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An idealized theory of cavitation in the interior of a liquid is developed as an extension of the
hydrodynamics of irrotational motion. It is assumed that cavitation occurs whenever the
pressure sinks to a fixed breaking-pressure and that the pressure then rises at once to a fixed
cavity pressure. The boundary of the cavitated region either advances as a breaking-front,
moving with supersonic velocity, or remains stationary as a free surface, or recedes toward the
cavitated region as a closing-front. The relevant formulas are obtained.

AVITATION has been studied most ex-
tensively at the interface between a liquid
and a solid, but apparently it may occur also
within the liquid itself. The latter type of cavita-
tion should be influenced by the elasticity of the
liquid and should present certain hydrodynamical
features of interest. In the present paper a con-
tribution is offered to the theory of cavitation as
a hydrodynamical phenomenon. The theory may
also find application to the motion of liquids in
pipes, even if the cavitation is actually initiated
at the walls.!

1. FUNDAMENTAL ASSUMPTIONS

In order to develop a tractable analytical
theory, it will be assumed that the liquid
cavitates whenever its pressure sinks to a fixed
breaking-pressure py, and that the pressure then
rises at once to a definite cavity pressure p,, the
two pressures being such that

Po=pe.. 1)

The pressure p, represents the minimum pressure
that the liquid can stand; and, as a special case,
it may equal p.. In actual cases cavitation within
a liquid takes the form of small bubbles, and
these commonly contain a variable amount of air
or other gases in addition to the vapor of the
liquid; as the bubbles collapse, the foreign gas
tends not to redissolve entirely, and for this
reason the pressure in the bubbles is not constant.

Such complications will be ignored here. It may

be assumed that the bubbles are indefinitely
small and contain only vapor of the liquid, so
that p. is equal to the vapor pressure. The dis-

1 Cf. Kennard, Phys. Rev. 35, 428 (1930).

cussion will be limited to irrotational motion in a
homogeneousliquid whose density remains almost
but not quite constant. The one-dimensional case
is easily treated completely and will be taken up
first.

2. PLANE BREAKING-FRONTS

For one-dimensional motion the usual acoustic
equations may be written

ou 1ap 9p

—_— .___z_pC?__,

, (2a,b)
at podx Ot ax

where p = excess of pressure above the hydrostatic
pressure, % = particle velocity, ¢{=time, x =space
coordinate, p=undisturbed density, and c=ve-
locity of sound in the liquid. The derivatives oc-
curring here will be assumed to be continuous
functions. The equations are ordinarily assumed
to hold only for small particle velocities, but they
may also be applied generally to the relative
motion of the liquid in the neighborhood of any
point, that is, provided uniformly moving axes
are employed relative to which the velocity of the
liquid near the point is small.

Cavitation will obviously start where the pres-
sure first sinks to s, hence at a point at which

D=1, (0u/dx)>0 (3a,b,c)

by (2b). From this point, a breaking-front will
advance toward both sides; that moving toward
+x or toward the right advances into regions
where 9p/9x=0, while the other, moving toward
—x or toward the left, advances into regions
where dp/dx=0. Just ahecad of each front, con-
ditions (3a, b, ¢) must continue to hold.

To find the rate of advance of the breaking-

(8p/dt) <0, or
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fronts, consider what happens as a front moving
toward the right traverses, during a time d¢, a
layer of liquid of thickness dx (Fig. 1). At the
beginning of d¢, the pressure in the unbroken
liquid is ps over the left-hand face of the layer F;
and is, therefore,

Do+ (0p/9x)dx

over the right-hand face F,, whereas at the end of
dt it has sunk to ps at F» also. Thus the change in
p at Fe during dt is (—dp/dx)dx; or, if Uy denotes
the speed of the front relative to the liquid, so
that dx= Uydt, the change is — U, (dp/dx)dt. I,
for the moment, axes moving with the unbroken
liquid are employed, this change can also be
written (dp/dt)dt, the derivative being evaluated
at F.. Equating the last two expressions and
using (2b), we obtain

U= pc*(9u/9x)/ (0p/ 0x). 4)

Here U, is the velocity of the front relative to the
liquid, which may itself be in motion; but in
evaluating the space derivatives axes moving in
any manner may be employed.

At the front there is a discontinuity in the
pressure. To find its impulsive effect, consider
the motion of the layer of liquid of thickness dx
(Fig. 1). On the right-hand face F, the pressure is
nearly equal to the breaking-pressure p;. It sinks
to this value as the front comes up to the face,
whereas on the left-hand face there is acting the
steady cavity pressure p.. The momentum in the
layer changes, therefore, during dt by (p.— ps)dt
per unit area. Let #, denote the particle velocity
just ahead of the front, %, that just behind it.
Then the velocity changes impulsively from #;, to
u, as the front passes, and since dx = U,dt,

(pe— po)dt = (ue—up) pdx = (.~ uz) p Urdt,

be—pv b= 0p/o
oUs p2c? au/ﬁx,

Ue=up+ Uy

from (4).

The same equations are obtained for a breaking-
front advancing toward the left. In view of (3c),
Eq. (4) makes U, positive where dp/dx>0 and
negative where dp/dx <0, the two signs referring
to fronts traveling in opposite directions. The
sign of %, — us is likewise opposite in the two cases,
the liquid being accelerated in the direction of
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advance of the front. At the initial point, where p
first sinks to py, dp/0x=0 and U=+ «.

It remains to be shown, however, that the
motion of the liquid represented by %, as defined
by Eq. (5) is a hydrodynamically possible one. In
doing this, an additional condition for the
propagation of a breaking-front is obtained. The
argument takes very different courses according
as p.=pp Or P> ps.

If p.=ps, by (5) #.=u;, the liquid being left at
each point with that particle velocity which it
happens to possess at the instant of arrival of the
front. It is necessary that the liquid be not left
with a motion of contraction; hence the values of
. left behind the front can only vary in such a
way that

(0u./9x) =0. (6)

Now, if # has the value us; at the'left-hand face F,
of a layer of thickness dx (Fig. 1), at the instant
when a front moving toward the right passes this
face, then, at the same instant, at the right-hand
face F,,

u=up1+ (du/dx)dx.

Let uniformly moving axes be employed such
that momentarily #; is zero or small. Then, by
the time that the front has reached F,, » will have
changed at F; to

Upe = ubl-}— (au/ax)dx—{— (GU/at)dt

dx = Updt
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FiG. 1. Motion of a breaking-front.
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After the passage of the front, # does not change
with time because of the absence of a pressure
gradient in the cavitated region. Hence the
difference, uss — 21, is also the difference between
the values of #, at F, and at Fs,, or du,, so that

Atbe=tpa— Up1 = (0u/0x)dx+ (du/ot)dt,
or, by (2a) and the relation dx = Usdt,
du.=[Us(du/dx) — (1/p)(3p/dx) Jdt.
The condition expressed by (6) now requires that
Us=(1/p)(9p/0x)/(9u/0x), (7

since du/dx>0. Multiplication of this inequality
by Eq. (4) gives
Ub2§62;

®

and division of this latter inequality by Eq. (4)
squared gives

1=(1/p%)[(9p/0x)/(9u/9x) T, )

whence

|8p/dx| = pc(0u/0x). (10)

The same results are obtained for fronts
moving toward the left.

If, on the other hand, p.> ps, the argument just
given does not apply, because by Eq. (5) #. #us
at the front. The situation appears to be es-
sentially different. For a front running to the
right (du/dx>0, dp/dx>0), u,>us, so that the
liquid behind the front tends to overrun that just
ahead of it, which is physically impossible. The
condition that prevents this happening can be
found as follows.

While the front is traversing the layer of
thickness dx (Fig. 1), during a time d¢, the face F
of the layer advances a distance u;d¢ (to the first
order), whereas the other face F, advances a
distance u.dt. The volume occupied by the layer,
per unit area, thus decreases by

(ue—m)dt=[(pe—ps)/(pUs) Jdt  (11)

by (5). During the same time, however, the
liquid in the layer contracts, as its pressure rises
suddenly from p, to p.. The elasticity being
pc?, the contraction decreases the volume actually
occupied by liquid by the amount

(1/pc?) (pe— pr)dx = (1/ pc®) (pe— po) Usdt.  (12)
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Hence the liquid can continue to fit into the
space allowed for it, with or without the occur-
rence of cavitation, provided

(1/0¢) (pe— o) UbhZ[(pe— 1)/ p U], Up*=c™

Thus expressions (8) and (10) are obtained again.

In case p.>ps, however, it is not possible to
show that necessarily du./9x=0. Apparently it
can happen that behind a front du./9x<0; in
this case, any cavitation bubbles that may have
been formed at the instant of passage of the front
will proceed to decrease in size and ultimately to
disappear again.

According to Eq. (8) as written it can happen
that U,= =tc¢. It is easily seen, however, that if
Uy=+c for a finite length of time, cavitation
does not actually occur. Thus a true breaking-
front travels always at a speed exceeding that of
sound in the liguid. The conditions found for its
propagation, including (10), may be summarized
as follows:

p=1pu, (au/ax) >0,

(13a, b, ¢)
|ap/ox| < pc(du/dx);

in addition, it is necessary that dp/dx=0 for
propagation toward +x or dp/dx=0 for propa-
gation toward —x. In these expressions the
derivatives are to be evaluated in the unbroken
liquid just ahead of the breaking-front. These
values are not affected in any way by the ap-
proach of the front; for no hydrodynamic influ-
ence of the first order can be propagated through
a fluid at a speed exceeding that of sound.

Once started, a breaking-front will travel until
it arrives at a point beyond which the necessary
conditions are not satisfied. At a point where
dp/dx=0, the front may meet another one
coming from the opposite direction, whereupon
both fronts will disappear. At a point where
|dp/dx| becomes equal to pcou/dx, with larger
values beyond, the front, approaching at speed ¢
relative to the liquid (provided du/dx>0), must
suddenly stop advancing. What happens next at
such a point will be considered presently.

A simpler rule than that just stated might have
been supposed to be preferable, namely, that the
front travels as far as pressures so low as p, occur.
This statement, however, although true, is less
convenient than the conditions just stated, be-
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cause the occurrence of cavitation results in-
directly in a contraction of the region within
which the pressure sinks to p,. This results from
the fact that the pressure is higher in the
cavitated region than it would have been if
cavitation had not occurred, and, after the
breaking-front has ceased advancing, propaga-
tion of this higher pressure into adjoining regions
prevents the occurrence of pressures so low as ps
at some points where such pressures would other-
wise have occurred. It is impossible, in fact, for
the breaking-front to touch the surface which,
in the absence of cavitation would be the bound-
ary of the region of pressures below p;; for, at
this surface, when p =3, 3p/0:=0, else p would
sink to p, at points outside the surface as well
(provided dp/at is continuous), and then by (2b)
du/dx=0 and condition (13c) is not satisfied.

3. THE CAVITATED REGION

In the cavitated region the pressure is assumed
to be uniformly equal to p., so that there is no
pressure gradient; hence the particle velocity #.
at each point remains as it was left by the passage
of the breaking-front. Let 1 denote the fraction of
the space which is occupied by bubbles. If
Pe= ps, nis zeroimmediately back of the breaking-
front. If p,> ps, however, g starts from an initial
value 5 representing the difference between the
space freed by compression from pressure p; to p.
and the space filled by incoming liquid. When a
front travels toward +x, the intial free space in a
layer dx thick just back of the front equals the
difference between expressions (12) and (11), so
that, since dx = Usd!t,

nodx = (1/pc?) (pe— pv) Usdt — [ (pe— ps)/p Us Jdt,
no=[(pe—ps)/pc*J[1—(ct/Up?)].  (14)

The same result is obtained for fronts traveling
toward —x. Thereafter n changes at the rate
du./dx. Hence, at any time ¢ subsequent to the
passage of the front at time 4,

= f ' (oue/ox)di
L =)/ oI~ (2 UD T

The value of y may vary from point to point in
the cavitated region. The initial value 5, will be

(15)
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small, in accordance with the assumption that
the pressure remains within the linear range; but
subsequently n may increase to any magnitude.

4. MOTION OF PLANE BREAKING-FRONTS
IN TERMS OF WAVE TRAINS

Since no influence can be propagated with
supersonic velocity past a breaking-front, the
pressure and particle velocity ahead of ‘the front
will be determined by initial or boundary con-
ditions elsewhere; hence, in the above formulas
the values of p and # may be regarded as given.
When, however, the boundary of the cavitated
region moves more slowly than the speed of
sound, the presence of cavitation is able to
influence the values of p and # in the nearby
unbroken liquid. In such cases analysis in terms
of fundamental wave trains is convenient. It will
be worth while to restate, also, the conditions for
the propagation of a breaking-front in terms of
such trains.

Any one-dimensional disturbance in unbroken
liquid can be resolved into a train of waves
traveling at speed ¢ toward +x and another
traveling toward —x; if 1, p2 denote the corre-
sponding pressures and #; and wu., particle
velocities, then

p1=pcuy, p2= — pcus, (16a, b)
p=p1+po, u=1u1+u,, (17a, b)
pPr=35(p+pcu), ps=3(p—pcu). (18a,b)

Here the significance of p; and p, is really only
mathematical, hence u1, %2, and # need not be
restricted to be small. Substitution from these
equations for # in (13b) gives

(0p1/9x) — (0p2/ 9x) >0,
and substitution in (13c) squared gives
[(3p1/0x) + (3p2/9x) J* <[ (3p1/0x) — (3p2/0x) I2,
(3p1/0x) (8p2/ 3x) <O.

The first and last of these inequalities can be
satisfied simultaneously only if 8p;/dx is positive
and 8p./dx negative. Hence the conditions for
the propagation of a breaking front and Egs. (4)
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and (5) for U and u, can be written, since #,=u,

prtpr=pp, (9p1/9x)>0, (19, b, ©)
(9p2/9x) <0;
and, for travel toward +x,
(0p1/0x) = — (3p2/9x), (20a)
or, for travel toward —x,
(0p1/9x) = — (3p2/0x); (20b)
_ C(6p1/6x) - (3;02/396)’ (21)
(0p1/9x) +(9p2/0x)
uc=i[P1-P2+(Pc—Pb)
” (apl/ax>+<apz/ax>]‘ .
(0p1/9x) — (3p2/dx)

Equations (19a, b, c) lead to the useful con-
clusion that a wave of tension can give rise to
cavitation only where it overruns a wave of
decreasing pressure traveling in the opposite
direction.

5. PLANE RESTING BOUNDARIES AND
CLOSING-FRONTS

The next question to consider is the behavior
of the boundary of a cavitated region when it
cannot advance as a breaking front. It may stand
still, relatively to the liquid, or it may advance
into the cavitated region, leaving the liquid
unbroken again behind it; in the latter case, the
boundary may be called a closing-front. Which
alternative occurs will depend, in general, both
upon conditions in the cavitated region and upon
the magnitude of the wave that is incident from
the unbroken side.

Let p’ denote pressure in the component wave
train that approaches the boundary in the
unbroken liquid and p”’ that in the receding
train; let # denote the particle velocity on the
unbroken side and #. that on the cavitated side,
but let the positive direction for velocity be taken
now always toward the cavitated region. As
before, let p, denote the uniform pressure in the
cavitated region and % the fraction of the space
that is occupied by bubbles.

Whether the boundary remains at rest or
advances is found to depend upon the magnitudes

E. H. KENNARD
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F1c. 2. Layer of cavitated liquid dx thick.

of p’, u,, du,/dx, and n. These quantities may be
regarded as given; p”’ is then determined by con-
ditions at the boundary, and p and « are given by
the relations, obtained from (17a, b) and (16a, b),

p=p'+p", u=Q1/pc)(p'—p"), (23a,b)
whence

p+pcu=2p". (23c)

Four cases may be distinguished.

(1) Intrinsic Closing-Fronts
n=0, OJu,/0x<0,

(24a, b, ¢)

—0u./dx=cdn/dx>0.

Here x denotes distance measured from the
boundary into the cavitated region, and the
relations refer to conditions at the boundary.

Because of (24a, b), the cavitation will proceed
to disappear in the layers next to the boundary;
hence the boundary will advance into the
cavitated region as a closing-front, leaving
unbroken liquid behind it. A front of this type,
being propelled by conditions inside the cavitated
region, may be called an inirinsic closing-front.

To find its speed of advance, consider a layer
of the cavitated liquid dx thick (Fig. 2). If the
particle velocity is #, over the face toward —x or
Fy, that over the other face F, is

s+ (0u./0x)dx.
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Hence during a time d¢ the volume of the layer
changes by (du./dx)dxdt, for each unit of area of
its faces and, since the pressure is constant, the
change must occur in the cavitated space and not
in the liquid itself. Hence,

(0u./dx)dxdt = (9/91) (ndx)dt,

(25)
dn/ot=0du./dx,

in which the time derivative is to be evaluated at
a point moving with the liquid.

On the other hand, if U, is the velocity of
advance of the boundary relatively to the liquid,
dx=U.t. At the beginning of df, n=0 at Fy,
hence at Fs n=(dn/0x)dx; whereas at the end of
dt, n=0 at F,. Hence, during d¢, n changes at F»
by dn= —(dn/0x)dx. This can also be written
dn=(dn/dt)at. Hence, using dx= U.dt, we obtain

(9n/0t) = — U.(dn/9x), (26)

and
U.=—(3n/0t)/(dn/9x)
= — (0u./dx)/(dn/dx)

by (25). Here the positive directions for x and %,
are taken toward the cavitated region and the
signs of the derivatives are such as to make U,
positive.

So far as can be seen, the value of U, as given
by (27) might be either greater or less than ¢. If
it is greater than ¢, everything is satisfactory.
The advancing front leaves behind it a region in
which p =p. and % =u,, u. being the local value of
the - particle velocity as encountered by the
advancing front. The two component wave trains
in the unbroken liquid are thereby progressively
built out in accord with the equations

(27)

(28a)
(28b)

P’ =3(p+ pcu) = 1 (pe+ pcuc),
P =L(p— pcu) =L(p,— pcu.).

The part of the p’ wave train that is already
established and is moving toward the front is
unable to overtake it. Even if U,=c, there is no
difficulty, although in this case a fixed discon-
tinuity in p and # may occur at the front.

If, however, the value of U, as defined by
Eq. (27) is less than ¢, a front moving at speed U,
would be overtaken continually by values of p’
coming out of the unbroken region. In such cases
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conditions at the boundary must be determined
in part by the arriving values of p’, and they will
usually not be such as to satisfy Eqs. (28a, b). A
different type of action must then occur at the
boundary. Thus ntrinsic closing-fronts, when lhey
occur, move through the liquid at velocities not less
than that of sound.

(2) Resting boundary

20’ = pot pcite. (29)

Let it be assumed that the pressure is continuous
at the boundary and equal, therefore, to p.. Then
a wave train must be reflected from the boundary
of such magnitude that, by (23a, c)

p'=pc—p', u=(1/pc)(2p'=p).

These equations represent a possible motion pro-
vided #=wu,, so that the unbroken liquid does not
collide with the cavitated liquid; and this con-
dition, in turn, is met provided p’ is such that
(29) holds. It may be concluded that, whenever
(29) holds but the boundary cannot advance as an
intrinsic closing-front moving at supersonic ve-
locity, the boundary will remain stationary and
the incident waves will be reflected from it in
accord with Eq. (30a).

If 2p’ is actually less than p.+pcu., so that by
(30b) % <u., separation of the two portions of the
liquid must occur, with formation of a crevasse or
a special layer of expanding bubbles. If 2p’=p,
-+ pcu,, the unbroken liquid remains in peaceful
contact with the cavitated liquid.

If, however, (29) does not hold, no solution of
the type just described is possible and a different
process must occur.

(30a, b)

(3) Forced Closing-Fronts

2p" > po+pcthe, 1>0. (31a, b)

When condition (31a) obtains, the incident waves
are so strong that the boundary advances into the
cavitated region, closing up the bubbles. The
action is one of successive impacts, a finite
discontinuity of pressure occurring at the moving
boundary if >0. A boundary moving in this
manner may be called a forced closing-front.

Let U, be the speed of advance of the front
relative to the cavitated liquid ahead of it.



178

Then, during a time d¢, a layer of cavitated liquid
of thickness dx becomes consolidated. The argu-
ment is now similar to that in Section 2.

The mass (1 —n)pdx of liquid per unit area is
accelerated from %, to #; the added momentum is
supplied by the action of a pressure p on one face
and p. on the other face. Hence,

(I=n)p(u—u)dx=(p—p.)dt,
and since dx= U.dt,
= pe=(1—n)pUc(u—u),

where p and u denote pressure and particle
velocity in the unbroken liquid just behind the
front.

Furthermore, since one face of the layer moves
at speed # and the other at u,, its thickness
changes during dt by (u.—u)di. Part of this
change is taken up by compression of actual
liquid from p, to p, which changes the total
thickness of liquid, initially equal to (1 —1)dx, by
the amount

—[(p—2p.)/pc*](1 —n)dx,

oc® representing the elasticity. In addition,
cavitated spaces of total thickness ndx are closed
up. Hence,

(ue—u)dt=—[(p—pe)/pc*](1 —n)dx —ndx,

(32)

(33)
pc(u—uc)=[pc*n+(1—n)(p—p)1U..
In addition, there is Eq. (23c) or
p+pcu=2p". (34)

Equations (32), (33), and (34) suffice to fix U,
p, and u. The solution can be written in a con-
venient explicit form by introducing the auxiliary
quantity

v=(1/pc) (20" — pe) — the.

According to (31a) v is positive; it may be re-
garded as known. Then

Ue=cv/[v+(c—)n], (35)
e pom (1—1n) pcv?
20+ (c—29)q (36a, b)
v+ (c—v)n

o= p————————,
204 (c—2v)9

E. H. KENNARD

In these equations, asin all equations not referring
to breaking-fronts, # and u, are taken positive
toward the cavitated region.

Since >0 and 1=%>0, these formulas make
p>p. and u>u., as is obviously necessary for
physical reasons. Furthermore, from (35) it is
clear that U,<c. Or, if we consider the velocity of
the front relative to the unbroken liquid behind
it or U/=U,—(u—u,), we find that U,/ <ec.
Thus the front cannot run away but must remain
subject to influences propagated up to it from
behind at speed ¢. To sum up, all forced closing-
fronts move at a speed less than that of sound
relative either to the unbroken liquid behind them or
to the cavitated liquid in front.

The requirement, 2>0, has been included in
the definition of forced closing-fronts because
boundaries at which n=0 appear to constitute a
singular class. One type of such boundaries has
already been discussed.

(4) Boundaries at which n=0

If 2p' > p.+pcu., a little consideration shows
that the boundary will advance as a closing-front
of theintrinsic type if it can do so, otherwise as one
of the forced type; in the latter case, its velocity
of advance is initially equal to ¢, so that any
tendency to form a front closing by intrinsic
action but advancing at a speed below ¢ is cut
short. The front will usually advance at once into
regions where 1>0.

If, however, 2p’ <p.+ pcu,, a resting boundary
as described by Egs. (30a, b) should certainly
occur, accompanied by a finite discontinuity in
the particle velocity and by the formation of a
gap or a special layer of bubbles lying between
the unbroken and the cavitated parts of the
liquid. It appears, however, that the opposite
side of this gap may also advance into the
cavitated region as a closing-front, so that the
original boundary splits into three, two resting
boundaries separated by agap and a closing-front.

The principal type of boundary at which =0
is the boundary that has just ceased moving as a
breaking-front. For there, usually, the inequality
expressed by (13c) has just failed to exist because
its members have momentarily become equal;
hence by (4) at this instant, Uy?=c? and by (14)
n=no=0. At this instant, furthermore, Eq. (5)
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becomes, after reversal of the signs of #. and u,
because of the difference in the direction chosen
here for positive velocities,

we=1up— (Pe— Pv)/ pC,

and insertion of the value of u, given by this
equation for # and of p=4, in (23c) gives

ZPI = pc+ pCU..

The slightest increase in p’ will thus cause the
boundary to start back as a closing-front.
Otherwise it remains as a resting boundary.

6. THREE-DIMENSIONAL CAVITATION

Insofar as the three-dimensional theory can be
formulated in compact form, it is easily written
out as a generalization of the one-dimensional
theory.

Equations (2a, b) are replaced by

du/dt=—Vp, ap/at=—pctdivu. (37a,b)

It is clear that wherever d4/0x occurs in the one-
dimensional formulas as the equivalent of dp/dt,
it is to be replaced by div u. The theory of
boundaries as given above then becomes appli-
cable to three-dimensional cavitation, provided x
in the one-dimensional equations is interpreted as
distance along the normal to the boundary, and
provided # is replaced by the component of the
particle velocity taken in the direction of this
normal. In addition, it is to be assumed that, as a
boundary moves, no change occurs in any com-
ponent of the particle velocity tangential to it,
the impulsive changes being confined to the
normal component.

Cavitation will begin at a point where a local
minimum of pressure sinks to the breaking pres-
sure ps, and from this point a breaking-front will
spread out in the form of a closed surface sur-
rounding the point of initiation and enclosing a
cavitated region. In the unbroken liquid this
surface, at which p=p;, constitutes a surface of
uniform pressure, hence the normal to the surface
lies everywhere in the direction of Vp. The con-
ditions to be satisfied in the unbroken liquid in
order that such a front may advance can at once
be written down as a generalization of Eqgs.
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(13a, b, ¢):

p="bs div u>0,

0=(0p/dn)<pcdivu, (38a,b,c)

where # stands for distance measured into the
unbroken liquid along the normal to the bound-
ary. As before, the front cannot travel to the
boundary of the region in which, in the absence of
cavitation, the pressure would sink to py, at least
provided all derivatives of p are continuous
functions of the space variables. For U, the
velocity of propagation of the front along its
normal relative to the unbroken liquid ahead,
Egs. (4) and (8) are replaced by

0y

é)u, auz aP
Ub=pc2( +—-t )/(——)Zc (39)
dx dy 09z on

In the same way the theory of the cavitated
region, as developed in Section 3, can at once be

“generalized. Those components of the particle

velocity which are tangential to the breaking-
front are unaltered by the passage of the front,
whereas the component perpendicular to the
front, taken positive toward the unbroken liquid,
is changed from uy, to ., where

Uen=Upn+ (Pc— Pb)/ p Us. (40)

The fractional cavitation g, or the fraction of the
space that is occupied by bubbles, is left by the
passage of the front at the value stated in Eq. (14)

or
no="[(pe—ps)/pc*][1—(c*/ Us») 1

after the lapse of a further time £—#, it becomes

(41)

n=f div wdt+[(pe— ps)/ pc?]

X[1—=(/U ] (42)
Here u, is the particle velocity in the cavitated
region, which remains constant in time as long as
the cavitation lasts.

From the physical standpoint, the behavior of
resting boundaries and of closing-fronts, also, is
essentially the same as in the one-dimensional
case.. For intrinsic closing-fronts the mathe-
matical theory likewise is similar and can at once
be written down. Iiquation (27) for the propa-
gation velocity of such a front, relative to the
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cavitated liquid, is replaced by

Ue= —(div u,)/(dn/0n). (43)

For a forced closing-front, the analogs of
Egs. (32) and (33) can at once be written:

p—P¢=(1—n)PUc(un_ucn)7 (44)
pC(thn—tten) = [pc*n+ (1 — 1) (p—p) JU.. (45)

Here p and u denote pressure and particle ve-
locity on the unbroken side of the front and the
subscript # denotes the component normal to the
boundary, taken positive when directed toward
the side of cavitation. Components of velocity
tangential to the front are unaffected by its
passage. Difficulty is encountered, however, in
attempting to obtain a third equation in order to
determine p, #, and U,, if v and #,, are assumed
known. Even the condition for the distinction
between resting boundaries and forced closing-
fronts cannot easily be formulated in the general
case. The disturbance in the unbroken liquid
might, indeed, be resolved into an infinitude of
plane waves; but the treatment of these waves at
a curved boundary is rendered very complicated
by the occurrence of diffraction. All that can
readily be stated is that existing conditions in the
unbroken liquid, which in turn depend in part
upon conditions at distant boundaries, in combi-
nation with the existing distribution of the values
of 7 and of the particle velocity in the cavitated
region, will determine whether the boundary
advances or remains at rest; and, if the boundary
advances, those conditions in the unbroken liquid
combine with Egs. (44) and (45) to fix the values
of p, un, and U,.

It is unfortunate that the three-dimensional
theory cannot be carried further in simple form.

A concluding comment may be added, however,
concerning the special case of spherical waves.

Let

1
br=f(ct—r7)
r

represent the pressurein a train of wavesdiverging
from a fixed center, 7 being the distance from the
center and f any differentiable function. Let
these waves be superposed upon other waves of
small amplitude represented as a whole by

pZ(xr yy Z, t)'
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In this case relation (38c) may conveniently be
written, by means of (37b) and the relation,

P :P1+P21

=0.

0p1 9ps 0p1  Op»
c(w—{——

ot ot on  on

If the normal along which # is measured makes
an angle 6 with the direction of 7,

9p1 Ih 19p1 p1
—=——2c0s = —(—“—{—-— cos 0;
on Or c at

hence, the preceding equation, expressing the
necessary condition for the propagation of a
breaking-front, may be written

0p1 cp P2  dp2
—(1—cos t9)-———l—-—~1 cos 0>—+c—.
a7 ¢ n

(46)

From this result it is clear that a breaking-front
cannot follow a diverging spherical wave of
tension into quiescent liquid (p1<0, p»=0); for
insucha case =0, since over the front p = pp = p;.
To cause cavitation, a spherical wave of tension
must overrun other waves of such character that
theright-hand member of Eq. (46) has sufficiently
large negative values.

7. ENERGETIC AND THERMODYNAMICAL
CONSIDERATIONS

The preceding equations have been based
solely upon the conservation of matter and of
momentum. An investigation, of which no details
will be given, reveals, however, that, if p,<p,,
the passage of either a breaking-front or a forced
closing-front is likely to leave behind it a greater
amount of energy than is accounted for by the
elastic and kinetic energy of the cavitated water.
Upon closer examination of the cavitation process,
it appears probable that this excess energy is
either dissipated or radiated away in consequence
of local oscillations associated with the impulsive
production or destruction of bubbles. Thus the
theory involves no conflict with thermodynamics.

A difference between the breaking-pressure py
and the cavity pressure p, implies, however, an
instability of the liquid which might seem to
open the way for other types of action than those
assumed above. There exists in fact, no hydro-
dynamic or thermodynamic reason why cavita-
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tion should not occur at any pressure below p.. An
analogy might be expected with the behavior of
moderately supercooled liquid, in which freezing
must be initiated by external causes but, once
started, spreads rapidly until the temperature of
the mass has been raised to the freezing point. It
might be anticipated, therefore, that a breaking-
front, if unable to advance further at the pressure
of spontaneous cavitation, ps, would continue to
advance at higher pressure p;” until it encountered
a pressure equal to p..

Against such an assumption the following ob-
jection may be raised. It can be shown that even
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on this alternative hypothesis a breaking-front
must advance through the liquid at supersonic
velocity. But the advance into regions of pressure
higher than p, would necessarily occur, not as a
consequence of automatic changesin the unbroken
liquid ahead, but as an effect propagated out of
the region already cavitated; and it seems
unlikely, although certainly not impossible, that
such an effect could be propagated at a speed
exceeding that of sound.

Which assumption corresponds more nearly
with the behavior of actual liquids remains to be
discovered by experiment.
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With a “two-bulb” thermal diffusion experiment in which is used NH; having about a 15 per-
cent N® content to increase the accuracy of the mass spectrometer analyses, it has been found
that with decreasing temperature the thermal diffusion constant @ of ammonia changes from +
to — values at about room temperature. The value of « varies linearly with the logarithm of the
absolute temperature, the rate of decrease being, however, nearly eight times that for neon
and argon. A qualitative discussion is presented, attributing this effect largely to the strong
first-order dipole-dipole intermolecular forces which are proportional to 1/R*.

N general the phenomenon of thermal diffusion

operates to produce an increased concen-
tration of the heavier component in a binary gas
mixture in the colder portion of the apparatus,
while the lighter component tends to concentrate
in the warmer part. For these cases there is a
positive thermal diffusion constant « in the
equation Dy/D=acic;, where Dy is the coef-
ficient of thermal diffusion, D is the coefficient
of ordinary diffusion, and ¢; and ¢, are the
relative concentrations of the light and heavy
components, respectively. In fact, until just
recently no instance where thermal diffusion
proceeds with a negative thermal diffusion con-
stant had been reported. Grew! has now found
a reversal in the sign of o with change in the
composition of a neon-ammonia mixture. Be-

1 K. E. Grew, Nature 150, 320 (1942).

tween 0 and 75 percent neon, the heavier mole-
cule, neon, tends to concentrate at the upper end
of a Clusius-Dickel column. This indicates that
the « is negative. Above 75 percent neon, the
neon concentrates at the lower end, so that in
this range « is positive. The theoretical possi-
bility of such a reversal had been pointed out by
Chapman.? ’

A definite temperature variation of the positive
a for neon was found by Nier,* the value of «
decreasing with the lowering of the mean tem-
perature. Jones! has shown theoretically that a
variation similar to that reported by Nier is to
be expected for either the Sutherland or the
Lennard-Jones 9,5 molecular models. This theo-
retical investigation indicated that, for tem-

2S. Chapman, Proc. Roy. Soc. A177, 38 (1940).
3 A. O. Nier, Phys. Rev. 57, 338 (1940).
4 R. Clark Jones, Phys. Rev. 59, 1019 (1941).



