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A theory of nuclear forces is developed, based on the hypothesis that the interaction between
a nuclear particle and the mesotron field is strong. Two types of mesotron fields are considered,
the charged scalar and the neutral pseudoscalar. The latter, for large enough separation, gives
forces between two nuclear particles of the same type as those obtained from perturbation
theory and, hence, with the spin dependence and exchange properties required to fit experi-
ment. However, at closer approach the forces become ordinary (non-spin-dependent). It is
found impossible to obtain spin dependent forces which, at the same time, extend to small
separations and are of sufficient strength to account for the properties of the deuteron.

I. INTRODUCTION

' 'T is well known that the interaction between
& - mesotrons and nuclear particles cannot be
treated as small; such perturbation treatments
are not only inconsistent —they lead to inac-
ceptable nuclear forces and to a much too large
scattering cross section for the mesotron. * Oppen-
heimer and Schwinger' have shown that the
strong coupling theory affords an explanation of
the smallness of the scattering cross section; the
question of nuclear forces was left open by these
authors.

It is not diFficult to see that in the limit of very
strong coupling, the nuclear forces will not be
right. For this there are two related reasons:

(1) For strong enough coupling, the mesotron
field due to the interaction of two nuclear par-
ticles becomes large compared to the field of a

~ See W. Pauli, Abstract No. 25, Bull. Am. Phys. Soc.
18, No. 1 (1943). Professor Pauli considers the possibility
of removing divergent terms associated with a point source
by a subtraction formalism, while reducing the scattering
cross section by means of radiation reaction.' J, R. Oppenheimer and J. Schwinger, Phys. Rev. 60,
150 (1941).

single mesotron; field Huctuations become unim-

portant, and the equations of the field may be
treated classically. The classical solutions of the
field equations of course exhibit the same sin-
gularities as arise in the lowest order perturbation
theory. (2) At the same time, the interaction
energy becomes large compared to the excitation
energy of proton and neutron isobars, so that it
is energetically favorable to excite many isobaric
states; the total spin of each particle (intrinsic
spin or isotopic spin, plus spin or isotopic spin
of the associated mesotron field) becomes
eFfectively very large, and behaves also in an
essentially classical manner. The spins are thus
free to orient themselves in such a way as to
reduce the potential energy to a minimum. It
follows that the interaction energy is an ordinary
potential, non-exchange and spin independent,
with singularities as bad as those of the per-
turbation theory. In the following sections it
will be shown that these expectations are fully
borne out by the detailed quantum-mechanical
calculations.

It is, of course, true that with fixed magnitude
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of the coupling constant, the interaction energy
between two nuclear particles becomes small as
the distance between them increases; for suf-

ficiently large separation, the interaction energy
becomes smaller than the energy of excitation of
isobars, and beyond this point the forces change
over to the type predicted by perturbation
theory. The question that now arises, and which
is the subject of our investigation„ is whether a
theory with an intermediate coupling strength
can give a satisfactory account of the forces and
whether the coupling constant can be so chosen
that the region of spin dependent exchange forces
is sufficiently extensive and the forces in this
region sufhciently strong.

As we have just seen, for a theory with spin
dependent coupling the nuclear forces remain
spin dependent only for separations large enough
to make

where g is the coupling constant, a the radius of
a nuclear particle, and (~) ' the range of the
forces. The observed scattering cross section
demands ra&0.1. It should be remarked that
the condition for the validity of a perturbation
treatment is that the self-energy of a nucleon
due to its interaction with the field be small com-
pared to the mesotron rest energy, g'/(aa)'&1.
Weak couphng would thus require g & (Icc)

0.001. Forces derived from these constants are
100 times weaker than actual nuclear forces.
Thus we have only to consider g'»(~a)', or
strong coupling.

The second decisive point in our investigation
is this: Although for g'e ""/~r & (aa)/g' the
forces given by the strong coupling theory are of
the same type and radial dependence as those of
perturbation theory, they are reduced by a
numerical factor f: ~ for the charged scalar, -',

for neutral pseudoscalar, charged and sym-
metrical pseudoscalar. ' These factors arise be-
cause the spin and charge of a nucleon oscillate
with high frequency in their own fields even in

the absence of a second nucleon; their com-

ponents responsible for the nuclear interaction
have smaller expectation values.

~%'e are indebted to Professor Pauli for the results in
the charged and symmetrical pseudoscalar cases.

If now g' & 1, the spin dependent forces are too
small; if g'&1„ the forces are spin dependent
only for ar& 2, and their maximum depth will
be less than ~10 'pc' or 1 Mev. Thus we see that
with aa ~& 0.1, no value of g' gives spin dependent
forces large enough to agree with experience. 3

It may be remarked that values of a of the
order (~) ' not only conflict with the data on
mesotron scat tering, but essentially render
nugatory a field theory of forces, since for r a
these forces are entirely determined by the
nature of the source, and not by that of the field.

II. CLASSICAL THEORY

As has been pointed out in the introduction,
the main features of the strong coupling theory
of nuclear forces can already be seen in a classical
theory. We shall, therefore, begin with an in-

vestigation of the symmetrical scalar theory in

the classical limit.
The heavy particle will be supposedly spread

over a finite region of radius a with a density
U(r), J'dr U(r) = 1. In accordance with our above
remarks concerning the size of the source we
suppose ~a((1 where A:= pc/5 and p is the meso-
tron's rest mass. The Hamiltonian of the sym-
metrical scalar theory when two heavy particles
are present is

~&=-'JI «LI (r) I'+0(r) '0(r) j

—
g(4~)1)I dr[V. (r)~. y(r)+ U, (r)~, y(r)]. (1)

Here U, and Ug are the source functions of the
two heavy particles, ~„and ~~ their isotopic spins.
The wave function P is a vector in ~ space; its
x and y components are the real and imaginary
parts of the charged field, its s component is the
neutral field. The operator co'= (a' —6), whereas
the coupling constant g is related to the dimen-
sionless parameter g' through g=g'(hc) l.' The

' According to investigations of Nelson and Oppenheimer
(unpublished} strong coupling pair theories give a mesotron
scattering cross section equal to the square of the range of
the forces, and forces which are therefore inacceptable.
In addition, in these theories it is impossible to combine
spin dependence with saturation.

4 Vfe adopt rational units throughout: k =@=1.
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equations of motion are: with

P+a)'P =g(4pr)'(~, U.+~« Up),

Ip~, = —g(4pr)4, XJl dr/(r) U, (r), (3)
S= J~J~drdr' U, (r) Up(r') exp ( «

I
r —r'

I )
i

R= J"Jfdrdr'U„(r). U (r') exp ( —«Ir —r'I)2

(.a«1)

fl pp= 'g(4pl) pbX Jtdrp(r) Up(r).

These equations will be treated classically; that
is, we shall ignore all commutators of the quan-
tities which appear.

For strong coupling, g&)1, we can find a class
of solutions which are non-radiating (i.e. , involve

only frequencies smaller than K, and thus no
wave zone field). We take

d being the separation of the two sources. Hence
we obtain a solution if

u =2«/g'(R+S) rp. (6)

Solutions with ~, not parallel to ~b give high fre-
quencies of order 4prg' JJ'drdr' U (r) Up(r') F(r, r')
in contrast to the quasi-static solution just found.

The energy associated with our quasi-static
fields can be calculated from (1) which gives, to
order 1/g':

&a —&b —&0+ 'c ye &a &b &0 1&12 — 2 2 I 2 2K

(7)II= g'(I+—J)—,
g'(R+S) ~p'

(.a«1),
I=4pr t "drdr'U. (r) Up(r') Y(r, r') -e "'/d,

(d»a).
P(r) =g(4pr) l~p t Y(r, r') I U, (r') + Up(r') ]dr'

The real and imaginary parts of the complex
vector ~~e'"' are the components of ~. and ~b

along two axes which form, with cp, an orthogonal I=4prJI ~l drdr'U, (r) U (r') V(r, r') 1/a,
axis system. The solution of (2) is then

+g(4pr) l~~e'"' Y„(r, r') L U, (r') + Up(r') ]dr'.

Where Y is the Yukawa potential:

and

exp ( —«Ir —"I)
Y'(r, r') = 1/4pr

Ir —r'I

exp L
—("—")'Ir—r'I]

Y,(r, r') = 1/4pr
Ir —r'I

iu~g 4plg (cp X%1)JI J
drdr'I Y(r, r')

—Y,(r, r')]I U.(r')+ Up(r')]U. (r) (5)

or, expanding Y„ in powers of v to order v'.

This expression for P substituted in (3) gives

The dominant g2 term contains the self-energy
of the two heavy particles, —g'I, and the inter-
action energy between them, —g2J. The small
term in 1/g' may be rewritten in terms of the
charge vector Q= J'(&Xpp)dr, whose s compo-
nent gives the mesotron charge in units e. Using

(4) we find Q= —2~qe'"', in agreement with the
constancy of the total charge vector Q+~, +~p.
The first term in (7) is thus

2g'(R+S) 1 —Q'

and represents the classical analogue of the
heavy particle isobar energy discussed by
Wentzel, s This non-radiating solution can be ob-
tained only for values of the charge Q&1.

The most striking feature of the classical cal-
culation is that, for the solution of minimum

energy, there is a strong coupling between the

iu~, =g'(g p &«g) ( /2 u)(R«+ S) 5 G. Wentzel, Helv. Phys. Acta 13, 269 (1940).
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directions of the isotopic spins of the heavy
particles causing them to line up parallel to each
other. This has as a consequence that the inter-
action energy —g'J is an "ordinary" potential,
completely independent of isotopic spin. It will

be observed also that for a—+0 the singularity in

the potential is of the same type as yielded by
perturbation theoretic treatment.

This treatment of the classical theory is due
to Professor J. R. Oppenheimer. We are very
grateful to him for permission to quote his

results.

II except that p(r) is a complex mesotron field

amplitude and x(r) its canonical conjugate.

[s.(r), 4 (r')] = —i6(r —r').

The operators v and ~+ change the projection
of the heavy particle's isotopic spin from proton
to neutron and from neutron to proton, respec-
tively. We introduce also

N =4~~( dr[U(r) ]',

III. CHARGED SCALAR THEORY

We shall begin our consideration of quantum
field theory with a discussion of the charged
scalar field, the mesotron theory originally pro-
posed by Yukawa. Although this simple theory
cannot be expected to yield the observed nuclear
forces, all the cogent results can already be ob-
tained —no essentially new factors appear in the
more complex fields which have been invoked to
explain nuclear forces.

that is

so that

X(r) =4m') 2U(r),

(~' —6)X(r) =4~ U(r),

I=~I drX(r) U(r),

((r) =X(r)(1

Jl dr/(r) U(r) =1.

(10)

A. One Nuclear Particle

A treatment of a single heavy particle coupled
to the charged scalar field has been given by
Schwinger. However, we wish to introduce a
somewhat different mathematical treatment
thari was used by Schwinger, or by the present
authors in their original work. 7 The change
consists in expanding the fields in terms of the
Yukawa function co 'U(r), instead of in terms of
the source function U(r) itself. This more con-
venient treatment was suggested by Professor
W. Pauli and it is with deep appreciation that
we acknowledge his permission to use it in this
paper.

The Hamiltonian of the heavy particle plus
mesotron field is

H=&l dr[~(r)~(r)+@(r)co'4 (r)]

+g(4s)&~l drU(r)[r @(r)+r+Q(r)]. (8)

It is convenient to split p and x into "coupled"
and "uncoupled" components as follows:

4 (r) = (4~)-l4o&(r)+(i(r),

~(r) = (4~)4., U(r) +7r, (r),

where we require of the functions p&(r) and s &(r)

that

&0 and mo are canonically conjugate expansion
amplitudes. They can be determined by

f
@,= (4~) & dry (r) U(r),

(13)

~, = (4~)-& dr~(r) &(r).

s ~(r) and 4 &(r), however, are not exact canonical
The notation is the same as that used in Section conjugates but satisfy the commutation relationconjuga es,

' J. Schwinger, unpublished.' S. M. Dancoff and R. Serber, Phys. Rev. 61, 394 (1942). [m.&(r), Q~(r')] = —f[8(r—r') —U(r) $(r')]. (14)
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In terms of these variables

II=¹prrp+Qp$p/I+g(r Pp+r+4&p)

+Jfdr[41(r)& 41(r) +s 1(r)&1(r)]

+ (47r)'s. pJfdrs. &(r) U(r)

+(4pr)*spJfdrpr, (r) U(r). (15)

Introduce polar coordinates:

—
g g

—se

«= ps"Lpo+(p!qo)(pp+ p 2)], —

g ~s8

~p= pe-"[pp —(p/qp) (pp —
p
—p)],

4&(r) =q&(r)e " pr&(r) =p&(r)e",

4&(r) =q, (r)e", pr, (r) =p, (r)e—",
where

Q = —iJfdr[prg(r)4g(r) —rr, (r)4, (r)].

(16)

Here (pp, qp) and (pp, 8) are real canonically con-
jugate variables. The total mesotronic charge is
given by

g/p p»1. (20)

We transform to a representation in which the
interaction energy is diagonal. The eigenstates
of the heavy particle for this term are not
proton and neutron, respectively, but are
derived from the latter by a unitary transforma-
tion F'=SF where S is the unitary operator
exp (pr, e/2). When the states of the heavy par-
ticle are represented as proton and neutron T

v+, and 7, are given by the matrices

/0 01~ (0 11~ (1 01~
0&' &0 o&' iso

After the S transformation' the Hamiltonian
becomes H'= SHS '; In particular the expression
(r e' +r+e ') is transformed into (r +r+) = r, .
If we choose for the states of the heavy particle
a representation in which ~, is diagonal, the
interaction energy is found to be diagonalized
with eigenvalues +garo. On the other hand, off
diagonal terms are introduced elsewhere in H,
since Pp —+Pp+r, /2 and in this representation r,
is off diagonal. In the strong coupling limit, we
may choose the lowest value of the interaction
energy and neglect terms linear in 7„as coupling
widely separated states. The condition implied is

—pJfdr[pr(r)4 (r) —t(r)g(r)] =pp.
The Hamiltonian becomes

(18) H'= (N /4) (pp'+ p p'/qp'')+q p'/I gq p+ . . (2—1)

The complex variables pz(r), qq(r) satisfy the
same commutation relation as do pr~(r), 4~(r),
namely, (14). The Hamiltonian becomes

II= (N/4) Lpo'+ (1/qp') (p p' —1/4) ]
+qp/I+gqp(r e'+r, e ')

+J
fd'L ( ) 'q ( )+f ( )p ( )]

+ (4pr) '(p, /2) Jfdr U(r) [p, (r) +p, (r)]

+ (4s)l(p/2qp)P p Jfdr U(r)

&&[I (r) —p (r)] ' (19)
' po' is a symbolic expression for (1/go)pogopo. We have

neglected terms of the type Z/qo because, as the later work
shows, Z vanishes in the absence of free (unbound) meso-
trons. Such terms are of higher order in 1/g and are
negligible if g/pg))i.

The term linear in qo is eliminated by a shift in
origin:

Qo=qp-gI/2 (22)

Since gI/2 is a constant, pp is conjugate to Qp.
We get

p, (r) = (1/V2) [p,(r) +ip„(r)],
q&(r) = (1/K2) [q, (r) iq„(r)]—

(24)

' For previous use of the S transformation, see W. Pauli,
Helv. Phys. Acta 12, 147 (1930);also reference 12.

II' = (N/4) (p p'+ p p'/q, ')

g'I/4+ Q P/I+— . (23)

The leading term, g'I/4, gives the—energy, to
order g', of the static field bound to the heavy
particle.

It is convenient to resolve the complex com-
ponents of the field into real and imaginary parts:
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Here again (p„q,) and (p„, q„) are real pseudo-
conjugate pairs satisfying the commutation
relations (14). The Hamiltonian separates into
two commuting parts:

fying (14).To first order in 1/g:

P (r) =p (r) (4 )'~~(p /g) U(r)/I

H' = g'I/4—+II,+II',
III,= ', Np, '-+q„'/I+'; drq. (r)co'q, (r) q„(r) =q.'(r) y

—X(r) drCX(r)]' +
(29)

+ (4~)'po/K2 fdrp, (r) U(r)

+ljfd Cp.() {' (25)

II„=Npe'/4q~'+-, '~ dr

&& Cq„(r) 'q, (r)+ p„(r)p„(r)]

+(P /v2qo)(4 )' ~drp. (r) U(r)

II, gives the energy of free oscillations about the
equilibrium position qo gI/2. For——, if we con-
struct the functions,

g, (r) = (4~) lQ0$(r)+ (1/&2)q, (r),

*(r) = v' P U(r)+ (1W~)p*(r)

Then @, and ~, are canonically conjugate and

H. = )I dr {C~, (r) g'+ P, (r)a 'P, (r) }. (26)

II, is diagonalized in plane waves and represents
a field of unscattered mesotrons.

Meanwhile II„can be transformed into a
similar form if we first eliminate the term linear
in p„(r) by applying a unitary transformation.

It can be shown that the criterion for neglect of
succeeding terms in (29) is, once again, g/pp»1.
If (29) is substituted into (25), the linea. r term
is eliminated, and

II =4spg' g'jfdr{X(r) }'

+-,'~I drC {p„'(r) }'+q„'(r)~'q„'(r) j. (30)

Here we have substituted for qo the equilibrium
value gI/2 in accordance with the strong
coupling approximation, a procedure which can
be proved valid for g)&1. The latter two terms
in (30) would, in analogy to H„respesent the
energy of a set of free mesotrons except that p„'
and q,

' are not exact canonical conjugates. We
will not here calculate the eigenstates of II„;we
will only remark that they can be represented at
large distances as plane+scattered wave, leading
to a scattering of free mesotrons by the heavy
particle. " Since we are interested only in the
heavy particle in the absence of unbound meso-
trons, we may assume that none of the unscat-
tered "x" waves nor any of the scattered "y"
waves are present. The total energy then reduces
to

H = g2I/4+4—s P~2 g') fdr {X(r)}2. (31)

F= e'fu F'e 'fu = F'+i C U, F]
Z2

+—,CU, CU, F33+
21

where
(4w)'v2pg

U= —
~

drX r' g„' r' .

g~f«CX(r)]'

(27)

(28)

The latter term thus appears as a correction to
the static self-energy of order 1/g2. Since for the
states under consideration the expectation value
of v, =0, it follows that the expectation value of
the charge of the heavy particle core = -,'. Hence,
if Q is the total charge of the system pp=Q —~.
For small sources, (Ka»1),

This produces a canonical transformation from
the variables (p„, q„) to (p„', q„'), each pair satis-

(1/4w) Jfdr {X(r)} ' = 1/2K.

"J.Schwinger, unpublished.
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Hence the isobar energy takes the form components:

2~~'(Q —2) '/g'. (32) &(r) =(4s) '(&p"Y(r)+A k (r) I+4'2(r)

We are restricted by our approximation to isobars ~( ) ( ~)'I~' ( )+s' U ( ) I+s'( )'
for which (Q —-', )/g«1. where we require

(35)

B. Two Nuclear Particles

The Hamiltonian is

II= I dr[27(r)s-(r)+($(r) pppy(r)]

JI dr/2(r) U" (r) =
Jl drp2(r) UB(r) =0,

tdr2l. &(r) ]A(r) = JI drs &(r) p(r) = 0.

(36)

+g(4s)'.Jtdr( U (r)[2. g(r)+2+ p(r)]

+ UB(r)[2 Bp(r)+r+Bp(r)]I. (33)

The amplitudes &0 and mo are determined by

The procedure parallels closely that for a single
heavy particle. We introduce

XA(r) —4~~—2 UA(r) .

XB(r) =4(ra) 2UB(r);

II=4+ dr[ U" (r) ]'=4sJI'dr[ UB(r) ]'

4,p =(4s-)'*JI dry(r) U (r),

~ "=(4~) 'J~«~(r) &A(r);

s pB ——(4~)-l adrs. (r) P(r).

(37)

3E=4s dr[U" (r) UB(r)],f

and define

I= drXA(r) UA(r) = tdrX"(r) U"(r),

I= drX" (r) UB(r) =
JI drXB(r) U" (r).

We now introduce functions orthogonal to the
U's:

lI dry(r) U (r) = dry (r) U" (r) =0,

(gp", s.p") and (4p, s.pB) are conjugate pairs.
However,

[s.,(r), A(r')] = —2[8(r —r')
—U'A(r) P(r') —UB(r) P(r')]. (38)

In terms of these variables

II—+(g A~ A+@ B~ B)+~(g A~ B+g B~ A)

+[1/(I' J')][I(~.—"~."+~'~o")
I(@Ay B+y By A)]

+g[2- AgpA+2+AQ A+2. B@ B+2~ BP B]

+ (4s)is p"J~dr U" (r) 2T.,(r)

Jtdrp(r) U" (r) =
J~ drp(r) UB(r) = 1.

Such functions are

IX~ JXa
(B-

I2 —J2

IX~—JX~

I2 —J2
(34)

We expand p, m. into coupled and uncoupled

+(42l-)i~p JtdrU (r)2T.,(r)

+(4s)'2Tp
J

drU (r)s&(r)

+ ldr[2T~(r)2l2(r)+42(r)p2'42(r)]. (39)
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We introduce polar coordinates for @0", p0

@0"——qo" exp( —i8g); Po
——qoe exp (—i8e).

Pe =Pe"+Pe P'4=&8 —Pe .

The canonical transformation takes the form:

w A ~ Ae—i(8+/) ~~0 —
QO

~0"——[e'('+&&/2][po" +(i/q(&")

x {(ps+pp)/2+-' , ——',2 }],
Z. A ~ A~i(8+/).~0 —g0

g A [e i(8+/—&/2)[p A. (i/q„A)

It is more convenient, however, to use instead of
4, 0B the quantities

8=(8g+8e)/2; P=(8g —8s)/2,

the leading, or interaction term. This becomes

g[qg"(r 'ei&'+»+r "e i"+&&)

+q B(r Bei(e P&+—r Be i(8 P—&)]-

Again apply an S transformation, where

S=exp [iv,"(8+&)/2] exp [ir'e(8 P—)/2].

The interaction energy becomes

g[qo r*+qo "].
This is diagonal in a representation in which ~ "
and 7, are diagonal. The lowest eigenvalue is
—g[qo"+qoe]. Off diagonal terms coupling
widely separated states are introduced elsewhere
in II, since under the S transformation

p,~p, +2(r,"+r,') and p,~p, +k(r," r, ). —

X {(Pe+Pp)/2 —-,'—z~ }],
@

B
q Bg—i(8—P) ~

«'= Le*" "/2][po'+(i/qo')

x {(p —pp)/2+-, ' —-', p}],
@

B
q

B~i(8—P) ~

xo'=Le *" "/2][po' —(i/qo')

X {(p'—po)/2 ——',——,'~}],
Q&(r) =q&(r)e "; ~&(r) =p&(r)e+",

p, (r) =q, (r)e", rr&(r) =p&(r)e-",

(4o)

As before, we neglect terms linear in ~,A and 7 B

since these quantities have no diagonal matrix
elements for the lowest eigenstate of the inter-
action energy. The Hamiltonian becomes (neg-
lecting P as before):

II"=(P/4) [(p(&")'+(p,+p~)'/4(q, ")']
+(&/4) L(po')'+(p' —p')'/4(qo')']
+-'icos 24'[po po +(p" p")/4qo"qo ]
+(~ /)4» n 42[po"(p' p')/qo'—

po'(pa+ p')—lqo"]+Lll(I' ')]-
[I{(qA)2+(q B)2} 2' Aq B ((&s

i "dr—[~&(r)p, (r) —g, (r)4, (r)].

The independent conjugate pairs are (po", qo"),
(pos, qos), (pp, 8), and (p', p). p&(r) and q&(r)
commute with the other quantities, but

[p (r), q((r')]

i[8(z —z') —U—~(r) p(r') —Ue(r) $ (r')].

—g(qo" +qo')+(4~)*'(po"/2)
~

«U" (r)

X[p,(r)e '&+p, (r)e'&]+(4~)&(pop/2)

X I drU (r)[p&(r)e'&+p, (r)e '&]

+i(4~)*'{(p'+p')/4qo'}

X dr U"(r)[p, (r)e'& P&(r)e '~]—
The total charge is +(4~)'*i{(ps—pp)/4qo'}

XJ"dr U (r) [p, (r)e '& —p, (r)e'&]

+Jr'dr[p, (r)p, (r)+q, (r)a&'q, (r) 7. (41)

=k(p'+ p' Z)+k(pe p' 2—)+2=p'. — —'' The argument for the neglect of terms involving Z is
the same as in note t6). Where products of the fcrm

Before writing down II, we shall consider just pyf(p) appear, theywillalwaysbeconsideredsymmetrized.
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1. Freezing of the Isotopic Spin

We first concern ourselves with the elimination
of the linear term. This requires shifts in the
origins of qo and go

qo" =Qo"+ (g/2) (P J') /—(I Jco—s 2P),
(42)

go =Qo +(g/2)(P J')/—(I Jco—s 2f).

The part of II quadratic in go~ and qo becomes

—(g'/2) (P J') /(I —Jcos—2P)

+ { 1/(I2 J2)]LI{(Q A)2+ (Q B)2}

—2JQO" Qo cos 2/7. (43)

The first term is the static self-energy of the two-
particle system and the dominant part of II in
the limit of strong coupling. It is a function of
the separation of the two sources through its
dependence on J. P is the angle variable whose
canonical conjugate is pp=po& —pe&, the dif-
ference of charges. In the limit of large g, P will
adjust itself so as to make the energy a minimum,
i.e. , cos 2/=1, /=0 or ~. In this limit, the leading
term becomes simply

—(g'/2) (I+J), (44)

a result analogous to that obtained in II for the
classical symmetrical scalar theory. Fot; ~a&&1,
the part of (44) depending on the separation,
—g'J/2, reduces to g'(pc'—)e ""/2~d, where d
is the separation. Because of its non-exchange
character, this is an inadmissable potential for
nuclear problems.

The condition / =0 or P= z- describes a "freez-
ing" of the two isotopic spins with respect to each
other. It does not follow that this freezing will
occur for all values of d because the leading
potential term —that of order g'—falls off
rapidly with increasing d and may eventually be
dominated by other terms in the Hamiltonian
whose minimizing does not require the freezing
of the isotopic spin. That this is indeed the case
may be seen by considering the approach of two
heavy particles. At infinite separation they may
be thought of simply as two independent systems
such as described in Section IIIA. They have,
together, an energy given by (31):

II= g I/2+4vr(poI +ps~—) g ~tdr{X(r) I,

which can also be written

or
K/g'= —g'J/2,

2/g4=e ""/zd. (46)

When the particles have approached to a separa-
tion equal to the range, ad =1, the isotopic spins
will still be "liquid" if g is not larger than 1.2.
For larger values of g, freezing will take place
at larger separations, according to (46). An
essentially identical, but somewhat more trust-
worthy estimate of the freezing radius will be
given later by (55).

Z. Fxchange Forces at Large Separation

For separations larger than the critical one
defined above, this theory does indeed lead to
exchange forces. For here we may treat the
expression —g'J cos 2P/2 as a perturbation to
the zero-order energy, tcc'pt, '/g'. The unperturbed

sin nPstationary states are, where n gives the
cos n

number of charge units by which the two systems
diff'er. If the charge diff'erence is zero, the per-
turbation vanishes in first order (proton-proton
or neutron-neutron). For one unit charge dif-
ference, there are two independent states, sym-
metric and anti-symmetric in the isotopic spin
coordinate, namely cos P and sin P. The cor-
responding perturbation energies are

U,„t„,——+g'J/4,
U., = —

g 'J/4. -(4&)

This differs only by the factor 4 from the result
obtained in perturbation theory. The occurrence

II= g'I—/2+uc'(p8'+ p~')/g' (45)

At this stage the value of P is completely arbi-
trary. As the particles approach each other,
corrections appear to both terms in (45). By
comparison with (43) one sees tha. t the g' term
gets a correction —g2J cos 2P/2. The isobar
energy levels are also perturbed, but the cor-
rection is small down to separations of the order
of ~ '. For the purposes of this argument we will
not be concerned with smaller separations and
hence will use the second term in (45) unchanged.
We can predict that freezing will set in when the
separation becomes less than a certain critical
value determined by
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of this factor is connected with the fact, which
will be demonstrated presently, that half of the
field [see, for comparison, II„of (25)] consists of
unbound mesotrons which contribute nothing in
order g' to the self-field of the systems. The inter-
action (47) has numerous defects. If the anti-
symmetry of the total wave function of the
deuteron is invoked, then the state sin P can be
identified with the "triplet" state of the deuteron,
and cos P with the "singlet. " Equation (47)
would then predict the singlet to lie lower, in

contradiction to experience. Furthermore, it
could not explain the quadrupole moment of the
deuteron. The strong coupling theory has the
additional weakness that the exchange character
of the force may disappear inside a critical freez-
ing radius. It will be useful, for comparison with
the pseudoscalar theory which will be treated
later, to investigate the freezing condition more
thoroughly and without using the approximation
introduced above.

3. The "Almost Frozen" System

AVe consider values of g and of the separation
which are of such a magnitude that the minimum
of II is determined, to first order, by minimizing
the g' term in (43). In other words, we will

consider P to be in the neighborhood of 0 or or,

so that cos 2P 1 —2P. In the remainder of the
Hamiltonian, we keep only the leading terms in
the expansion of cos 2P, sin 2', etc. We obtain

II= (Iq/4) [(po")'+ (po+ pA) '/4(qo") '1
+P/4) [(po') '+ (po —p~) '/4(qo') ']
+(I}'-I/2)Lpo"po'+(po' p~')/4qo"qo']-

g'(I+ I)/2+g—'I&'(I+ I)l(I- I)
+L1/(I'- J')]LI{(Qo")'+(Q ')'}
—2&Qo"Qo ]+(4or)'(po"/2) «U" (r)

X[p (r)+7 (r))+(4 )'(po'/2)

x&"dr U (r)Lp (r)+p (r)]

+ (4~)"o[(Po+P~)l4qo'] J"«U" (r)

x [p,( ) rp, (r)]+—(4~)-: Lo(po p,-)/4qo'—]
XJ"drU (r)[p, (r) —Pg(r)]

Eigenstates for oscillations of the system about
the position of minimum energy may once again
be obtained by resolving p~ and q& into real and
imaginary parts:

P, (r) = (1/V2) [P,(r) +zP, (r)],

q, (r) = (1/v2) [q,(r) —iq„(r)],

II= g'(I+—I)/2+II, +IIo,

where

II = (&/4) L(po") '+ (po') ']+ (IoI/2) po"po'

+[I{(Qo")'+ (Qo') '}—2IQo"Qo']/(I' —I')

+ (4or) '*(po~/V2) Jl dr U" (r)p, (r)

+(4 )'(Po'/v2) J"d U'( )P*( )

+ -',
&I dr[{p, (r) }o+q, (r)oo'q. (r)]. (49)

Introduce the canonically conjugate variables

@,(r) =(4or)—'*{Q "P(r)+Q P(r)}+(1/%2)q,(r),

,(r) =(4 )'*{-',p,"U"(r)

+ lpo'U'(r) }+(1/~~)p*(r)

H, =
lJ rd[ {s(r)} +4,(r)oo 4,(r)],

representing a system of unscattered mesotrons.
M eanwhile

II.= (&/16) [(po+po) '/(qo") '+ (po p~) 'l (qo') ']-
+ (~/8) (po' p4')/qo'qo'+ g'—I4'(I+ J)/(I I)—
+ (4s)'{&2(po+pq)/4qo" }~l drp„(r) U" (r)

+(4 )'{~2(p —p )/4q '} d p.()U'()

+-',
~

dr[{p„(r) } +q„(r)~ q„(r)]. (50)

+Jt d [ ( )p ( ) + ( )
9

( )] (4g) The terms linear in p„are to be eliminated by a
unitary transformation of the type (27), (29).
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Kc have replaced qp and gp by their equi libriu111

values

A B
Qo =& =Go=-(I+I)

2

The constants c and d [which may be deter-
mined, e.g. , by the condition that p„'(r) be ortho-
gonal to P(r) and P(r), a condition that is

already fulfilled by p„(r)] are given by

where

IR —SJ
C=

R' —S'
JR —SI
R' —S'

R= t dr[X~(r)]'-= itdr[Xs(r)]'-,

S= ~tdrX" (r) Xs(r) .

To first order, g, is unchanged and

p, (r) =p, '(r) —((4 )'/v'8go)

)& [(pq+ p~) ( U" (r) —cX4 (r) —dXe(r) )

+(P& —P~)(U (r) —dX" (r) —eX (r))]. (51)

is the total charge, the first term can be written

4x(M —1)'

2(R+S)g'

1 pI J~' -4~

g i I+Ji 8J(R—S)
(54)

For sources separated by d and of radius a((d
with c defined by

Us(r') exp [—~}r—r'L]
~' drdr' U" (r)

fr —r'~

giving a parabolic dependence on the total charge
of the two particle system, the minimum lying
at &=1.

The rest of III describes harmonic oscillations
of P about the "frozen" position. The zero-point
amplitude of these oscillations is

J=e "d/d,

R/4n- = 1/2x,

S/4~=e "/2x.

Since J/I«1, (54) simplifies to

FI„=,'t dr[{P„'(r)-}'+g„'(r)~'g,'(r)]

4+pg' (I+J)' 4xpp' (I J)'—
+ +

R+S 8q2 R —S

the various constants are given (approximately)
The condition for the convergence of the expan- by:
sion (51) is pg/g«1 and p~/g&&1. II„becomes I= 1/a,

I+J
+g'J4' (52)I—J 4m

g 8J(R —S)
(55)

The first two terms give the energy of a set of
scattered waves, p„' and q„' being quasi-conjugate
quantities satisfying (38). The isobar energy is

4gppg' 4~pp' / I Jl'—
+

2g'(R+S) 2g'(R —S) i.I+I)
I+J

+g~JP . (53)I—J
Since ~ A and ~ B are diagonal, the average heavy
particle charge is the expectation value of
(1+r,")/2+(1+r.s)/2=1. Consequently, if M

We may take P = 1 as the maximum amplitude
for which the isotopic spins can be regarded as
even approximately frozen. This determines a
value for g corresponding to any given value
for d. For ~d = 1, this gives g = 1.0 as a minimum
value below which the system will start to thaw
and exchange forces will make an appearance.
But since g) 1 is a condition for the validity of
the above calculations, it is clear that with the
strong coupling hypothesis, it is not possible to
obtain exchange forces in the charged scalar
theory for separations as small as (~) '.
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IV. THE NEUTRAL PSEUD 0SCALAR THEORY

This theory, in the perturbation approxima-
tion, gives charge independent, but spin de-
pendent forces through a coupling of the heavy
particle spin with the gradient of the mesotron
wave function. We shall treat first the one-source,
then the two-source problem.

(m'p;, @p;) are canonical pairs, whereas

[~,(r), @,(r') ]= —s[&(r—r')

—grad U(r) grad ](r')].
We obtain

II= ,' 1V(~o-) '+ ($o) '/2 I+ dPo—

A. One Nuclear Particle

The Hamiltonian is:
+(4 )", J"«ot, (r) grad U(r)

II= l~ "«I I (r) }'+0(r) '4(r) 1 + s~~«[I oct(r) }'+4 t(r)tp'et(r)]. (59)

—}g(4ot)'/It} I drU(r)d grad Q(r). (56) The cross term in oooott(r) may be eliminated by
a unitary transformation of the type (27), with

is the heavy particle's spin vector. A11 quan-
tities are defined as before with the exception of
the following:

with

U= +(4s-)loop ~t «@,(r) grad f(r)/R, (60)

N=4m. dr
-~&i

U(r) i = i, 2, 3 R = «[B((r)/Bx;5' Z i) 2f 3

X(r) = 4 orcus
' U(r),

BX(r) 8 U(r)
I=~ dr

~+i ~Xi

iII}x ' Bx&'

We split p, m as follows:

g(r) = (4~)—
ipo grad &(r)+p, (r),

m(r) = (4~)r~o grad U(r)+~, (r)

with auxiliary conditions

I «y, (r) grad U(r) =0,

«~, (r) grad $(r) = 0.

It follows that

pp ——(47t)" t«@(r) grad U(r);

Bg(r) 8 U(r)
$ =X/I so that J[«

(57)

~t(r) = m, '(r) —(4~)l~o. [grad U(r) —grad P(r)/R]

@,(r) =y, '(r) .

Substitution gives

4+ 1 g
( .) '+—(~.) '+-d Vo

2R 2I

+a~"dr[I tt, (r) } +4, (r)tp 4, (r)] (61)

It is to be observed that (60) also generates a
change in &0 which is not taken account of here.
A more detailed analysis, parallel to that carried
out for the scalar field, shows that this correction
is negligible in the limit of strong coupling. The
effect of the additional terms which would appear
in H would be to spoil the exact separation of
(61) into a set (wt', Pt') of unbound waves and a
set (mp, Pp) of bound states. The condition govern-

ing the validity of this approximation is

(aa/g)I-«1, where L is the total angular mo-

mentum of the bound mesotron field defined

below. "

pop= (4ot) 'Jtdrpr(r) grad $(r).
"A more complete discussion of the strong coupling

(58) condition in this case is to be found in W. Pauli and S. M.
Dancoff, Phys. Rev. 62, 85 (1942) .
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4m 1 g
(~p)'+—(4p)'+-d 4p

2R 2I
(62)

We assume that none of the (pr~', p~') states
are excited, and proceed to treat the system

defined by

tonian. In particular, d n3 is transformed into 0,
By choosing for the states of the heavy particle
a representation in which o-, is diagonal, the
interaction energy is diagonalized with eigen-

values &(g/»)qp. The angular momentum be-

comes

It is convenient to introduce an orthogonal

system of unit vectors, n&, n&, n3, defined as
follows: n3 is para11el to $0 and n~ has the direc-

tion of the intersection with the xy plane of the

plane perpendicular to n3. The co-latitude and

azimuth of np are a and P, respectively. The com-

ponents of the unit vectors are

L—+L ——.
', [n~o, + (np/sin n)

X (o, cos n —p, sin u)], (65)

and its square is transformed into

L'—&pa'+ p p'/sin' n+

+1/4 sin' 0. pro, co—s a/sin' n. (66)

n&. (—sin P; cos P; 0),

np. (sin n cos P; sin n sin P; cos n).

4p = gona,

Terms linear in 0, and O„have been neglected

np' . ( —cos n cos P; —cos n sin P; sin 0.), as they couple widely separated states. Aside

from the additive constant, -'„(66) is simply the

square of the total angular momentum of a
completely symmetric rigid rotator, the angular
momentum corresponding to the third Euler
angle being o,/2. The eigenvalues of (66) are

(63) therefore j(j+1)——,', where j is the quantum

number for the total angular momentum of the
heavy particle plus mesotron field.

Canonical pairs are (po, qp), (p, n), and (pp, p). We choose the lowest eigenvalue of the inter-

The angular momentum of the mesotron field is action energy and get

L = dr~(r) Qp(r),
gp

4x
PpP+ +qp'/2I gqp/» —(67).

2R

where 9 is the angular momentum operator. For The linear term is eliminated by the shift
our case, this becomes

L= LgpXppp]

=p n~+ p pnp/sin a..

We can also write

ppp= ppnp+(LXnp)/gp.

Qp = qp gI/»—
with the result:

EI= —g'I/2»'+4prpp'/2R

+Q '/2I+(J' —-')/2Rq ' (68)

The energy becomes

EI= (4pr/2R)Lpp'+(I' —1)/qp']

+gp'/2I+(g/»)gpss n„(64)
where L' =p '+pp'/sin' a.

We transform to a representation in which the
interaction energy is diagonal. The corresponding
unitary operator is S=exp Lp p.„n/2] exp [i o,P/2].
The transformation I''=SI' is applied to the
wave function and H'=SHS ' to the Hamil-

The leading term in (68) is the static self-energy.

The two succeeding terms may be described as

the energy of oscillation of the variable qo about
its position of equilibrium, gI/». We treat the
case where this degree of freedom is unexcited,
i.e., when there are no positive energy mesotrons

in the field. Hence, in the last term of (68) we

substitute for qo its equilibrium value, and obtain

for the isobar energy

FIr = (4s» /2g I R) [j (j+1)—4P].
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For aa«1,

BX(r)I'R= l dr
ax

-4~)3a,

We find

IX(r")—I;X(rs)
5 (r")=

g2 J.2

3pc2
( la')[j(j+l) —l-],

2

(69)
IX(r ) —I;X(r")

(;(r') =
12 J.2

in conventional units. The lowest state of this The fields are split as follows:
system is identified as the proton-neutron (j=-,').

B. Two Nuclear Particles

The Hamiltonian is the following:

[I ()I'+4() '4()]

—(g(4pr)~/a) Jtdr[U(r")d~ grad 4 (r)

Introduce

X(r&) =4pr(g pU(r&),

X(rs) =4prop 'U(rs)—

+ U(r )a grad @(r)]. (70)

~U(r") '
r ~U(r') '

X=4m~I dr =47r I dr
Bxi

4 (r) = (4 )-: 2 eo' (.(r")

8+2 4 5'(r ) +4' (r) (71)'dxi

~(r) =(4x)r(ooo" grad U(r~)

+pop grad U(r") I +n.&(r),

with the auxiliary conditions:

8 8
tdr@, (r) U(r") = dry, (r) U(rs) = 0,

J
'

ax; ~
'

ax;

i=1, 2, 3

8 ~ 8
l drpr&(r) $;(r ) = drpr&(r) —$;(r ) =0.

J
'

ax;
'

~ ax;
'

The amplitudes Pp and pop are determined by

ol U(r~) os(r )s

W:=4pr)l dr 2=12 3 4'„=(4 )lJI dr@(r) U(r");
~xi

olX(r") ilU(r") t ilX(rs) QU(rs)I= ldr =,"d.
Bxi &xi ~ Bx; Bxi

xi

BX(r") ol U(z' ) f BX(rs) g U(r")
J;=J dr =

J~
dr

B,f 8
4 p; ——(4pr):~l dr@(r) U(rs),

Bxi

pr„= (4pr)
—

'J~ dry(r) P;(r");
xi

Note that all integrals vanish which involve
derivatives with respect to two different x s.
States orthogonal to the U's are defined as
follows:

8$;(r") 8 U(rs) t 8$;(rs) 8 U(r")

lP, (r"o) 8 U(r") t. B),(r )BsU(rs)
~ dr

Dxi ~ 8xi Bxi

pr„= (4pr)
—

l)l dry. (r) P,(rs),
~xi

A A B B
[pr p;, 4'p;] = [prp;, 4'p;] = i b;r, —

8
[pr, (r), $,(r')] = i b(r —r—') —P —U(r")

i ~xi

8
X &;(r"')—P U(r') —P;(r') .

~xi i ~xi ~xi
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In terms of these variables We have, as a result

N A B~=—
f (oro")'+ (n.ps)'} +Q M;7rp, o.p;

2

A BII=4m+.f ( orp;)'+( rop;) I}—
2

B A B+Z f (A')'+(4'o )'} JA'oot'o
$2 —J -2

+(4o)loop~ "dror, (r) grad U(r")

A B—op;xp;Si

I
+(eo;)'}——AoAo~A (Io J„o)—

+(4or)loops
~l

dror, (r) grad U(rs)

+(g/~) (&" 0o'+&.' 0o')

+ dr[for, '(r) }'+4,'(r)oo'4 '(r)5. (74)

+(g/~)(d" Ilo" +&'Ilo') (72)

The cross terms involving xI are eliminated by a
unitary transformation like (27), (60), but with

As in the one source case, changes generated by
(73) in Pp" and Pos are neglected here. Again, the
(orl', 4 &') system of states is taken empty so that
its contribution to (74) vanishes. We introduce
two systems of unit vectors a,&A, n2A, nsA and
nI, n2, n3B defined as above through two sets
of angles n" p" and n p

A f 8
U= (4or)'* P orp„. dr&, (r) f R,t;(r")

~xi

l3

f R,f;(r') S;f-'(r")}-
~xi

A qAnA18

pop =pp lip —no p /rIp +ng pp

B —
of

BnB

=porno —np p /ohio +11 po

Using

gp sin A

gpB sin o,B.

where

f
R,=){dr (,(r") = ~ dr P;(r )

axi
' ' 0 axi

8 8:;
S;=)tdr (,(r") '-P, (r").

t3x ' Bx'

LA n Ap A+n Ap A/sin ~A

L =neap~ +no po /sin ro,

we find for the total angular momentum of the
mesotron field:

L =LA+LB.

It follows that

or, (r) =ori'(r) —(4or)'* Q pro; X

R;P,(r") —S,P;(rs)
U(rA)

g .2 S.2

We now obtain the minimum eigenvalue of the
interaction energy by applying an S trans-
formation, with

S=exp [iop"n"/25 exp [iog"P"/25

Xexp [io„sns/25 exp [io sPs/25

The interaction energy becomes

+&pi
~xi

R,P;(rs) —S;P;(r")
U(rs)—

R 2 —Si2
(g/~)(&"o*"+& o. ) (7S)

4 (r) = 4 (r).
&3 Symmetrization with respect to p~ and functions of u

is to be understood throughout.
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We choose a representation in which both O.,A

and O.,B are diagonal, and consider the state in
which each has the eigenvalue —1. The eff'ect of
the S transformation on L, L and their squares
is indicated by (65), (66). For example, (I")'
becomes (JA)'+«' where J" is the total angular
momentum of source A plus its associated field.

So far the orientation of the space axes is quite
arbitrary and we may assume the s axis to lie in
the direction of the line separating the two
sources. Then we may write R„=R =R~,
S,=S„=S~, J =J„=J~; in general J~ 4J„etc.

The separation of the static self-energy is
accomplished by the elimination of the terms
linear in the q's. The part of the Hamiltonian
involved is

B
{(@o')'+(to*)'}-

2

Both PpA and Pos are "frozen" and are equal to

(g/-. ) (I+ I
J,

I
)n, ;

yoA = (a/~) (I+
I
J.I)n*.

Equation (78) contains, in addition to the sum
of the self-energies of two separated sources, the
space dependent part —g'I J, l/a' which in this
theory is quite singular, varying as 1/d' for small
separations. Equation (78) is moreover an
"ordinary" force, showing neither spin de-
pendence nor exchange properties. We must,
therefore, investigate the possibility of thawing
of the spins due to the first term of (74). We
expand the Hamiltonian about the frozen posi-
tion; (74) becomes

4~[{ (po")'+(po )'}R./2
A B—40;40;J. (I' J)—(g/—~)(Qp +gp ). (76)

—p Ap S.j/(R. ' —S.')+4«r[{(J")'

It is not hard to show that the absolute minimum
of (76) is attained when the vectors ppA and Pp

coincide in magnitude and in the magnitude
A B

of their components. If J,& 0, then &0;=&0;,
A B

while if J;&0, then &0;———&0;. In any case,
go" ——

gp
——qp. Equation (76) may be written

(A')'
——2ggp/~. (77)

' I+IJ'I

+(J )'}RA/2 —J" J SA7 (R ' —S ')qp'

+L{(Qo")'+(Qo )'}I/2
—Q "Q s

I J,
l
7/(IP —J,P)

Il J*l+JA'
+ {(n")'+(n')'I

2(I+ I J*l)

—nAn& cos (PA —P&)J~ goo/(Ip J 2)

—(g'/~')(I+
I
J.l) (79)

JA n«Ap A+n .«(ppA+ p)/sm n

(JA)2 (P A)2+(PpA+«)2/Sino nA

The direction of PpA which minimizes (77) is
determined by the relative magnitudes of J, and
J~. In our case (au&&1), J. is negative and has
a greater magnitude than J~. Consequently, both Here we have used
po" and —pos (i.e. , np" and —nos) point in the
positive s direction for a minimum of (77). The
minimizing value of go is

op = —(g/~) (I+ I
J.

I ),
Sin nA o.A, sin nB nB,

and (77) becomes

—(g'/~') (I+ I
J*

I
).

1. Forces at Small Separation

(78)

If the sources are sufficiently close together,
the minimum of the Hamiltonian is essentially
given by the minimum of (76), namely (78).

cos n" 1 —(n") '/2; cos n —].+ (n") '/2,

go =go+Qo

with analogous definitions for source B. Qp", the
displacement from the equilibrium amplitude,
is canonically conjugate to pp". We may separate
off the first and third lines of (79) which we call
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rrr = (x"+xB)/&2, for = (frA+frB)/~2,
(83)

p+ = (1/~&) (poA+ 0o')

a+ = (1/~) (Qo"+Qo')

0 = (1/~2) (Po"—Po')

V =(1/~2)(Qo" —Qo")

rrrr = (x"—xB)/u2, prr = (p" f2B)/—V2,

4~pr' 4xpir'
+

2of2'(R, +S,) 2oIo'(R, —S,)
rrr qo'(I I

I

—JA) &rr go (I I I
+JA)

+ + (84)
2(I+ II*I)(I+I.) 2(I+ II.I)(I—I~)

(80)

FI, and bring to principal axes by means of the Normal coordinates are
canonical transformation:

4m.p+-" g+
FIz= +

2(R,+S,) 2(I+ I
J.I)

42rp '
oI

2

+ + . (81)
2(R,—S,) 2(I—

I
J, I)

As in the one-source case, all the states of these
two oscillator systems are taken empty.

Lines 2 and 4 of (79) give the energy of excita-
tion of the bound system above its minimum

position, which we shall call FI~. First we sub-
stitute.

PI+2 PP ~

for both sources. Then introduce Cartesian coor-
dinates

x= sin 0. cos P n cos P,

y= sin o. sin P n sin P,

II« =4~D (P.")'+ (P.")'

+(p ') 2+(0 ')'}R./2

The integrals of interest are tabulated below for
the limit ~a&&1 and also a&&d where d is the
separation

I-1/ao,

I« (1/d'+ «/d)

J.———(2/d'+2«/d+ «2),

R =R.=42rrro/3.

S~ and S, are of order «rro. In this limit J/I
and S/R may be neglected. Consider the (Prr, rrrr)

oscillator. The amplitude of zero-point oscil-
lations is

0=(«/g) 8 (II*I+J.)
4m.

Thawing takes place only when 1I)1,

( 3 3 ) 8g'.«+"
{ 1+—+

gd K d ) 3 ga

{pA pB+pApB} S] (R 2 S 2)g2 or, with g 1, ~a 0.1, when zr&3.

+ {(xA) '+ (yA)'

II I.I+I,
+(x')'+(yB)'}

2(I+ II.I)

{xAxB+yAyB}I g 2/(I2 I 2) (82)

Z. Forces at Large SeParation

This problem is handled by a perturbation
niethod. In zero order, one takes the sum of the
energies of two infinitely separated sources Lsee

(68)].
IIo ———g'I/«'

+4~L(JA)2+ (JB)2 2]/2Rg 2 (85)
where

aside from a constant. This consists of two iden-
tical systems of which it will suflice to consider
either: we shall treat that involving x", x~. +1/4 sin' oo"+ps cos o2"/sin' ooA.
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In this order, the angles u", P", ns, Ps are com-

pletely unrestricted. As the sources approach, the
leading modification of Ho is the addition of the
space dependent part of the interaction energy,
which is obtainable from (74), and is

where
no = I/o I +o+(&+o)',

po I
~——I+!—(&+4)',

y= Ioo ——', I+1.
IEi ——t

—J, cos n" cos ne

—J~ sin n" sin ne cos (P"—P ) }g /o' (86)
Z is the hypergeometric function, F(no, po, y, s),
and the solution for the eigenfunction of (87) is

Other modifications of (85) contained in (74) are
less important as long as the separation is appre-
ciably greater than u.

We require first the eigenfunctions of (85) or,
more simply, the eigenfunctions of (J")' and
(Je)'. (J)' may be rewritten:

(~)'=f '+Pe'+(1/»n'u)(Pe cos n+l)' (87)

We assume a solution of the form A(n)e"'"e.

Single-valuedness of the wave function in P
requires that n be a half integer, since the
original wave function is related to the eigen-
function here obtained through the S trans-
formation: F=S 'F', with

S=exp [ia„n/2) exp [io,p/25

e/~//
I sl ~—21(s 1)[~+kl

}lP(uo P ~ s) (90)

For this function to be regular at a=0, x, the
hypergeometric series must terminate, i.e. , P,)

must be a negative integer or zero. This means
that Z is restricted to the values (IooI+k)
X ( I

n
I +k+ 1), where k is a positive integer or

zero. Each value of j=
I
n

I
+k corresponds to an

isobaric level of the system, each level being
multiply. degenerate, according to the number of
combinations of n and k which satisfy the above
relation, namely 2j+1.

We are concerned with the attraction between
two systems which approach each other in their
lowest isobaric levels, i.e., with k =0, j= —,',
n=~-,'. This level is a doublet whose wave
functions may be written

Since 0., has the eigenvalue —1, the above
requirement on n follows. The equation for A" is

d'A cos n dA 1
-+ .

do, ' sin a do. s&n' o.

(sin n/2)e'~"

(cos n/2)e 'e/o
(91)

X(n cos n+ —')'A+(E —n')A =0, (88)

where Z is the eigenvalue of (87). This can be
transformed into the hypergeometric equation by
the introduction of a new variable

s= (1+cos n)/2,

and a new dependent variable

A —Zzl ~—lI/o(s ] ) I ~+ll/o

d Z dz
s(1 —s) +[v —(no+Po+1)s)

ds' ds

—uoPoZ = 0, (89)

"R. deL. Kronig and I. I. I&abi, Phys. Rev. 29, 262
(1927).

These two states, corresponding to n= +-,', are
to be thought of as representing the two pro-

jections of the "empirical" spin of the heavy
particle (to be distinguished from e, the spin

vector introduced above for the heavy particle
core) .

We now calculate the expectation value of

(86). The term involving J, has a finite matrix
element only if the projections n~ and n~ both
remain unchanged. Its expectation value is
& ( —g'J./9//'), corresponding to n" = &ns It.
can be written ( —g'J, /9x')s, "s s where s(s„so,s,)
is the spin projection operator for the doublet

under consideration. On the other hand, the
term in J~ contributes only if the projection is

increased by one unit for system and decreased

by one unit for the other. The expectation value

is ( —g'J~/9x') (s,"s, +s,"s„). The energy of
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interaction is consequently

g
2

J,s,"s,s+ Ji(s,~s,s+s„"s„s)7.
9a2

ad=x, we have

g2ft8 '
(1/3)s" s'+ I(s" r)(s'r)

9(4~x)
3 3—(1(3)s" ss

t
—+—+ 1 (92)

Introduce the unit vector r along the line joining
the two systems (in the s direction). Then Aside from the factor —,', this is precisely the

interaction between two heavy particles derived
2 from the same Hamiltonian by perturbation

Vg —— [J s" ss+(J,—J,)(s-'r)(ss. r)7. methods.
9f~:2 Acknowledgments are due Professor K. Pauli

and Professor J. R. Oppenheimer for illuminating
The integrals J, and J~ are given by (84). Letting discussions on all parts of this work.
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Cloud-Chamber and Counter Studies of Cosmic Rays Underground

+OLNEY C. WILSON AND DONALD J. HUGHES
Ayerson Jaboratory, The University of Chicago, Chicago, I/Eimois

(Received January 20, 1943)

A counter controlled cloud chamber and two counter coincidence sets were used to. study
the nature of the cosmic rays observable underground. The experiments were performed in
a copper mine at depths of 71, 141, 582, and 657 meters water equivalent. The data are easily
interpreted, if one assumes that underground the primary rays are mesotrons and that the
soft rays and showers are electronic secondaries produced by the penetrating mesotrons.

INTRODUCTION

T the time of the cosmic-ray symposium'
held at Chicago in June, 1939, it was

evident that there was as yet much unknown
about the nature of cosmic rays underground as
well as considerable disagreement concerning the
known material. The shape of the total intensity
vs. depth curve seemed to be quite well estab-
lished. %hen-plotted on a log log scale, the data
fall on a line composed of two straight portions,
the change in slope occurring at about 250 to
400 meters water equivalent. However, con-
cerning the nature of the rays responsible for
the two parts of the curve, there was a diversity
of opinion. Several observers had found evidence
for the non-ionizing character of the rays which
carry the energy down to great depths; Kataghin

' V. C. Wilson, Rev. Mod. Phys. 11, 230 (1939).

and Santos' at 250 and 400 m, ' Barnothy and
Forro' at 1000 m. However, Wilson'ss experi-
ments at 30 m and 300 m indicated that the
penetrating rays responsible for the observed
intensity at both these depths are ionizing.
Clay's' interpretation was that protons are
predominant below the break in the intensity
curve.

Neither data nor interpretation were clear-cut
on the matter of shower production and the
abundance of soft particles. The ratio of soft to
hard components, as measured by counter
absorption experiments, varied greatly, and it
was quite evident that much of this disagreement

'G. Wataghin and M. Damy de Souza Santos, Ann.
Acad. Brasil. Sci. 11 (March 11, 1939).'m means meters water equivalent of rock calculated
on a density basis.

4 J. Barnothy and M. Forro, Phys. Rev. SS, 870 (1939).
~ V. C. Wilson, Phys. Rev. SS, 6 (1939).
6 J. Clay, Rev. Mod. Phys. 11, 128 (1939).


