 \end{array}$	$^{+52}_{-04}$ +03 +20 -06	1ud 0	10450.97 10477.97	9565.85 9541.20	$\frac{19_3 - 293_2}{19_4 - 287_4}$	$^{+14}_{+21}$

TABLE II—Concluded.

but instead of each level having its own column, each column after the heavy line represents all the odd levels in an interval of 1000 cm⁻¹, and the numbers in the body of the array show the number of underwater spark lines belonging to the levels in that interval. The symbols in the first column represent the initial states of all the lines, and the numbers in the first row represent energy values in thousands of wave number units. In the face of the general tendency of the numbers to cluster on the diagonal from upper left to lower right on account of the spectrum selectivity of the apparatus, the preponderance of low levels among the 7S_3 combinations is striking.

(B)

Level 21_0 . The reality of this level tends to be confirmed by the following Zeeman-effect pat-

TABLE III. Observed (tentative) g values of the $5d^46s(^6D)ns$ levels of W I.

	7D1	$^{7}D_{2}$	7D_3	7D4	7D5	5D1	${}^{5}D_{2}$	5D3	5D4
IDEAL LS 5d46s ² 5d46s7s	3.00 2.83	2.00 (e x c 1.9	1.75 1 u 1.74	1.65 d e d) 1.68	1.60 1.7	1.50 1.51	1.50 1.48 1.55	1.50 1.50 1.66	$1.50 \\ 1.49 \\ 1.4$

TABLE IV. Upper state statistics of Meggers' underwater spark lines (doubtful and ambiguous cases omitted).

	3	5	4	0	4	5	5	0	55	57 · 103	cm-1
$\begin{array}{c} D_{0} \\ D_{1} \\ S_{3} \\ D_{2} \\ D_{3} \\ D_{4} \\ 09_{0} \\ 12_{4} \\ 15_{5} \\ 16_{4} \\ 17_{6} \end{array}$		22	$\begin{array}{c}1\\1\\3\\2\end{array}$	$ \begin{array}{c} 1 \\ 2 & 3 \\ 3 & 1 \\ 3 & 1 \\ 1 \end{array} $	$ \begin{array}{c} 1\\ 2\\ 2\\ 3\\ 1\\ 1\\ 2\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	1 2 1 6 1 1 3	1 2 35 1		1	_ 1 1	

terns:

$21_0 - 404_1$	(0)	1.66
$21_0 - 438_1$	(0)	1.05

 266_0 . The reality of this level tends to be confirmed by the following Zeeman-effect pattern:

 $D_1 - 266_0$ (0) 1.55.

 359_3 and 360_3 . Here is a remarkable example of two neighboring levels with the same J, mutually almost exclusive in their combinations.

 371_4 . The J value of this level is verified by the following conclusions from Zeeman-effect blends:

 $D_3 - 371$ implies g_3 (impossible) or $g_4 = 0.9$ 15₃-371 implies $g_3 = 0.29$ or $g_4 = 0.99$.

 387_4 . The J value of this level is evident from its combinations. Catalan and Poggio's conclusion that J=3 was a necessary consequence of accepting Beining's pattern for S_3-387 , but

FIG. 3. Relative separations arising from W III $5d^4 \, ^5D$ plus *s* electrons. The relative separations within the $5d^46s7s\,^{7}D$ (center column) are, within one part in a thousand, equal to those of W II $5d^46s\,^6D$, although the absolute separations of the latter are greater by 4.1 percent.

Beining has evidently misread a difficult and unusual pattern.

 404_5 . The *J* value of this level is verified by the following conclusions from Zeeman-effect blends:

$$D_4 - 404$$
 implies g_4 (impossible) or $g_5 = 1.00$
12₄-404 implies $g_4 = 1.61$ or $g_5 = 1.09$.

 430_4 . The J value of this level was determined by independent Zeeman-effect studies. The numerical coicidence with 19_6 is evidently fortuitous.

 $?430_0$. The reality of this level tends to be confirmed by the apparently simple nature of the Zeeman-effect pattern of $20_1 - ?430_0$.

 434_3 . The J value of this level had to be determined from the consistency of Zeeman-effect blends:

 $15_3 - 434$ implies $g_2 = 1.02$ or $g_3 = 1.47$ $18_2 - 434$ implies $g_2 = 1.70$ or $g_3 = 1.24$ $19_2 - 434$ implies $g_2 = 1.24$ or $g_3 = 1.20$.

?467₇. The reality of this level tends to be confirmed by the Zeeman-effect pattern of $19_6 - ?467_7$ on Harrison's plates, which is a wide blend showing large J values with g(smaller J) > g(larger J).

 497_2 . There is a possibility that this level has an energy about 0.4 cm⁻¹ lower than shown and J=3, or that the level listed and the lower one constitute a real pair.

 55_5 . The J value of this level may be 4. Though it shows no J=3 combinations, its only J=6 combination, 372_6-55_5 , is weak and in bad wave number disagreement.

 $?58_5$. The J value of this level may be 6. Though it shows no J=7 combinations, its only unambiguous J=4 combination, $247_4 - ?58_5$, is weak and in bad wave number disagreement.

(C) vv23044.52, 23043.96

Belke's $\lambda 4338.278$ intensity 1*r*, was the only line listed as reversed in the arc which we were unable to classify. A careful re-examination shows it to be a pair, with the vacuum wave numbers given here.

Poggio²⁵ uses, probably in some cases correctly, several lines that we have omitted on the grounds that a comparison of the arc and spark intensities shows them to be probably not attributable to the neutral atom: e.g., " $13_2 - 504_2$."

(\mathbf{D})

Table V is a list of all the unclassified lines that appear, on account of their intensity or their occurrence under special conditions, to give evidence of important undiscovered structural properties of the atom. Since all the solar lines, arc reversals, and raies ultimes are classified, we have selected for inclusion in the table only those unclassified lines that have been reported in the underwater spark or furnace spectrum, or have

TABLE V. Important-appearing unclassified lines of the tungsten arc spectrum.

	Intensity				Wave-le	ngth			7	
В	arc K	Т	spark	under- water spark	fur- nace	this paper	T	Wave number	Assignment	effect J values (tentative)
2 2 3 2 1 5 3 5 5 4 4	5 7 5 15	$ \begin{array}{c} 10\\ 15\\ 10\\ 9\\ 8\\ 1d\\ 12d\\ 12\\ 12\\ 12\\ 12\\ 40\\ \end{array} $	$ \begin{array}{c} 5\\ 8\\ -12\\ 9\\ 10d\\ 10\\ 201\\ 7\\ 10\\ 3 \end{array} $	M20 M1 M1 M2? H	1—	2533.641 2560.139 2606.406 2847.831 2852.37 3221.220 3281.944 3495.250 3688.069 4000.702 5071.739 9161.43 9531.13 9757.39 10002.65	$\begin{array}{c} 0.633 \\ .119 \\ .386 \\ .823 \\ \{.909\} \\ .10 \\ .212 \\ .939 \\ .246 \\ .069 \\ .694 \\ .733 \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{r} 39457.04\\ 39048.69\\ 38355.57\\ 35104.15\\ 35048.25\\ 31035.21\\ 30461.00\\ 28602.11\\ 27106.78\\ 24998.00\\ 19711.62\\ 10912.33\\ 10489.06\\ 10245.83\\ 9994.60\\ \end{array}$	$D_1 - ?411_0$ $D_3 - ?431_4$ $D_2 - ?384_1$ $Ta ?0.355$ $19_6 - ?467_7$	1, 0 1, 0 2, 1 7, 6 large 5, 4

296

a Belke or Kiess intensity greater than 3. The list consists of 15 lines. There are 29 unclassified lines with intensity 3, not counting the region $\nu > 40,000 \text{ cm}^{-1}$.

6. ACKNOWLEDGMENTS

We wish to acknowledge our grateful indebtedness not only to those workers whose assistance

has already been mentioned, especially Doctors Russell, Meggers, and Kiess, but also to the federal Works Progress Administration for support, and to the following students and helpers, who have aided us materially, especially in the search for levels: G. Caine, M. Fromer, N. Geier, H. R. Kratz, D. D. Laun, L. T. Mack, I. Milbauer, W. Wetzel, and J. Winnig.

PHYSICAL REVIEW VOLUME 63, NUMBERS 7 AND 8 APRIL 1 AND 15, 1943

The Small Angle Scattering of Electrons by Aluminum

BOWEN C. DEES AND BERNARD HAMERMESH Physics Department, New York University, University Heights, New York, New York (Received January 11, 1943)

The angular distribution of scattering of 46.4-kev electrons scattered by an aluminum foil 1.3×10^{-5} cm thick has been studied in the angular range between 0° and 10°. The values obtained for the mean projected angle of scattering have been compared with the values predicted by

INTRODUCTION

MOST of the previous experiments on multiple electron scattering have been concerned with electrons of several Mev energy.¹⁻⁴ There has been very little work done on electrons having energies of less than 100 kev.⁵ With this in mind, a study of the scattering of 46.4-kev electrons in thin aluminum foils was undertaken.

For the values of the energy, thickness, atomic number, and angular range used, various criteria for single scattering show that the scattering should be non-single.6,7

The problem of incoherent multiple scattering has been treated theoretically by E. J. Williams,⁸ and by Goudsmit and Saunderson.9 Both treatthe theoretical treatment of Goudsmit and Saunderson, and agreement between experiment and theory has been found. The type of scattering has been investigated and it has been found that the scattering observed in this experiment was mainly plural.

ments refer to and give values for the mean of the projected angle which is usually dealt with in non-stereoscopic cloud-chamber work. A given projected angle α corresponds to an infinite slit. perpendicular to the plane of projection, placed so that the line perpendicular to it drawn from the scattering center makes an angle α with the direction of the incident beam. If a collecting chamber provided with such a slit could be set at such a given angle, the intensity of the scattered current at that angle could be measured: this intensity will be called the slit intensity.

The mean projected angle of scattering $\langle \alpha \rangle_{AV}$ is defined by

$$\langle \alpha \rangle_{\rm Av} = \frac{\int_0^\infty \alpha F(\alpha) d\alpha}{\int_0^\infty F(\alpha) d\alpha},$$

where $F(\alpha)$ is the relative slit intensity.

Goudsmit and Saunderson treat the problem of non-single scattering by using a special property of the Legendre polynomials which makes possible the determination of the angular

¹W. A. Fowler and J. Oppenheimer, Phys. Rev. 54, 320

^{(1938).} ² C. W. Sheppard and W. A. Fowler, Phys. Rev. 57, 273 ³ Oleson, Chao, and Crane, Phys. Rev. 60, 378 (1941).

⁴L. A. Kulchitsky and G. D. Latyshev, Phys. Rev. 61, 254 (1942).

⁵ E. Kruppke, Ann. d. Physik 30.7, 577 (1937)

⁶ G. Wentzel, Ann. d. Physik **69**, 335 (1922).
⁷ C. T. Chase and R. T. Cox, Phys. Rev. **58**, 243 (1940).
⁸ E. J. Williams, Proc. Roy. Soc. **169**, 531 (1939); Phys. Rev. 58, 292 (1940).

S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940); Phys. Rev. 58, 36 (1940).