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Calculations of the electronic energy bands for face-
centered iron by the Wigner-Seitz-Slater method are re-

ported. There are found to be two filled and four partially-
filled bands. The density of states is calculated as a function
of the energy; the curves of the density of states vs. energy
appear quite similar to those calculated by Slater for copper
but resemble more closely those for body-centered iron.
The density of states at the highest occupied energy level

at absolute zero is 11.4 states per Rydberg unit of energy
per atom. These results have been used to calculate the

average Fermi energy as a function of the total number of
valence electrons; to investigate the ferromagnetism of Ni
and Co by calculating the change in Fermi energy as a
function of the number of uncompensated spins; and to
calculate the electronic specific heat at an elevated temper-
ature. The calculated electronic specific heat is found tc
agree fairly well with the difference from 3R of the experi-
mentally-measured specific heat, There are no experimental
data for the specific heat of face-centered iron at low
temperatures.

INTRODUCTION AND PROCEDURE

T ordinary temperatures metallic iron has a
body-centered structure (n-iron), but. from

870'C to 1390'C the face-cen tered structure
(y-iron) is the stable one. Above 1390'C the
body-centered structure is again stable. y-iron
is of scientific interest principally because many
of its properties are quite different from those of
n-iron. The most important of these differences
is that y-iron is not ferromagnetic. Although
y-iron is stable only above the Curie tempera-
ture, all extrapolations to room temperature
indicate that it would not be ferromagnetic.
p-iron does exist at ordinary temperatures in the
form of austenitic steel, since the steel has been
quenched from a temperature where p-iron is
the stable form.

The Wigner-Seitz-Slater cellular method of
calculating energy bands in metals" has been

applied to sodium, ' to lithium, ' to copper, 4 to
calcium, ' and to one transition metal, tungsten. '
With modifications it has also been applied to
some insulators. 7 In this paper it has been

applied to face-centered iron. In applying this
method one starts with the radial part of the

* Now at the University of Illinois, Urbana, Illinois.
**Deceased June 1, 1942.
' E. P. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).' J. C. Slater, Phys. Rev. 45, 794 (1934).' F. Seitz, Phys. Rev. 47, 400 (1935).
4 H. M. Krutter, Phys. Rev. 48, 664 (1935).
"" M. F. Manning and H. M. Krutter, Phys. Rev. 51,

761 (1937).
M. F. Manning and M. I, Chodorow, Phys. Rev. 56,

787 (1939).
7 M. F. Manning and M. I. Chodorow, Phys. Rev. 56,

footnote 2, p. 787 (1939).

wave function and the radial derivative of the
wave function at a distance half-way between
nearest atoms in the face-centered lattice. For
face-centered iron the lattice parameter at 900'C
is 3.63A and the corresponding distance r
between nearest neighbors is 4.85 Bohr units.
The corresponding value of (p—= log, 1000r) is
7.79, where r is in Bohr units. These radial
wave functions were found by a modified Hartree
procedure in which the Schroedinger equation
was integrated numerically, with the same
effective field as that used by Manning in the
work on body-centered iron and explained fully

by him in Appendix I of his report. These
integrations were carried out for s, p, d, and f
functions over a range of energy values wide

enough to give six complete energy bands.

FIG. 1. The polyhedral cell for the face-centered lattice.

M. F. Manning, Phys. Rev. 63, 190 (1943).
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FIG. 2. Fnergy vs. momentum for the different directions of propagation.

The next step was to express the wave function
within the polyhedron surrounding an atom in
the face-centered lattice (see Fig. 1) as the sum
of twelve terms (since there are twelve sides to
this cell), each term being the product of a
radial wave function times a spherical harmonic.
The arbitrary coefficients of these terms must
be chosen so that the wave functions satisfy the
Bloch' periodicity condition and join smoothly
in passing from one atom to its twelve nearest
neighbors. The application of these conditions
leads to a determinant, the solution of which
gives the momentum of the electron in certain

'F. Bloch, Zeits. f. Physik 52, 555 (1928).

directions in terms of the radial wave functions
and radial derivatives; this momentum of the
electron is expressed by the wave number vector
K. Since the radial wave functions are in turn
functions of the energy, a relationship is estab-
lished between the energy and the wave number
vector or momentum in that particular direction.
The solution of the determinant in the general
direction is too laborious to attempt, but for a

TABLE I. Maximum and minimum energies for each band,

Band I I I I II IV V VI

Max. e 0.688 0.443 0.443 0.443 0.443 0.443
Min. e 0.327 0.240 —0.0475 —0.124 —0.124 —0.525
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number of symmetrical directions thc solution
simplifies a great deal. For thc face-centered
lattice the results of the expansion of the
determinant for a number of special directions
have been given by Shockley. " At

RESULTS

Band I
Point

IV VI

0
A
B
C
D
B

0.69 0.44
0.517 0.44
0.48 0,44
0.46 0.31
0.325 0.29
0.46 0.31

0.44
0.44—0.0475
0.18
0.29
0.18

0.44—0.0475—0.125
0.01
0.02
0.01

0.44—0.125—0.125—0.05—0.125—0,05

0.44—0.125—0.125—0.45—0.55—0.45

by each constant-energy contour, within which
the energy was less than (i.e. , e greater than) the
value of the energy for this contour, was found
by means of a planimeter. This was done for
each of the ten planes and then the results
integrated to get the volume enclosed by the
surface of constant energy. This volume is then
proportional to the number of electrons per
atom or states per atom with energy less than

"W. Shockley, Phys. Rev. 51, 129 (1937).

The results of the calculation of the energy as
a function of the momentum are given in Fig. 2.
In Table I the maximum and minimum energies
for each band are given, and in Table II the
energies at a number of special points in the
first Brillouin zone (the momentum cell) are
tabulated. Figure 3 shows the first Brillouin
zone for the face-centered lattice with the loca-
tion of these special points indicated. (The point
0 is the center of the cell but is not shown in
this figure. ) In these tables and elsewhere in this
paper e is the negative of the energy expressed
in Rydbergs. The curves for the 011 direction,
for the 100 direction, and for the 111 direction
are quite similar to those for copper. 4 These
were the only directions for copper available for
comparison.

Using the energy-momentum relationships for
the known lines in K space, one can draw fairly
good energy contours for the principal planes in
E space. One can then interpolate from these to
get energy contours in the planes K, =0.1, 0.2,

~ 1.0. In each of these planes the area enclosed

TABLE II. Values of e for some points in the Brillouin zone.

FIG. 3. The first Brillouin zone for the face-centered
lattice, showing the points referred to in Table II.

the energy considered. The number of electrons
with energy less than a given energy can be
found by the normalizing condition that the
total volume of the momentum cell represents
two electrons per atom in each energy band.
This quantity is called N(e). The values of N(e)
for each of the energy bands and for the sum of
the six bands are given in Tables IIIa and IIIb.
It will be noticed that in the first three bands,
values of N(e) are tabulated every 0.025 unit
of ~. For Bands IV and V they are tabulated
every 0.05 unit of e, and for Band VI every
0.10 unit of ~. This was done because the last
three bands extended through a wider energy
range and would have required more contours
than it was felt the accuracy of the method

justified.
From the values of N(e) the values of

n(e)[= —(dN/de)] can be found by numerical
di&erentiation. Lm(e)de is the number of energy
levels per atom with energy between e and
(a+de).] The resulting values of n(e) for the
separate bands and the total value of n(e) for all
six bands as functions of e are given in Fig. 4.

Bands I and II, being completely filled, would
not be expected to contribute either to the
electrical conductivity or to ferromagnetism.
Bands III, IV, and V are the ones to be investi-
gated to see why face-centered iron is not
ferromagnetic. Band VI looks more like a band
predicted from the "free electron" picture than
any of the others. It probably accounts for the
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TABLE IIIa. Number of states having energies less than a given energy.

Band I
N(.)

Hand I I
N(e)

Band III
N(e)

Band IV
e N(e)

Band V
N(e)

Band VI
t N(e)

0.675 0.001
0.65 0.009
0.62~ 0.029
0.60 0.057
0.575 0.084
0.55 0.126
0.525 0.206
0.50 0.399
0.475 0.850
0.45 1.57
0.425 1.77
0.40 1.89
0.375 1.95
0.35 1.99

0.425
0.40
0.375
0.35
0.325
0.30
0.275
0.25

0.496
0.90'
].24
].52
].72
1.86
1.99
2.00

0.425
0.40
0.375
0.35
0.325
0.90
0.275
0.25
0.225
0.20
0.175
0.15
0.125
0.10
0.075
0.05
0.025
0.00

0.165
0.349
0.502
0.6]5
0.731
0.850
0.982
1.21
1.64
1.74
1.82
1.87
1.91
1.94
].96
1.98
1.99
2.00

0.40
0.35
0.30
0.25
0.20
0.15
0, 10
0.05
0.00—0.05—0.10

0.045
0.146
0.274
0.430
0.625
1.03
] .40
1.62
1.88
1.96
1.99

0.40 0.0]6
0.35 0.056
0.30 0.]04
0.25 0.] 82
0.20 0.284
0.15 0.387
0.]0 0.520
0.05 0.684
0.00 0.859—0.05 1.13—0.]0 1.60

0.40 0.006
0.35 0.024
0.30 0.049
0.25 0.082
0.20 0.]26
0.]5 0.] 74
0.10 0.238
0.05 0.304
0.00 0.394—0, 10 0.642—0.20 1.05—0,30 1.47

—0.40 1.82—0.50 ].99

electrical conductivity. Ban cl UI also is the
widest band of those investigated. In general
features the energy bands for face-centered iron

resemble those of body-centered iron' more than

any other metal that has been investigated. In
general features the total n(p) curve resembles

that for copper, " but since the energy units are
different for the two cases, closer comparison is
dificult. Band UI in copper is very much like

Band VI for face-centered iron; that is the only

single energy band shown for copper. "
Since there are eight valence electrons per

atom in face-centered iron, reference to Table
IIIb shows that the highest occupied level at
absolute zero in face-centered iron occurs at
p =0.117.The corresponding value of n(p) is 11.4.
Thus the density of states at the edge of the
Fermi distribution is 11.4 states per atom per
Rydberg unit of energy.

APPLICATIONS

Energy Relations

The average Fermi energy has been computed
as a function of the total number of valence
electrons per atom. The average Fermi energy
e is defined by the equation

X(p )(p —pp) = —
) n(p)(p pp)dp, —

fp

where eo refers to the lowest level occupied at
absolute zero and p to the highest. Equation (1)

"J.C. Slater, Phys. Rev. 49, 537 (1936).

TABLE IIIb. Summation of N(~) values for all bands.

0.675
0.65
0.625
0.60
0.575
0.55
0.525
0.50
0.475
0.45
0.425
0.40
0.35

ZN (e)

0.001
0.009
0.029
0.057
0.084
0.126
0.206
0.399
0.850
1.57
2.43
3.21
4.35

0.30
0.25
0.20
0.15
0.10
0.05
0.00—0.10—0.20—0.30—0.40—0.50

ZN(e)

5.14
5.90
6.78
7.46
8.10
8.59
9.13

10.2
11.0
11.5
11.8
12.0

can be integrated by parts, giving

1
E = p~+ N(c)dp.

X(p ) &.,

This avoids the inaccuracies that arose when

X(p) was differentiated numerically to give n(p).
The results of these computations for the face-
centered lattice are shown in Fig. 5; the average
Fermi energy is plotted against the total number
of valence electrons per atom. In the preceding
paper, Manning has discussed the average
Fermi energy for the two kinds of iron and the
possible extrapolations to predict the structure
of the other neighboring elements in the periodic
table.

For the face-centered lattice the lowest band
begins at the energy for which s'=0 and the
other five bands begin at the energy for which
d' =0. The behavior of the energies for which
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s' = 0 and for which d' = 0 as a function of
interatomic distance is shown in Fig. 6. It should
be noted that the abscissa is r, the actual
interatomic distance, and not p, the log, of the
interatomic distance.

Magnetism

It is interesting to see whether these calcula-
tions can offer at least a qualitative explanation
of why body-centered iron is ferromagnetic and
face-centered iron is not. According to the
discussion of ferromagnetism in the paper on
body-centered iron, 8 when a substance changes
from a non-magnetic state to a magnetic state
there is an increase in the Fermi energy, and an
increase in the binding energy due to the increase
in the number of exchange integrals between
electrons of parallel spin. A ferromagnetic sub-
stance is one in which the change in Fermi energy

is more than compensated for by the increase in
the number of exchange integrals. Slater" showed
that this change in exchange energy is propor-
tional to the square of the number of uncompen-
sated spins. The change in Fermi energy is also
proportional to the square of the number of
uncompensated spins if n(e) can be regarded as
constant, the expression for the change in Fermi
energy being

hap p /——2n'(~m),

where p is the number of uncompensated spins
in Bohr magnetons, and n(e ) is the number of
energy levels of both spins per Rydberg unit of
energy at the highest occupied level for the
non-magnetic state, and Aep is the change in
Fermi energy upon reversing p(2 spins. The
smaller A~& is, the more likely it is to be compen-
sated for by the increase in exchange integrals;
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FrG. 5. Average Fermi energy vs. total number of valence
electrons per atom.

hence, the larger n(e ) is, the more likely the
metal is to be ferromagnetic. For body-centered
iron n(e ) is 17 and for face-centered iron n(e )
is 11.4. Hence the body-centered metal would be
more likely to be ferromagnetic.

If the number of states per unit energy range
is not constant, the change in Fermi energy is no
longer given by Eq. (2), but must be found by
using Eq. (1) for each direction of spin. In
computing this change Bands I and II, being
closed bands, are neglected, and Band VI, being
concentrated relatively far from the nucleus, is
also neglected. In the hope of applying these
calculations to the neighboring ferromagnetic
metals, cobalt and nickel, the change in Fermi
energy as p, increases was computed for the total
number of valence electrons equal to 8.0, 8.5,
9.0, 9.5, and 10.0, respectively. Equation (1)
was used for each direction of spin, and it was
applied only to Hands III, IV, and V. In general,
the Fermi energy increased less rapidly than did
p~ but there were some Huctuations which
indicated the computational error was rather
large.

The saturation magnetic moment of a ferro-
magnetic metal is determined by one of the
following conditions

The first condition never seems to occur in any
atom or alloy involving iron group elements.
Since, for face-centered iron, the Fermi energy
did not increase as rapidly as p,

' for the total
number of valence electrons equal to 8.0, 8.5,
9.0, 9.5, and 10.0, it would indicate that condition
(3) did not determine the maximum value of p.
Then the number of positive spins per atom
must be equal to three; i.e. , all the levels with
plus spins are filled. Table IV shows a comparison
of the value of the saturation magnetic moment
calculated on this assumption and the experi-
mentally-observed value" for Ni and Co.

The calculated magnetic moment for Ni is
arrived at in the following way: There are 10
outside electrons, of which 4 are in Bands I and
II; from the results for face-centered iron there
are 0.64 electron in Band VI. Thus there are
5.36 electrons in the bands that contribute to
magnetism. If there are 3 electrons with plus
spin there are 2.36 electrons with minus spin
and the magnetic moment is 0.64 spin per atom.
This agrees fairly well with the observed value

,8

4-

.2-

0.0-

1.9 2.0 2. 1 22 2 3 24 25 26
I IN BOHR UNITS

FIG. 6. The energy for which d'=0 and the energy for
which s'=0 as a function of interatomic distance.

"E. C. Stoner, 2lfagnetism and Matter (Methuen and
Company, Ltd. , London, 1934), p. 366.
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of the saturation magnetic moment, but the
value calculated in the same way for cobalt is
somewhat different from the observed value.
This might be due to the fact that the results
for face-centered iron cannot be applied to
hexagonal cobalt; it might be due to errors in

these calculations; or possibly, the levels with

plus spin are not filled. If one uses the observed
saturation magnetic moment and assumes the
levels of plus spin are all filled, then one finds
that the corresponding number of electrons in

Band VI has to be 0.71. This value is much
larger than the value indicated by the calcula-
tions for face-centered iron. Manning' found
this same difficulty with cobalt-iron alloys. He
suggested the possibility that the electrons in
Band VI, by coupling with electrons in other
bands, contribute to the magnetic moment.

Electronic Specific Heat

The electronic contribution to the specific heat
may be computed from the formula"

(C,).= (5.670/27. 08) X10 'n(e )RT, (3)

where (C„), is the electronic contribution to the
specific heat per gram atom, R is the universal
gas constant, T is the absolute temperature,
and e(e ) is the number of states of both spins
per Rydberg unit of energy at the edge of the
Fermi distribution.

It is only at very high and very low tempera-
tures that the electronic contribution to the
specific heat is appreciable. The contribution at
very low temperatures was not computed because
there are no experimental data available for
comparison. For high temperatures it was de-
cided to compare the theoretical contribution to
the specific heat with that computed from
experimental data at a particular temperature.
The temperature of 960'C is well above the
transition temperature from n; to y-iron and
there are very good data for the specific heat of
iron at this point.

Specific heat measurements are made at con-
stant pressure, but for comparison purposes one
needs to have the specific heat at constant
volume, C„. This is generally computed from

"E.C. Stoner, Proc. Roy. Soc. 154, 656 (1936); also
H. Bethe, Handbuch der Physik (J. Springer, Berlin, 1933),
Vol. 24, Part 2, p. 430.

the equation

C„C.=—9~' UT/P, (4)

Element

Co
Ni

Calculated magnetic
moment

1.39
0.64

Observed magnetic
moment

1.71
0.61

but face-centered iron is unstable at room
temperature. However, if we make use of
Gruneisen's law,

y = 3n U/C. P,

where p has an approximately constant value
for all temperatures, " then, writing Eq. (4) in

terms of y, we get

C„/C. =1+3ynT

The value of y used" is an extrapolated value,
since there is no experimental one available for
face-centered iron. The value of y does not
vary much from metal to metal; for o.-iron it is
1.68; for copper, 1.96; for nickel, 2.2; and for
cobalt, 2.1. Since copper and nickel both have
face-centered structures, the value for face-
centered iron should be about 2.0.

Substituting the following values" of C„, e, y,
and T in Eq. (6):

(C„)960c= 7.94 cal. /g atom 'C,

(0;)960'c=25X10 ' per 'C,

y=2.0,

T= 1233'A,
'4See F. Seitz, Modern Theory of Solids (McGraw-Hill

Book Company, Inc. , New York, 1940), p. 138.
"Values of y are from J. C. Slater, Phys, Rev. 5'7, 744

(1940).
"Value of (C„)gpp'g is an experimentally-determined

value, reported by E. Lapp, Ann. de physique 6, 826—855
(1936); Value of (a)gpp'g is from Metals Handbook (Amer-
ican Society for Metals, Cleveland. 1939).p. 434.

where 3n is the thermal coefficient of volume
expansion per degree centigrade, I/' is the
specific volume, T is the absolute temperature,
and P is the compressibility. All the quantities
except P are available at the required tempera-
ture. P is ordinarily measured at room tempera-
ture and extrapolated to higher temperatures,

TABLE IV. Saturation magnetic moments
for nickel and cobalt.
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one gets"

C.=6.70 cal. /g atom 'C.

If one assumes that the specific heat due to
the lattice vibrations at this temperature is the
Dulong and Petit value of 3R, then the quantity

C.—3R =0.73 cal. /g atom 'C

represents the electronic specific heat at this
temperature. The theoretical value of the
electronic specific heat computed by Eq. (3) is
0.59 cal. /g atom 'C, and the agreement between
these two values is very good.

It is to be expected that the theoretical value
of the electronic specific heat would be smaller
than the other value. If the lattice vibrations
were not entirely harmonic the value of (C„—3R)
would contain contributions due to the an-
harmonicity as mell as the contribution of the

» By a method involving an extrapolation of P, Mme.
Lapp has calculated a value of C, to be 7.66 cal. /g atom 'C;
see reference 16.

electronic specific heat. Fur thermore, the method
of calculating the electronic energy bands re-
ported here did not consider such corrections as
exchange and correlation, which would tend to
make the total spread in energy smaller and
hence n(e) larger. This would make the electronic
contribution greater than that found here.

Qualitatively one can see that the electronic
specific heat of body-centered iron would be
greater than that of face-centered iron because
n(e„) is greater for the body-centered iron.
Manning' has already pointed out that it is
because of this high electronic specific heat for
the body-centered phase that this phase again
becomes stable as the temperature increases.

In condusion it should be pointed out that
the same approximations have been made in the
calculations for face-centered iron as were made
for body-centered iron. A detailed discussion of
these approximations and their accuracy has
been given by Mannings in Appendix III of the
paper on body-centered iron.
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LATITUDE EFFECT CONSIDERATIONS

S a preliminary, we notice that if P=v/c,
the minimum value for vertical entry

through the earth's magnetic field II of a
particle of mass m and charge ne is given by

where f(II) involves only the field and terrestrial
dimensions, and e is the electronic charge.

We note, therefore, that if subscripts (1) and

(2) refer to magnetic latitudes yi and y2

the frame of reference of the primary particles,
then the value of P for the primary particle is
equal to that for the corresponding mesotrons,
and (2) applies for the minimum velocities of the
mesotrons at the two latitudes.

Now the writer has shown' that if F(F)dF-
represents the energy distribution of the verti-
cally directed mesotrons at the point of produc-
tion, then the number of mesotrons at a distance
x below this point, and resulting from the group
representing the integrated value of F(F)dF., is
X, where

'6~e note further that if the primary particle
splits into mesotrons which are born at rest in

—A /(y+ 1) I
&""«&+'+"" F(F)dF, (3)

' W. F. G. Swann, 'Phys. Rev. M, 470 (1941}.


