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The present paper treats the symmetrical and charged pseudoscalar theories of the meson
field, using the strong coupling approximation; it restricts itself to the case of a single source.
The energy levels of the excited states of the heavy particle and the scattering cross section
for free mesons are computed by wave mechanical methods. An expression is also obtained
for the magnetic moment of the proton or neutron. While the scattering cross section can,
with reasonable assumptions, be brought into agreement with experimental values, the results
for the magnetic moment are qualitatively at variance with the known values in that equal
and opposite moments are predicted for proton and neutron.

1. INTRODUCTION

HE perturbation theoretic treatment of the

coupling of the meson field to the heavy
particle, based on the assumption that the
coupling is weak, encounters several funda-
mental difficulties in its application. The di-
vergences which arise from the treatment of the
heavy particle as an infinite point mass have
been in some instances arbitrarily removed by
cut-off methods, but it can be shown that such
methods cannot be consistently formulated in
such a way as to satisfy the criterion for weak
coupling.! Moreover, calculations of the scatter-
ing cross section for mesons in this theory lead
to values which are generally much too high to
agree with cross sections observed for cosmic-ray
mesons. The results vary somewhat depending

! This point will be more fully discussed in a subsequent
paper in which the two-source problem will be considered.
We are indebted to Professor R. Serber for valuable
discussions on this point as well as on several others
considered in this paper.
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on the particular type of meson field assumed.
If we assume that the spin of the meson is zero?
(charged or symmetrical pseudoscalar), pertur-
bation theory leads to the following result® for
the scattering of a meson by a nucleon.*

dg=g'«2(p/x)*(1+cos 0)dQ for hp>Mec,
dg=g'x2(p?/kE)dQ for hp<Mc, M—w.

Here g is the dimensionless constant which
expresses the magnitude of the coupling; k=pc/k
where u is the rest mass of the meson; p is the
momentum of the incident meson divided by %;
E the total energy divided by kc; M the rest
mass of the nucleon; and 6 the scattering angle.
These cross sections refer to processes in which

2 This is one of the two possibilities left open by a
consideration of the electromagnetic radiation processes
of the meson. See R. F. Christy and S. Kusaka, Phys.
Rev. 59, 405 and 414 (1941). The other possible value
of the spin (3) will be discussed by J. R. Oppenheimer
and E. Nelson in a forthcoming publication.

3 H. Yukawa and Y. Tanikawa, Proc. Phys. Math. Soc.
Japan 23, 445 (1941).

1 Nucleon is equivalent to ‘‘proton-neutron.”
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the meson is scattered with the original charge.
In the case of the symmetrical theory there
exists also a scattering process in which the
meson changes its charge. If a negative (positive)
meson collides with a proton (neutron) it can
be scattered as a neutral meson, while the
nucleon changes into a neutron (proton). Ac-
cording to computations of F. Adler, not yet
published, the corresponding cross section is

dg=g*'«2(p/k)2(1 —cos 6/2)2dQ for hp>Mec,
dq=g*«2(p*/kE)?2 sin? 0dQ for hp<Mc, M— .

A numerical estimate of the total cross section
depends upon an assignment of the magnitude
of g. This is ordinarily done by considering the
nuclear forces predicted by the theory and
adjusting g to fit the properties of the deuteron.
This involves a cut-off or other readjustment of
the radial dependence of the interaction. As
remarked above, such a procedure cannot be
carried through in a manner consistent with the
weak coupling hypothesis. Nevertheless, the
value of g so determined (g2~0.1) will be used
to give an order of magnitude estimate of the
scattering cross section. We obtain a total cross
section ~2X10726 cm?, as compared with the
upper limit of 5X107?® cm?® determined from
experiments on cosmic-ray mesons.?

Two apparently different theories have been
proposed to explain the smallness of the meson
scattering cross section. Heisenberg pointed out
that the reaction of the eigenfield of the nucleon
to the motion of its spin—and particularly the
terms proportional to 1/a¢ which one can con-
sider as an inertia of the spin—are considerable.®
As an example, he computed by classical
methods, the scattering in a neutral theory with
spin 1 mesons; he found a scattering cross
section proportional to a*(p/E)* if g=>«a.”

The second theory is due to Heitler® and
Bhabha® and based on the assumption of the

5 For instance, see R. P. Shutt, Phys. Rev. 61, 6 (1942).
Older literature is reviewed.

6 The quantity ¢ measures the radius of the nucleon.
A precise definition is given by (4).

TW. Heisenberg, Zeits. f. Physik 113, 61 (1939). The
problem of interaction of a dipole with its own electro-
magnetic or meson field is treated in detail by H. ]J.
Bhabha and H. C. Corben, Proc. Roy. Soc. A178, 273
(1941) and H. J. Bhabha, Proc. Roy. Soc. Al178, 314
(1941). A classical but relativistically invariant method
is used. The terms in the Hamiltonian proportional to
1/a are replaced by terms containing undetermined
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existence of excited states (isobars) of the nucleon
with higher values of the charge (Bhabha) and
of the spin (Heitler). In this theory the energy
difference AE between consecutive isobaric states
is not derived, but arbitrarily assumed. On the
basis of these assumptions, one finds a con-
siderably reduced value for the cross section for
scattering of a meson by a nucleon (of infinite
mass) at rest:

@1=qo(AE/E)*.

E is the meson energy and ¢, is the total cross
section (given above) for scattering as calculated
by perturbation theory.

It was shown by Oppenheimer and Schwinger!®
that the two explanations are in reality one and
the same. One can indeed derive from Heisen-
berg’s assumptions the existence of excited
states of the nucleon, corresponding to the degree
of freedom associated with the reaction of the
nucleon spin. It is easy to see that if we assume
this excitation energy proportional to

AE~«a/g?
and combine this with Heisenberg’s result
qu~a*(p/E)*

we obtain Heitler and Bhabha's formula for
¢1/qo- The above formula for AE, presumably
valid for vector mesons, is identical with the
corresponding formula that will be rigorously
derived for the pseudoscalar case (see below).

2. RESULTS AND CONCLUSIONS

We give here the principal results of this
investigation, including the excitation of the
isobaric states, the cross section for meson
scattering, and the resultant magnetic moments
of the proton and neutron. As the condition for
the validity of the strong coupling approximation
we obtain g «a, in the case of small source size

constants. Such a procedure may approximate an exact
treatment more closely than the one used in this paper,
but it is not suitable for a quantum-mechanical treatment
of the problem.

8 Compare the detailed paper of W. Heitler and S. T
Ma, Proc. Roy. Soc. A176, 368 (1940).

9 H. J. Bhabha, Phys. Rev. 59, 100 (1941). We refer to
this paper for the discussion of the influence of the Coulomb
forces on the probability of the generation of a doubly
charged proton.

10 J. R. Oppenheimer and J. Schwinger, Phys. Rev. 60,
150 (1941).
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(kak1). For the energy of excitation of the
isobars we find

AE 3«kaf . 31. .
—=——] j(j4+1) ——|in the symmetrical theory,
uc? 2 g?¥ 4
AE 3«ka[ . . 57.

-=—— 2j(j+1) —n®—— |in the charged theory.
uc? 2 g? 4

Here the half-integer j is the total angular
momentum, and the half-integer quantum
number # is the electric charge (in units e) minus
one-half. In both cases, the value of # is restricted
to —j=n=j, otherwise the isobar energy in the
first case is independent of #. The definition of
the radius a of the nucleon is given by (4). The
proton and neutron are identified as the two
lowest states of this system, corresponding to
j=1%, n=43%. Higher states will be stable against
“meson decay’ to these ground states only if
AE<uc? or g2/ka>1.

For the total scattering cross section (elastic
plus inelastic scattering with and without change
of the charge) we find under the conditions
g£>«ka, kakl, pakl:

dq=%{(p/E)*a*(1+cos® 6)dQ,
g=4w(p/E)*a® in the symmetrical theory;
dg=3%(p/E)*a*(1+3 cos? 0)dQ,
g=067(p/E)*a® in the charged theory.

As has already been shown by Oppenheimer and
Schwinger, one gets agreement with the experi-
mental cross section for meson scattering, in the
symmetrical theory for instance, by assuming
a~h/Mc=2X10"% cm which means ka~0.1.
Referring to the condition for strong coupling,
g>«ka, we see that values of g2>0.01 satisfy this
condition.

The magnetic moment of the system nucleon
+meson field is found to be

10g% 1
+ ———+E proton magnetons

the &+ symbol referring to proton and neutron,
respectively. As regards order of magnitude, this
is not inconsistent with the known magnitudes.
A moment of 1.93 proton magnetons, such as
has been observed for the neutron, can be
obtained by taking g?/xa=6.3; using xa=0.1
we find g2=0.63, well into the strong coupling

domain. However, the prediction that the
neutron and proton moments are equal and
opposite is in contradiction with experience.
The second term in the bracket above represents
the contribution of the nucleon itself. This
contribution is somewhat uncertain because of
our ignorance of the fundamental properties of
the ‘‘bare” proton or neutron. Consequently
the discrepancy cannot be taken as an unam-
biguous disproof of the strong coupling hy-
pothesis. However, the hope that the anomalous
moments would follow in a simple way from the
theory has not been justified.

It is to be noted that the results obtained
above are quantitatively different from the
results of the application of semi-classical meth-
ods employed by Oppenheimer and Schwinger
and described in detail by Schwinger.!! The
latter method treats the spin ¢ and the isotopic
spin = as classical unit vectors. In the charged
scalar and neutral pseudoscalar theories, it gave
a quantitative agreement with the wave me-
chanical results in the limit of strong coupling.
This is, however, not true in the present case;
in particular the restriction —j=n=j does not
appear. The discrepancy cannot be considered
surprising in view of the neglect, in the semi-
classical method, of the commutation relations
between the various components of = and o.
One sees in the wave mechanical treatment that
these relations play an essential part in deter-
mining the minimum eigenvalue of the inter-
action energy (see Section 4). Once this part of
the problem has been solved, however, there is
no difference between the two methods of
treatment.

The remaining sections are devoted to the
derivation of the results quoted above. In
Sections 3 to 6 we introduce such new field
variables for the symmetrical pseudoscalar field
as to express the energy in terms of unbound
mesons and mesons bound to the nucleon. In 6
we find the dependence of the energy on the
charge and angular momentum of the bound
meson cloud, and discuss in detail the conditions
for wvalidity of the wvarious strong coupling
approximations introduced. In 7 we calculate
the scattering cross sections. Section 8 contains a

1 J, Schwinger, publication in preparation.
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specialization of all these calculations as applied
to the charged pseudoscalar case. Section 9
consists of the magnetic moment computation
and an appendix describes an alternate method
for expanding field quantities, with the use of
Euler angles.

3. SPLIT OF THE FIELD INTO A ZERO STATE
AND UPPER STATES

In the symmetrical pseudoscalar theory it is
convenient to describe the field by three real
quantities ¢,(x), =1, 2, 3. The Hamiltonian H
consists of the part H of free particles and the
interaction energy H,. The first part is given by

3
Ho= 2 3 | [72+(Vea) 202 AV

-y f [ra*+ el —A+K) eV, (1)

where the 7, are the momenta conjugate to ¢q
and fulfill, at a given instant of time, the com-
mutation rules

[ Ta(X), @(x’)]=bapd(x—X'). (2)

In the interaction energy we suppose the heavy
particle, which we shall call nucleon, to be at
rest and characterized by a spherically sym-
metrical source function K(x)=K(|x|) which is
normalized according to

f K(x)dv=1 3)
and determines a radius a of the nucleon:
a‘1=ffK(x)(1/r)K(x’)d vav’, 4)

where here and in the following,  has the meaning
r=Ix—x|. (5)

Furthermore, the nucleon is capable of existing
in two states corresponding to proton and
neutron, and moreover to two states correspond-
ing to different directions of the spin. The first
degree of freedom is described by the isotopic
spin matrices 1, Ts, T3, OF T, With a=1, 2, 3; the

12 We always use here natural units where A=c=1 or,
in other words, energies are divided by %¢, momenta by #,

angular momenta by %, electric charges by (kc)}; « is the
rest mass u of the free meson divided by #c.
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second by the spin matrices o, 0y, 0., or ¢. Both
of them fulfill the same kind of relations

(6)
ol=1, -, )

T1Te=1T3, *** 7-12:1’ ey,

00, =102, -

where the - -- denotes similar relations derived
by cyclic permutations. The interaction energy
is then given by

H=—(¢/x)(4m)t/VZ & f K(x)ralo-V)eaud V

=(g/K)(4m)}/V2 L fVK‘ra-(rgoad V. (8

The factor (4=)} is introduced in order to measure
g in ordinary units, not in Heaviside units; the
factor 1/v2 in order to bring it into accordance
with the notation in the theories which introduce
charged particles only; and the factor 1/« in
order to make g dimensionless.! The total charge
of the system meson field +nucleon, measured in
the unit e of the electron charge is given by

s=f(<p11r2—(pgm)dV-l—%(l-i-Tg). 9
The symmetrical theories are characterized by
the fact that the charge is only one component
of the isotopic spin Teg=—T3s. (a, 8=1, 2, 3)
which is a more general integral of motion and
given by

Top= f(%ﬂrﬁ — osma)d V+57ap (10)
-+ +. The charge is then the
12 component of the isotopic spin, e= T+ 1.

The form (8) of the interaction energy suggests
the definition!

with Ti12= —T21=Tg,

0 Qo
par=—(4m)} | K(x)—dV
Xy

oK
= 41rf —odV, (11)
axk

which gives

g 0
Hi=——73% 7401@ar-
K\/ja,k “ “

Moreover, we split the field ¢.(x) into two parts

(8"

13 The connection of our constant g with the constant
gy introduced by Yukawa is
g=gy(he)™.
4 Small roman indices ¢, k, --- run from 1 to 3 and
denote vector components in the ordinary space.
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of which one, ¢,'(x), is orthogonal to the gradient
of the source function

f%’VKdV:O (12)

and the other proportional to the gradient of the
potential X(x) which the source function gener-
ates according to

(—A+k)X=47K,

X(x)=fK(x’)e“"”/rd V. (13)
If we define
9X 0K
e i
ax, axk
0K e 0K
= f —dvav’, (14)
0x; r O0xi
() = (x) b= [ Wy as)
T 1 ) axi o
then it follows from (11) and (12) that
o 0¢ ,
0a(x)=1/(47)} 3 ou—+ @' (x),  (16)
k d0xy,
hence
0/ () = ) =V [VEouav. (1)

The circumstance that we choose the first part of
the field as a linear function of the dX/dx; (and
not of the dK/dx;) has the consequence that in

virtue of (12) no cross terms between wzk and
¢.'(x) occur in the potential energy H,. Indeed,
one has, using (13), (15),

( ‘pak) 2

, k

1E [eu-a+e)padv=3
e f ¢a'<—A+x2>¢;dV. (18)

The conjugate decomposition of the momentum
w(x) is given by

ma(x) = (4m)} Z Wak'a_+7ra (x), (16%)
f1r./V£dV=0, (129)

mo=1/n)t [ Gx/ovomav,  (11)

o = ma() — VK - f VerdV, (177

which leads, in accordance with (2), to the
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commutation rules

i[ﬂ’:iy sagk] = 0o 0ik, (19)
[rats 08 (0)]=[m(x), s]=0,  (20)

i[7a' (X1), @8’ (X2)]
=0a5(8(X1—%2) — V1K Vo). (21)

The latter relation is also in direct agreement
with the orthogonality conditions (12), (12').
The isotopic spin (10) decomposes simply into

Tp= f(soa'fﬂ' —pg'md)dV

(22)

The kinetic energy however gets cross terms in

0 0 0 0
+ 2k (ParTsr — OpeTar) + 3Tap.

0 . . o
Te: and 7./ (x), and if we use the abbreviation

K 0K
B;kN=47rf p

—dV
4
N=—3—f (VK)2dV,

X axk
it is given by

> fwde—lNz (mos)?

or

(23)

o [ 9K
+@T Y T | —md (x)dV
a, k axk

e f (w)dV. (24)

One gets the total Hamiltonian by collecting (24),
(18), (8'):
0 0
H=3N % (mar)®+3 2 (¢ar)?/1
a k a, k

+g/kV2 Tao'k‘P:(k
a, k
+(4n)} T o f (0K /ox;)ma (x)d V
1 [y
+HE [el(—ateidv.
Just as for the isotopic spin there exists in virtue
of the spherical symmetry of the source function

K(x) the integral of the angular momentum
L= —Lyg; given by

La=— fora(x.

—x;;—-) (p,,d V+%aik. (10’)
ax;
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It decomposes as follows:

0 o 0 o
Liy=3%0a+ 2« (PaiTak — QakTas)

— )Y e ‘_?_Ig(xl_a__ xk_a_) oddV
ol dx; Xk 9x;
—1/@n Y ¢3,fra/(xli_xki)£d v
al Bxk axi c')xl

a J
ISR
a axk 6x,'

The orthogonality relations (12), (12’) do not
make the cross terms disappear in this case. We
emphasize, however, the simple form of the
angular momentum of the zero field, given by
the first sum in (22').

4. THE EIGENVALUES OF THE INTERACTION
ENERGY. NEW VARIABLES FOR
THE ZERO STATE

While in the usual treatment the interaction
energy H, is considered as a small perturbation
(weak coupling), we consider in this paper the
opposite limit of strong coupling. In this case one
has first to investigate the eigenvalues of the
interaction energy H,; given by (8'), and then to
retain only the lowest of them under the assump-
tion, whose validity will be investigated, that the
next higher level of H; will not appreciably
perturb a system in this lowest state.

In order to determine the four eigenvalues of
the form

2 TaOk ek
a, k
in which the 9 coefficients <pflk were real, we have
to bear in mind that we‘are free to subject the
r’s and ¢’s to independent real orthogonal
transformations
3

3
Ta™= Z T'r’B'rav O = Z Aksds’y

r=1 s=1

(25)

where B and A4 fulfill orthogonality conditions
which we can write in matrix notation

AA=AA=1, BB=BB=1, (26)

where A and B are the transposed matrices
(Ask=Ars, Bor=B.,). The eigenvalues of our
form are therefore the same as those of the other

form
> 7/ (Bp4) 50, .

T,

(27)
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We shall prove now that we can choose the or-
thogonal matrices 4, B in such a way that the
new matrix By°4 becomes diagonal:

(B‘POA)rs:Qrars (28)
or, according to (26),
‘sz= (BQA—)ak:ZT BruQrAkr- (29)

For this purpose we consider the two sym-
metrical forms

C=¢go or Cik:'Cki=Za <P((z)i<P2ky (30)

and
’ ’ 0 0
C'=¢p or Cup=Cpa=2k Carpsr- (30")

We choose 4 as the orthogonal matrix which
transforms C to principal axes (which is always
possible because C is symmetric) and denote the
eigenvalues of C by (Q.)?. These are certainly
never negative because the form

> Cz/;xixk—_—Za Xk <P2kxk)2
ik

is definite. This means that we have

CA=AQ* or ACA=0Q:. (31)

We note that the matrix 4 is unique except for a
sign, and except for the case where some of the
Q.’s are zero or some of them are equal to each

other. We now define the matrix B by
¢A = BQ, (32)

where Q. is defined as the square root of the
eigenvalue Q.2 of C, the sign of which we shall
choose later. Multiplication by @ from the left
gives, by virtue of (30), (31)

AQ*=3BQ,

AQ=9B, AAQ=0Q=ApB,

or

and by transposing the matrices, Q being diagonal
BpA=Q
which proves Eq. (28). Now multiplying (32) by
B from the left, we get
BeA=Q=BB(Q.

Therefore BB =1, which proves the orthogonality
of B. (For the case of a multiple eigenvalue Q,
the orthogonality BB=1 does not follow, but
can easily be achieved.) Multiplying 4Q=B
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by B¢ from the left, we get
BoAQ=Q*=BypB=BC(C'B,

_ 33
BC'=Q*B or B(C'B=(, @3)

which is analogous to (31) and shows that C’ has
the same eigenvalues as C.

If the eigenvalue Q, is zero, the row B,, of B
is not defined by (32) and the preceding proof is
incomplete. Let us assume first that there is a
simple eigenvalue Q;=0, Q:#0, Q:#0. From
Eq. (32) we get for r=3

0
2k Cardirs=0.

The equation AQ= @B is in this case not a con-
sequence of the proved equation 4Q?= BQ but
can be used for =3 as a definition of the third
row of the matrix B, namely

Za ‘pgk-Bﬁa =0.
This can always be fulfilled, the determinant of

gaf.k being zero in this case. There is still an arbi-
trary factor independent of o undetermined in
B3,. This factor can be adjusted to satisfy the
equation Q=BBQ; it can simultaneously be
made to satisfy the equation

Yo Bra=1,
which does not follow directly from the above.

Combining Q=BBQ and ZaBzazl, we obtain
again BB=1.
In Section 8 we shall meet the particular case

Q3=0) Ql;éo) Qz?foy Sogk:O-

In this case one has B3,=0 for a=1, 2, which
follows from

0
Za ¢akBaa =0.

Moreover, (32) leads to Ba;=0 for a=1,2.
Finally, Bss is fixed by BB=1 and is equal to
one. The latter condition also expresses the
orthogonality of the two-row and two-column
matrix B, (r=1,2; a=1, 2).

In a similar way the case of a multiple eigen-
value zero of C and C’ can be treated by con-
sidering all equations in the preceding proof
which cannot be directly derived as possible
additional defining postulates.

In order to have the determinants of 4 and B
both +1, which is essential for the validity of the

correct algebraic relations for the 7,’, o,” we get
from (32) the condition

det. ¢=010:0s. (34)
Apart from this condition, the signs of the Q,’s
are arbitrary and can be fixed by definition. This
means that to every combination of signs of the
Q- which fulfills (34) there exist, for a given

<pflk, matrices 4 and B which are orthogonal in
the usual sense and which fulfill (28). We can for
instance define all signs of the Q,’s as positive
(negative) if det. ¢ is positive (negative).

Now inserting (28) in (27) we get

0
Z TaOkPak = Z Qr‘rrlo'rl- (35)
a, k r
The eigenvalues of every 7./, ¢,/ are 41, but the
product of the three matrices 7,’¢,’ is always —1.

Therefore, the eigenvalues of H; for a given field
0

Qak A€
(g/xV2) 2 Qrer  With  ere2e5=—1 (36)
21=—(g/xv2)(Q1+Q2105),
E2='(g/K\/7)(-'Qx+Qz+Q3), (36')

Es=(g/xV2)(Q1— Q2+Q3),
Ey=(g/xV2)(Q1+Q2—Qs).

The sum of all four E’s is zero, but if E is an
eigenvalue in general —E is not an eigenvalue
unless at least one of the three Q,’s is zero. We
repeat that the Q,’s are the square roots of the
eigenvalues of the symmetrical matrix C (or C’).
From (31) we get immediately by evaluating the
trace

g Qr2=2; Ckk=Zv (ar)™ (37)

r=1
The sum of the Q,'s themselves, however, cannot

be expressed rationally by the field <p2k‘

We now introduce into the kinetic energy of
the zero field the variables corresponding to Q,,
A\ry Bro. Instead of expressing the latter variables
by Euler angles and using their conjugate
momenta, we can also use the components of the
angular momentum

0 0 0 0 0
Lilc = z« (‘Paiﬂ'ak - Soak"rai)y (220)
and the isotopic spin
0 0 0 0o 0 B
Tap= 2"k (PakTpr— @prTar)- (224")
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As operators they correspond to infinitesimal ro-
tations of the ordinary space and of the isotopic
spin space, and fulfill commutation relations with
the A, and B,. analogous to those with the

goz.,, namely
i[Loiky Ay)=00d i — 00,

[L%, Bral=0,
i[Ta, Byr )= 83y Bar— bay By,

[Tes, Ar]=0, (38)

. 0 0 .
while the components of Ly or Tas fulfill with
each other the well-known commutation relations

":[Lgk, L(l]m] = 5le2m
+ 51‘".14:1 - 5.'1L2m - BkmL(:ly (39)
or, with the vector notation L,° L.° Lj° for
Lgs, Lgly L(x)m
i[L° Lo]=—Lj°, - -- (39"
As scalars the Q.’s commute with both the
L?;, and the Tf:,,,
[Lisy Q1=[Tas, 0.1=0.
In the same way we have
i[ Tog, Tos =8y Tas
+ 60:5T127 - 6a‘7T33 - 666T::‘h (39")

the Tg,g and the Lgk commute.

It is useful to introduce the components of
(LY, (T°) with respect to the axes defined by
(A4r), (Bre) which we define by

LON=Z Air ksL?k=Z L?kAirAkﬂy

ik ik

Ty*=Y BraByTos=3 TosBraBis.
a, B a, B

(38)

(40)

(41)

We note that in spite of the non-commutativity

of L with the 4, and of Thas with the B,, the
Ly and Ty are Hermitian operators like the

L?k and T:g as a consequence of the equalities
indicated in (41) which follow from (38), (38’).
The total square of Lo and T is given by

Le=Y (Lw)*=X (Lo)?, (42)
<k r<s
Te=Y (Tep)?=3 (Tv)™ (42')

a<p r<s

The commutation relations of the L™ with the
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Ay and of Ty with the B,, are given by

i[Ly™, Are]=6r1Ars— 85eA kr, (43)
i[ T, Bia]=6,1Bsa— 8:¢Bra, (43)
and of the Ly or the Ty with each other
i[ L™, Lo**]=8,Lo™
F8euLo™ — 8o Lo™ — 8,uLo*t, (44)
[T, Tyt ]=8,T o™
F 8650 Tot— 05 T0™* — 8, 0% (44")

The signs in the relations (43), (44) or (43'),
(44") are just opposite to those in the relations
(38), (39) or (38", (39”).

Inserting (29), (22,), and (22,’) into (41) we get

Li*=F (QeArBramos— QulisBuames),  (45)
ke

TON = Z (QT krBsa"rgk - QoA ksBrawgk) . (45 ,)
k,

From this we get the important expression
Y. A Buama
ke _1 L+ To* Lot —To

2l -0 ot

Finally, we get the variable canonically conju-
gate to Q,, which we call P,, by putting for r=s,

for r>%s. (46)

Z Akr-Brangkz-Pw (47)
k, a
Therefore, we have finally
‘ﬂ'gk = Z Ak'rBsa
1Lra Trs 1Lr.v___Trs
Y b A et Ml T
2 Qr_Qs 2 Qr+Qs

where the second term is to be taken for 7 s only.
Assuming

[Pn Aks] = [Pn Bsa] = [Pr; LO“]

= [Pfy TO”:I:Oy i[Pn Qs]z Brm (49)
one can verify the canonical commutation rela-
tions (19) for the r.(,),i and <pf,k with the help of (43)
(44), (43’), (44'). It may be noted that the
operator P, defined by (47) is not Hermitian and
that P, in (48) has to be replaced by P,* if the
factor A;.B.. is put on the right side of the
bracket. For the kinetic energy of the zero field

(apart from the factor N/2) we get from (48),
taking into account the anti-symmetry in 7, s of
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(Lo*—T4*)/Q++Q. and the symmetry in 7, s of
(L0r8+ TO")/Qr_Qa
( 0rs+ Tora)Z
(Qr - QS) 2
1 (Lors —_— T0r3)2
2z T(O.+0)2
4 7,8 (QT+QE)
We conclude from (46) that if Q,=Q, then it
must also be true that Ly = — T¢". In view of the
importance of this case it is sometimes convenient
to use different coordinates. Indeed, if all three
Q.'s are equal, which will be proved to be true in

good approximation in the case of large coupling,
according to (29) only the orthogonal matrix

Car, = Zr AkrBra (51)

Z (rak)z—ZP P+ PN

4,5,

(50)

which fulfills
(51a)

is uniquely determined by the field <ka and not
the 4. and B,, themselves. Therefore, besides
the three independent variables e,;, we can intro-
duce the six symmetrical quantities

2o CaiCak =0iky Dk CakCht = Oaf,

Qaﬂ =2 soakeﬁk =3, BraB:sQr= Qaa (52)
to describe the field
ok =5 Cidas. (53)
The components
Li#=Y B, BsLy*=Y euespli  (54)

T, 8 7,k
. 0 ..
commute with the ¢,s and fulfill similar commu-

tation relations with each other and with the eq;
as do the Ly with each other and with the Ay,

iLLo", €31 ]= dar€ar— Sprai, (5)
i[Lo“ﬂ, L075] = 6,,,,Lo‘”
+ 535140“7 — 531L0°‘6 — basLoP. (56)

Finally, we search for symmetrical quantities

0 0 . . [
Pas=psa Which are conjugate to the gu.s in the
sense that they fulfill the commutation relations

. 0 0
1[?“& 97532%(5017555'*‘6::6557)- (57)

(This means, for instance, that i[$11° qu®]=1,
i[p12% ¢q12°]=1%; this is more convenient than to
have the value 1 for the latter bracket.) This is
just the case if, with the help of the first two

terms in the bracket in (48), we put
1 Lors+ I ors

a3 — BraBT P + Bran . 58
Pas= Z 8 r}.;:s oo (58)
From (48) we find also

Pgﬂz% 2k (eak"rgk'{’eﬁkﬂ.'gk)- (59)

The remark made about the non-Hermitian
character of the P, in (47) applies also to the

pg,g defined here. One can prove (57) with the
help of (54), (43), (43’), and moreover

[Pas, Lo™]=0. (60)

We have therefore three kinds of variables for the
zero field :

0
(1) ok Taks
(2) Qr; Akﬁ Bra; Pry LO", Ors,
0 0 0 0
(3) Qaﬁ'—‘Qﬂm Cak Paﬂ=Pﬂa. L()aﬂ

While we were able to get an explicit expression
for the kinetic energy in terms of the variables
(2), this is not rigorously possible with the
variables (3). From (48), (50) we get only
( o Tora)Z

7r¢[1k i= afPea — 61
x rat) 5”””4% 0oy Y

In the next section we shall see, however, that in
the case of small deviations of the Q, from a large
common value Q,%= D, further simplifications are
possible, and that the variables (3) are the most
convenient ones in this case.

5. MINIMUM OF THE POTENTIAL ENERGY.
STRONG COUPLING APPROXIMATION

We determine first the minimum of the total
potential energy of the zero field which is, ac-
cording to (18), (36), (37), equal to

pot _ZQ2+—ZQ€r

21,5
(6162€3= - 1) (62)
The minimum corresponds to
4
= = = — 1' = = =D =-—vl’
a=e=¢ 01=0:=0s 3
3 2
Eoin=—-21. (63)
4 k2

According to (53) the corresponding field is given
by

Gar=Deas (64)
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or, in vector notation

o= De,. (64a)

This field corresponds to the smallest eigenvalue
of the interaction energy, determined by (36),
and to the absence of free mesons [we neglected
¢ 7% but still contains the ¢ numbers e,.
Moreover, it corresponds to the state of the r

and o where
Z TaOkCak = -3.

a k

By a suitable S transformation of the Hamil-

tonian (see Appendix) we can bring this to the
form

S(Z Taa'keak)s 1_—2 TaOa-

a=1

(65)

The S transformatlon is not uniquely deter-
mined, just as is true for the 4 and B matrices;
it is, for instance, sufficient in this case to trans-
form one system of the matrices 7, or ¢, alone.
In view of the application to the charged pseudo-
scalar theory, which is discussed in Section 6, we
decided to leave the 7,’s unchanged and to
transform the ¢}’s,

S7S5 1=174; S(Ti laror)S =0, (65a)
This is equivalent to
0’ =SS 1= 4 €aiOa. (65b)

The state in question can be described as the
singlet state inasmuch as the composition of the
7. and o, is analogous to the composition of two
spins of equal magnitude. This state is not
degenerate according to (36’), while the three
other eigenvalues of the interaction energy are
equal:

E\=—(g/xV2)3D, Ey=E;=E,=(g/xV2)D. (66)

In the following we assume that it is legitimate
to restrict our attention to the lowest, or singlet
state. This implies a condition on the magnitude
of such terms in the Hamiltonian as couple the
lowest to the three upper states of the inter-
action energy.

For the eigenvalue E,, the following expres-
sions are diagonal:

T101=Te02=T303= —1; 7102+ 7901=0,- - (67)
15 It will be shown in Section 7 that the field ¢’ describes
free mesons.
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On the other hand, the matrices 7., o, and
are not diagonal. We shall simply
neglect terms in the energy in which these
matrices appear as a factor. In Section 6, we
shall discuss the region of validity of this ap-
proximation.

As is shown in the Appendix, the S trans-
formation changes the angular momentum L
according to

L'=SLS'=L—1¢’=L—-1 3, 0.€a.

T102— T201, ***

(68)

As a consequence of this and (54) we have the
relation

SLy*8S™ =Ly — 10 4. (69)

One checks directly that L’ commutes with o' if
L commutes with ¢ using (55). As the o, can be
disregarded in our strong coupling approximation
if they do not occur multiplied by the 7,'s, the
L’ have in this approximation the same eigen-
values as the L, while the total sum L2 [see (42)]
has eigenvalues % larger than L2. Moreover, the
eigenfunction ¥'=SV¥ is double-valued in the
angles which enter in S and in which ¥ is one-
valued. Therefore (L’)? has the eigenvalues
1+7(+1) with half-integer j.

We now split the variables qu defined by (52)

into two parts according to (64)

(1
Qaﬁ—Daaﬁ+QGﬁv (70)

of which we consider the second part as small.
With D given by (63)

E : Y (ow) + d > .
ot — ak — Ta0 ake
pot ZIa,k ok K\/ja,k kP

This leads, by the S transformation (65) which

0 0
does not change the ¢ but does change the mey,
to

. 1 0.2
Epot= SEpmiSTt = 33 (gas)

+—— > gaﬂ 3(7a08+0p7a).

kV2 o8
Using (67) we have
M_E; 5 (go8)’ ;\/—_ az:; Qs
which simply reduces to
’ (D2
Epor=— IJF 2 (qag) - (71)

k2 21 4
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We now introduce (64) into (22,), which means
. )
that we disregard g.s and get
L(:k =D Za (eai"rgk _'eak‘”'zi)~
and from (54)
0
—Lyf=D Y, (eak‘(’)rﬁk — egiTral).

It therefore follows from (59) that

=% (p°+ ) ﬂ)
ak = 4 a —L*
T ak . Bk B8 2D 0

t 1
=3 (Pgﬂ+5’b‘Lo"ﬂ)eak- (72)
B

Inserting ¢2k = De,, one can finally check directly
T8 = — Ly8, (73)

where the disregarded terms are of the relative
order of magnitude D~? in comparison with the
main term. This is in agreement with the result
of the last section. If we introduce Ty"*= — L,
and Q.4 Q,=2D in the last term in (48) we get
(72) directly. The relation (73) has the important
consequence that the total square of the isotopic
spin is equal to the total square of the angular
momentum ; after the S transformation, both
correspond to half-integer quantum numbers.
Therefore the quantum number #, which is equal
to the charge number minus % [see Egs. (9),
(10)], always has for the zero field (that means
in absence of free mesons) an absolute value
smaller than the total angular momentum
quantum number j:

—Jj=n=j. (74)
This is of course due to the fact that the r, and
oq are in the ‘“‘singlet state” defined by (67) ; this
also enables us to disregard the terms linear in =

and ¢ as already mentioned.

0 of
If we introduce (Paa>11=%(P2ﬂ+Paa), the ( )u
denoting Hermitization, we get

1
Tes= Y ealpat)n +—(Lo*Pegiyu.  (72')
, 2D

This leads to the following expression for the
kinetic energy of the zero field (neglecting an
additive constant in the term proportional to
D—2):

N

Vs @ S Wi ALt (122)
- Ta = - a — )
2.5 T 5 Tope

where the square of the total angular momentum
is given by (42). A result identical with (72a) is
obtained from (61) if we insert in the last term
Q-4+Q.=2D, —Ty*=Ly*. We note that the
only result of the S transformation is that j gets
half-integral values, the constant 1 added to L2
being negligible for our applications.

Inserting (71), (72), (72a) into the Hamiltonian
(I), we get the ‘‘reduced”’ Hamiltonian of the
strong coupling approximation

=51 s ol ]
T Tae Ty | & ety pt
(1)

1
+—=2 (qaﬁ)2+(47r)* > eﬁk<l)gﬂ>l{
2[ a B a, B,k

0K 1
X f () dVA4- f w2V
axk 2 a
1
+ = f oo’ (= At?) g,/ dV

1 oK

+@m) X —(eaLo*P)u f —m (x)d V. (1)
a, Bk 2D axk

Inspection with respect to the approximation

contained in (72) shows that the disregarded

terms in I are of the following type: terms of

the order D—? independent of L?k; terms of the

order D2 linear in the L?;c and in the gi—;t); and
terms of higher order than D—2. We shall see in
the next two sections that such terms are of no
importance for the questions which are treated
in this paper. The last term in (II), however,
will be essential.

6. THE EXCITED STATES (ISOBARS) OF
THE NUCLEON
We shall now treat two different kinds of
problems. In the first kind we investigate the
states of the nucleon in the absence of free
mesons, while in the second kind we treat the
scattering of free mesons by the nucleon and its
proper field. It will turn out in the next section

that the field which is described by pza, o (%);

W, .

ge8y @< (x) represents free mesons, which are
partly undisturbed plane waves, partly scattered
waves. On the other hand the problem described

0 . .
by €ar, Lag is the problem of the possible states
of the free nucleon in the absence of free mesons.
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For the latter we have to retain the terms up to
the order D—2 but we can omit terms of the order

. . 0
D—2 which are independent of L;, or terms of the
. L0 .
order D2 linear in L which are at the same time

linear in qf-;) or bilinear in 7,/(x1) and ¢4 (x2).
The latter terms do not have an expectation
value of the order D2 in the state where the cor-
responding waves are unexcited, and the terms

independent of L?k do not influence the energy
difference between the excited states of the
nucleon and the ground state (isobar separation).
These more complicated terms, however, give
rise to a correction of higher order to the scatter-
ing of free mesons, which question is not treated
in this paper. In the following section we treat
the meson scattering only as a problem of the
order D° and disregard all terms of higher order,
while in this section we treat the problem of the
nucleon in the absence of free mesons up to the
order D2,

In order to get rid of the last terms in (II) we
have to shift the zero point of x,’(x) but in such
a way that the orthogonality relation (12'),
namely J 7./ (3¢/3x:)d V=0 is not violated. The
suitable assumption is

"(x)= "(x)—@Z(e L*5)
Ta \X)=Ta 2D & Bkl ") H
{95________35/ s },w (75)
xS (9%/0x)WdV

which agrees with the orthogonality condition
(12) because of (15). Indeed, we have, again
using (12),

D I} P4V =1 } [iyav

47)} dK
+( 13 > <eBkL0aB)Hf :9———1r,,’(x)dV

2D Las Xk
4r oK ot/ox  |?
+——L02%f{—-——————} av
2D? dx S (0%/3x)dV

Taking into account (15) and the definition (23)
of N we find
0K dt/ox  |? 4r
47rf{-———————-——————l Vi=N————.
ox S (9t/3x)dV S (08/0x)2dV

16 We omit the index on the variable x if an integral
has the same value for all three values of this index.
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The term with N just gives the second term
in (II); therefore we get finally, inserting
£(x) =X(x)/I and the value (63) of D

Kk? 4r

3 g
H=e— ———— L2—— =
2g% [ (6X/dx)dV

4 2

2 I+H1, (76)

(1, 2

1
Hi=INY (pegit— 3 (gop)
a, B 21 a,f

0 oK
+@mt (Paﬁ)neﬁkf — (x)dV
axk

a, Bk

T [ ryeav

1y f oo (= Atk pldV. (17)

In the third term of the shift of 7,'(x) does not
give any contribution, because

2. Lo*Ppap=0,

B
Ly® being antisymmetric, p.s symmetric in «
and B.

Before we proceed, it is necessary to complete
the discussion of the shift (75) of m./(x). As this
shift depends on Ly*# and eg it is a ¢ number and
necessitates corrections to L¢** and ez them-
selves to insure that they commute with the new
7'’ (x) and at the same time maintain their own
commutation relations. This goal is reached by
the canonical transformation

F=eUFeV=F +i[U, F']
1:2
+;[U1 [Ur F’]]+ Ut (78)

We can substitute for F the old variables =.'(x),
L5, eg, for F' the new variables ./ (x), Lo,
eg’ if we choose for U

(47")§ ’ , 9¢
=2 S (Lo )y f 9% (x)dV
axk

2D .
Iyl o

which again gives the shift (75) for the first-order

correction to m.'(x) as a result of (21).
Fortunately it is not necessary to give here

the explicit formulas for the corrections to L*#’,

U
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¢ and the second-order corrections to . (x)
because the additional terms in the Hamiltonian
of the order D—? are either independent of Ly*#
or linear in L¢*# and at the same time linear in
¢.' (x) or bilinear in 7,'(x), ¢s'(x). The expecta-
tion value of the terms linear in Ly*f is zero in
the stationary states of the Hamiltonian (76),

(77). It may be noted that L?,, is only an approx-
imate integral of the motion, but if we replace it
in (76) by the exact integral (22') of the total
angular momentum, the additional terms in the
Hamiltonian are again of the type which is dis-
regarded here.

Because the eigenvalues of L¢* are j(j+1)
with half-integer j after the transformation (54),
we get directly from (76) for the energy of excita-
tion of the levels of the nucleon above the ground
level

3 k2 4r
AE=——-

=24 Fexap iUt

(80)
The charge quantum number # does not enter
but is restricted by (74) to values less than or
equal to j. It is characteristic of the symmetrical
pseudoscalar theory that the system is degen-
erate and the energy of all states with the same
j and different charges has the same value. For
the ground state, j=3%, the number # has the
two possible values n=—% and n=3%, which
correspond to neutron and proton.
The integral

1 1
— f(vx>2¢V= —— fXAXdV
47 47

2
=fx1<dV—"— fxzdv,
4r

[see (13)] and can be evaluated in the two
limiting cases of small sources ka<1 and large
sources ka>>1 as follows. Consider the expression

f XKdV= f f K K (@)dVaV'.

r

In the first limit we may substitute 1 for e~*", the
error being of the relative order ka. This means,
according to (4), that we put S'XKdV=a In
this limit the second integral (k2/4x) S X2dV can
be disregarded because it becomes independent

of a if ka is small. Therefore we get
1 1
— f(VX)zd V=-,
4 a

AE 3 «ka

_.C;=§-£;{j(j+1) —3} for kak1.
W

(80a)

The expression (AE/uc?), u being the rest mass
of the meson, refers to ordinary units of the
energy and it is equal to AE/«k in our units.

For large sources ka>>1 it is possible to inte-
grate (13) by the following development

4r 1 \!
X(x) =—;(1 —'—;A) K(x)

47 1 1

=—( 1+—A+—AA+--- )K(x),
k? K? K4

which corresponds to a development in increasing
powers of (xa)~! in the resulting integrals. The
leading term gives [see (23)]

1 4r 3
——f(VX)ZdV=—f(VK)2dV=—N.
4r k4

'

Hence we get, using N=ae~% (with a numerical
factor a depending on the shape of the source
function)

1
— f (VX)2d V= 3a(xa) 2",
47

AE 1 (ka)® .
P {7(G+1)—2} for ka >1.
uc* a g?

(80b)

We have now to consider the various terms
neglected and the conditions which are implied
by such procedures. In the first place, we ne-
glected terms in the Hamiltonian which had as
factors 7., a-, since these had no diagonal matrix
elements for the system of states chosen, but
introduced coupling between them. In order of
magnitude, such terms are given by

h~£[ f (VX)ZdV]—l.

For small sources (ka<1) we get from (80a)
h~«*a/g%

The energy of separation between the states of
(62) is of the order g2I/«®. An evaluation of the
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integral I, defined by (14), shows that in the
limit xa<1, I~1/a?. Consequently, if we demand
that % be small compared with the energy of
separation we get

ka/gk1. (81)
The second approximation was introduced in

(70) and (72) when q(z; was treated as small
compared to D; we restricted ourselves at this
point to small oscillations of the field about its
position of equilibrium. This restriction is not
necessarily essential to the strong coupling hy-
pothesis, but was introduced for mathematical
simplicity. If it failed, the isobar energy (80)
would have had a more complicated dependence
on the angular momentum quantum number j.
We estimate the validity of the approximation

. w .
by computing ((Qalﬂ)2>H/D2; we do this for the
case where no free mesons are present, so that

o (
the only contribution to ((q,,lg?)ﬁ)y comes from
the zero-point oscillations of the field. We find
for small sources

((qi§)2>u~a“4 for ka<1.

In the same limit D=gl/k~g/«a®. Once again,
the criterion proves to be

xa/g<kl.

Finally, we consider the unitary transforma-
tion (78). To the first order, its effect was simply
to shift m.’(x) according to (75) in such a way as
to separate the Hamiltonian completely into a
bound part and a part (77) associated with
unbound mesons. However, higher order terms in
(78) spoil this separation; they give a depend-
ence of the isobar energy on the distribution of
free mesotrons, or conversely a dependence of
the scattering of mesotrons on the isobaric state.
They make possible such processes as the transi-
tion from one isobaric state to another with the
inelastic scattering of mesons. If we demand that
the ratio of these terms to the isobar separation
be small (i.e., that the half-width of the isobaric
states be small compared to their separation), we
arrive at the condition

fgf;%f(x)dv/f(gi—)jﬂ’«l. (82)

Again we substitute for ¢,” values corresponding
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to the zero-point oscillation of the unbound
meson field. Evaluating the expressions in the
small source limit, we find!?

(ka)? In ka

<1 (83)
g

For xa <1, this condition is certainly fulfilled for

values of g large enough to satisfy (81). For

comparison we give the preceding expressions in

the large source limit (ka>>1):
h~«%ab/g?, I~1/k%® D~g/xab,
(o) S
((gag)Dr~1/xas.

Condition (81) for the first and second neglects
is replaced by

(ka)s/g* 1. (81a)
Inequality (81a) also expresses the validity of
(82) for this limit,

7. THE SCATTERING OF FREE MESONS

As mentioned already, in this paper we treat
the scattering with disregard of all terms of
order D2 which means that we do not distinguish
between elastic and inelastic scattering. Our
treatment of the problem therefore will give us
the total scattering cross section. Omitting the
irrelevant self-energy constant, we can use here
the Hamiltonian (77) directly, where the differ-
ence between w,'(x) and w,'’(x) can be disre-
garded. The quantities e, or e, can be treated
here as ¢ numbers for they commute with all
other observables in the Hamiltonian.!® It is
convenient to go back from the variables in (77)
with the help of (16), (16’), (70), (72), to the
functions

o 0K
Pa(x) = (47")* Z Puﬂeﬂla +7ral(x)
7,8 Iy
=ma( )___l_z LaﬁiE (84
=Ta(x 2D ﬂ,keﬁk 0 axk’ )
0el) =1/(47)} T gag €3:(98/0%) + 0a’ ()
Y]
= pa(x) —1/(4m)¥ 2k €ar(38/0x1). (85)

17 The condition from which (82) was derived also
restricts the values of j for which the approximation
holds. We find j Kg/«a.

18 [f, on the other hand, one uses a matrix representation

o o
where T2, L2, and L¢? are diagonal, the e are matrices
which are a generalization of the rotator matrices already
used by Heitler and Ma (reference 8).
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We see that p.(x), ¢.(x) represents a field of
free mesons, the meson eigenfield of the nucleon
being subtracted. It fulfills the commutation
relations [see (21), (55)]

[ pa(X1), Qﬁ(x2)] = 8450(X1—X,)

K 9¢ 0K 9¢
- “ Z N —5aﬂ+ Z eakeﬂt

& 0X1 0Xay 9x1;

(86)
X9y,

These relations correspond to the fact that the

symmetry of the gf,,lg) and pﬁ’,,g makes the field
Pa(%), gu(x) fulfill the subsidiary conditions [com-
pare (12), (12)]

o ot ,
3 {eak f 2 s V—es f —padv]=0, (87a)
Xy axy,

k

( dK K
> e"kf —g,ng—eakf —q.dV}=0. (87b)
k l axy, 0x;.

On the other hand, the Hamiltonian (77)
becomes formally a Hamiltonian for free plane
waves

=1y f p2dVHEY f Gu(—A+k2)gudV. (88)

The fact that the equations of motion differ from
the wave equation of free particles is entirely
due to the symmetry conditions or to the
difference of the commutation relations (86)
from the usual canonical ones.!?

From (87a, b) and (88) we get, by the method
of Lagrangian multipliers which have here the

form of antisymmetric constants Ags= — A\gs and
’
>\Lﬁ= —Mga, the equations of motion
— 2 Nagesi(9E/0xr),
8.k

—Pa=(—A+k2ga— T Napese(9K /).
B,k

With the help of the time derivatives of (87a),

(87b) in which one has to insert the expressions
for ¢a, po one gets

oK ’
Nap=73 2. f([’aeﬁk — Ppar) AV, Nap=0.
r 0xy.

Therefore we get the equations of motion in

19 The analogous result in the charged scalar theory was
first obtained by J. Schwinger.
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the form
1S
=pa—3% 2 ep—
kB O0Xk

oK
X f (patsi—pseai) —dV, (89a)
636,'

—Pa=(—A+k) 0. (89b)

The same equations fqllow from (86) with the
help of the relation f=i[H, f] for f=p, and
f=4a
If we first consider g4, p. as classical quantities,
we can integrate (89a, b) by putting
a¢

Ga=Ua—F 2 g —
kB axk

Pa = uay

oK
X | (tasi—ugea;)—dV,

90
o, (90)

where u, has, according to (89b), to fulfill the
wave equation

A+E+ ) i
— U= ear——
( 2[ Wk B Bkaxk

K
X f (uaeﬁi - uﬁeai
ox;

91)
and the subsidiary condition

da¢ a¢
> [eﬁkf —uadV——eakf —ugdV}=0. (91a)
k 9 oxy

This condition is, however, not independent of
the wave Eq. (91), for the second time derivative
of (91a) vanishes as a consequence of (91).
The subsidiary condition essentially excludes
only the static solution

9¢
UL =73 ear— of (91).
& 0xg
The quantum-theoretical formalism leads to
an analogous result. Let %, be a normalized
orthogonal set of functions (¢ numbers), which

fulfill (with the usual boundary conditions in a
hole)

(_A+k2 _wng)ua(n)

oK
2— 2 e

kB OXk

K
Xf(u.,(’”epi—ug(")eai (()lb)

E)xg
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and the subsidiary condition (91a). We put

= A, (-"—’2—) | (92)
1 a9t
=Z A,,(an)— U™ —— Z egr——
n 2 ik B axk
oK
Xf(ua(”)eﬁi —uﬁ(n)eai }v
axi
A_p=A.% u " =u"*  w_,=w,>0. (92a)
If we assume
[A ny Am+:| = [A ny A—m] = 6117"» (93)

we get just the commutation relation (86), the
system #,({™ being incomplete because, as a result
of (91a), the static solution u.’=3 €.(3§/dx)
is missing. Moreover, the Hamiltonian (77)
assumes the normal form

H=3 1 wi(4.T4.+3).

Our scattering problem is therefore reduced
to the determination of the solution of (91)
[or, aside from a factor exp (—1wt), of (91b)]
which describes a plane wave incident in a given
direction and an outgoing scattered wave.
Corresponding to the three pseudoscalar fields
u. (@=1, 2, 3) we shall get three linear inde-
pendent solutions %, or #,®, u,®, u,® of this
problem, which correspond to an incident
particle with p=1, p=2, or p=3.

Instead of this we can also use the solutions

s = (1/V2) (ua'’ +1ua?),
ua™ = (1/V2) (ua® —10a?), u®,

(94)

which correspond to an incident positive or
negative charged or neutral particle.
We now solve (91b) by the assumption

U’ (x) = 8a, exp [tk(n-X)]

g
+A Z (6apnk_eaiepkn'i)_
ik 9xy,

eikr
XfK(x )TdV . (93)

Here p=1, 2, 3 enumerates the three different
solutions, n is a unit vector in the direction of
the incident wave, k= (w*— «2)}, and the constant
A has to be determined. The first part, the
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plane wave, fulfills the wave equation for free
particles without the right side of (91) while the
scattered wave and therefore the whole ex-
pression (95) fulfills the equation

— (A+k2)ua(/’)
=4rA Z (50,,,”;;

ik

~ea¢e,,kni) (aK/f)xk). (95/)

In order to check (91b) we introduce the ab-
breviations

fK(x) exp [tk(n-x)1dV

f K(x) Riv=r, ()
(where R=[x|, r=|x—X|)
dK (x) cos kr 0K (x')
f f AVaV'=5ud. (97)
9x; r dxy’
Further we have to evaluate the integral
dK kr 0K (x'
ff (x) sin kr 0K (x )dVdV'
ax; 7 dxy
- f f K(x)( )K(x’)d Vv’

K(x")dVaV'.

A rut

But as a consequence of the fact that sin k7/kr
has no singularity for x=0, S (sin k7/7)K(x')d V'’
is a solution of the wave equation (A+%%)u=0,
and therefore

f(sin kr/r)K(x")dV'=(sin kR/R)C.
Moreover, C=F because for R=0 the left side

of the equation is equal to kF, the right side
equal to kC. Therefore

k3
avdav’'= 6,k——F"

ff dK (x) sin kr dK (x") (98)

ax; r dxy’

and finally

ff AK (x) et aK(x/)dVd -

ax, r X1

k3
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With the assumption (95) we get
aK
Z f(eﬂkua<ﬂ) — eakuﬂ(p))—d V
k axk
= Zk (5paeﬂknk - 5pﬁ€aknk)
. ik3
X <| —ikF+24 (]—l-?FZ) }

The differential Eq. (89b) therefore gives

—(A+kDu,» =ifl > (mibap— epkeaini)?‘l“(}
21 ]

ik Xk
. k3
X { —ikF+24 (]-}——3—F2) },
and the comparison with (95’) gives

ikF ik
Id=——+4 (J+§—P ,

100
ikF/2 (100)
B ik
J-I+= F
Introducing
k3
tan 6=—3—F2/(J—I),
, b neq (10D
sin 5=—F2/ J—1y (—Fﬂ) ]
o /o= (5
we get ) .
A = (31/2k2F) sin de®. (100")

We get the asymptotic behavior of the scattered
wave for very large 7 in the direction n, of the
scattered wave by putting r=R—1k(n,-x),
V= —ikn,,

[P (%) Jscare ~tR FA[ 8,o(n-n,)
—(es-n)(e,-n;) (e*E/R). (102)
We now compute the square of this amplitude
for a given n, and sum over «,
Za [“a("’(x)jzscm=k2F2A2[(n~n,)2
—2(n-n,)(e,-n)(e,-n,)+(e,-n,)*].

Further, we take the average over-all directions
of the axis system e, and get for the right side,2°
with cos 6= (n-n,), 6 being the scattering angle

(RFA)?*}(14cos? ).

20 This is in the approximation where the energy loss of
the meson in the scattering is disregarded, the same as
averaging over-all directions of the angular momentum

0
L;i in the initial and in the final states.

101

This is the cross section dg for the solid angle
dQ =27 sin 0d@; inserting (100') we get

dg=Sin2 ° g(1 +cos? 6)dQ, (103)
Sk 4
and the total cross section
g=(sin? 8/k*4r. (104)

On the other hand, if we integrate the square of
the amplitude over all angles 6, which means
averaging over n, without summation over e,
we get

(kFA)*3[8a,—20a,(€, 1)+ (ea-m)*].

Averaging over the orientations of the axis
system gives
(kFA)*5(8ap+1)

which means
Ge=4m(sin? §/k%)1(14d4,).

In other words, if the incident particle is a
“1 particle” the number of scattered ‘‘1 parti-
cles,” ‘‘2-particles,” and ‘‘3-particles” is %, %, 1.
This also holds if one takes for ‘“1,” “2,”" “3”
in any order, neutral, positive, and negative as can
be shown by using the above-mentioned eigen-

functions

(105)

uat=(1/V2) (1a® +iea®),
Uo™ = (1/\/2) (ua(l) ._ziua(Z))

as well as u,®.

Finally we evaluate the integrals J, I, and F
for the physically important case ka<1, ka<1.
In this case we can first put F=1. Further we
have, according to (97),

37= f f K(@)[(—4)(cos kr/r)IK (YA VAV
—in f K(x)dV

+k2ffK(x)(cos kr/r)K(x')dVdV’.

In the same way

3I=ffK(x)[(—A)

—d4r f Kx)dV - f f K —K(x)dvav'.

r

e«
]K xNdvav’
4
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Therefore

3J-I)= ffK(x)(k2 cos kr+«k%e")

1
X-K(x")dvaVv’. (106)
r

So far this result is exact, but for ka<k1, ka1
we can substitute 1 for cos k7 and e~*" and get,
with w?= k24«2

3(J—I)=w?/a for kakl, rakl, (106’)

hence
sin §~tan 6~ (k%a/w?)

and for (103), (104) we get finally on writing
v/c=p/E for k/w

p 4
dg= (E) a?3(1+cos? 6)dQ

RY ka1, ka<1,
={—=) a%
1 (E) "

which was quoted in the second section.

(107)

8. THE CHARGED PSEUDOSCALAR THEORY

Although the symmetrical theory is, from a
mathematical standpoint, more elegant than
the ‘“‘charged pseudoscalar theory” which uses
only positive and negative charged, but no
neutral, mesons, it is also of interest to develop
the corresponding results for the latter theory,
because neutral mesons have never been observed
and because in the case of strong coupling the
charged theory also leads to forces between two
like particles.

With a complex pseudoscalar field ¢ the
Hamiltonian of this theory can be written

H= fd V[w*1r+(V<p*) (Vo) +x2p*ep

—%(41)éK(x)(V<p'T+a+Vga* -r_a) ¢, (108)

where
(109)

re=%(ritirs), 7-=3%(r1—ir).

In order to facilitate the comparison with the
symmetrical theory we split © and ¢ into the
real and imaginary parts which are normalized
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according to

1 1
"=E(T1+im), p=—(p1—1¢2),

V2
1 1 (110)
¥ = \/—Z(m —im), ¢*= 72(% +i¢2),

and get

1 2
H=5 > ‘f[?ra?+(Vsoa)2+x2¢a2]dV

a=1
—K—%(:;w)%fx(x)rao-vgoadv )

We can therefore take over the whole develop-
ment of Section 3 if we simply drop the field
components 73, ¢3 and let the summation index
a take only the values a=1, 2. Of course there
exists as an integral of motion only the T
component of the isotopic spin in this theory,
which gives the electric charge minus 3.

The determination of the eigenvalue of the
interaction energy

3

g 0 0
Hint = ﬁ LE (Tlak‘;alk"l"' T2o'k§02k)

here is somewhat simpler than in the case of the
symmetrical theory. Computing the square of
the interaction energy, we get,

[71(0- 61%) +72(0- ¢2°) ]2

=(81°)2+($2°)%—273(a-[4.°, ¢2°]).
The four eigenvalues of the interaction energy
are therefore

Eine= {($1°)2+ (8292 | [ 10 82°] 1 } 2

L
kvV2
g 9
= :t—\/j_{ (81924 (92°)2£2[ (1) (92")*
K
—(8:°- 622143,
with all possible combinations of the + and
— signs.
The application of the formalism of Section 4

leads here to the case where one of the eigen-
values Q of (C) [Eq. (30)] or (C’) [Eq. (30")]

. 0 . ,
is zero because ¢3;=0. The matrix C' has
therefore only two rows and two columns and is

(112)
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given by
,=( ($:°)? (¢1°'¢2°))
(8:°-62°)  (920)°
and .2, Q.* are the roots of the equation
(102 = ] [($20) = %) = (817 $27)=0,

which gives
1
Q1.2=72{(¢1 )24 (62°)2=[($:1°)2+ (2°)
—4((619%($2°)2— ($:1°- 9279 JH}E (113)

The expression (36) for the interaction energy

_£ ,
Eim.—Kv?(:tQIiQ2) (112)

is in agreement with (112). The orthogonal
matrix B,. has here only two rows and two
columns and can be assumed as

( cos§ sin 0)
Byo= , )
—sin § cos 6

If we write n® for A, the normal form (29) for

(114)

o .
@ak glVeEs US
$1°=Q; cos n® —Q, sin n?,
$2°=Q; sin 1V 4Q, cos n?.

The significance of n¥, n® is therefore that n®
is orthogonal to the plane through ¢,° and ¢.° and
the orientation of the nV, n» axes which we may
call for the moment the ¢ and 7 axes is defined by
the condition

(115)

(116)

This can be immediately derived from (115) and
means that the matrix C defined by (30) is
diagonalized by going to the (£, 7, {) axes, the
diagonal matrix elements being Q1, Q, 0.

In the Egs. (45), (45’) we have to put

7x=0, Bsa=0, B,;=0 for a,7=1,2; P;=0;

hence

0 0 0 0
16017+ 2602, =0.

(L012+T012)2

)= PP

R A AT W R
l (Lol2_T012) (L0r3)2 o
ooy L2 o B

2t We denote corresponding equations in the symmetric
and charged theories with the same number and add in
the latter a c.

103

. .. 0 0
The symmetrical quantities ¢a.g, pag have to be
defined only for @, =1, 2 and according to (51)

we get .
e =n" cos 6 —n® sin 0,

e =n® sin §4n® cos 6, (117)
e®=n®,
and from (52)
q?1=Q1 cos? 6+ Q; sin? 6,
q22=q31= (Q1— Qo) sin @ cos 6, (118)

qu‘—‘ Q1 sin? 6+ Q, cos? 6.

For the description of n” and Ly by Euler angles
and their conjugate momenta, see Appendix.
For the minimum of the potential energy we
get from (62) the old value (63) for Q1=Q.=1D;
but because Q3 =0 we now have
E:\in= —'Bf= _151'

I 2 k? (63¢)

. m. ..
In the approximation where g.g is disregarded, we
now get

L012=D{ (€ “ﬂo) - (eﬁ'ﬂao) } ’

L= —L*=D(e3 =% (a=1, 2).
Therefore
= 2 (egP25+“L<eﬂL0“ﬂ>H) +iesLo°‘3,
f=1,2 2D D
hence

1

E ()= (o)

1
(Lo'?) +l—7;’ 2 (Lo*¥)?

a=1,2
0 1

- )4 2Ly — (Lo12)2].

E(Pﬂ)-l_ZD?[ 02— (Lo'?)?]

This is in accordance with (50c) if we put in the
last two terms Q1=Q.=D, To= — L2 In (II)
we have therefore to substitute 2Lg— (7%
for Ly

In the same way we have to substitute in (75)
1 1
E{%:_emLo"ﬂ-f- 2e3:Lo*?}  for D % eg.Lo®
and get instead of (76):
H:i ‘__ﬂ__[zLO?_ (Tol2)2:]
2g% [ (0X/0x)dV

1g2
——=—I+H, (76c)
2 k2
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where H, is again given by (73), and instead of
(80), (80a), (80b)

3K2

2 g wf(vadV[ jG+1) —n’—

5/47, (80c)

AE 3 «a

“—2“—‘—[2](_74-1) —n?—5/4]for ka1, (80ac)
uc

AE 1 (:«1)5

e EZJ(J+1) —n?—5/4]

K for ka>>1. (80bc)

The restriction (74)
unchanged.

In the computation of the scattering the
following modifications of Section 7 take place.
The functions p.(x), gs(x) (o, B=1, 2 only in the
following) fulfill, besides (87a, b), the condition

—j=n=j is of course

es- f VKg.dV=0, e;- f VipadV=0, (87c)

and the commutation relations (86) get a
corresponding additional term:

i[Pa(X1), gs(X2) ]= 8apbd(X1—Xs)

1 oK 6.5 1 K 65

- T a + €aklBi
2 % éxu, X ox ? 2 Z e axl, 6x2k
1 K o9&
— dap= 2 €3i€3k —.  (86¢)
ik axu axgk
With
Pa=ﬂa1
—ua—— Z (sabi+Uasiesi
2 ik 0%
- Zg upegkeai)g'*d V, (90C)
Xi
we now get
eg-fVEuadV—ea-fVEupdV——*O,
eg-fVEM.,dV=O, (91¢)
(— At 1) 4 5 0K
- K= w?)Ug=— —_—
21 ;5.5 Ok
dK
X [ (el enen) ~usemens V. (910)
X3
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The solution is

e’ (x) = 0,q exp [2k(n-X) ]

A{8,[(n-V)+(n-e;3)(e3- V)]

—(n-ea)(e,,-V)}fK(x’)—dV’ (95¢)

where A is again given by (88), (89). Asymp-
totically for large R we have

[24a® () Jseatt. ~ ik FA[8,a(n-1,)+8,a(n - €5) (, - €5)
kR
—(n-eo)(n.-e,) -

2 [ (%) *seare. = (kFA)*{[(n-n,)

+(n-es)(n,-€5)]*—2(n-n,)(n-e,)(n,-e,)
—2(n-e;)(n-e,)(n,-e3)(ns-€,)

+(n,-e,)2—(n-e3)%(n,-€,)?}.

The process of averaging over the directions of
the axis system e;, e, e; gives (for any value
of p, and for the solutions which correspond to
an incident charged particle)

dg=(sin? 6/k?)3(1+3 cos?6)dQ,

g=(sin? 8/k?) 34,

(103¢)
(104¢)

where for sin? §/k% we can again substitute

0~

if kak1, kakl1.

If the incident particle has a + charge, we
find for the total cross section (integrating over
all scattering angles) for scattering with the
same (+) and the opposite (—) charge, re-
spectively,

g+=(sin® 6/k*)4n(5/4),
g-=(sin? 5/k2)4n(1/4),

(105¢)

the sum of both agreeing with (104c).

9. THE MAGNETIC MOMENT OF THE NUCLEON

The meson field surrounding the heavy particle
gives rise to a magnetic moment which will prove
to be of equal magnitude, but of opposite sign
for the proton and neutron, just as in the case
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of the weak coupling theory.?? The results of
this section are equally valid for the symmetrical
and charged pseudoscalar theories, since the
neutral mesons give no contribution to the
magnetic moment.

The magnetic moment is related to the current
density S by

M=%ef[x-S]dV (119)

or, in tensor notation,
M= ——Mki=%ef[x,-5k-xk5.-]d v, (1198.)

e being the absolute value of the elementary
electric charge. The definition of the charge and
current densities Sy and S becomes essentially
ambiguous in a theory which uses finite distance
operators, such as the source function K(x).
Indeed, in such a theory it is not possible to
fulfill the continuity equation

3So/dt+div S=0 (120)
everywhere inside the source. It is fulfilled
outside the source, as well as (on the average)

over a volume V of dimensions of order a in
which the source is included.

f [3So/0t+divSIdV=0.  (120a)
Vv

Expressions for S, and S which fulfill this weaker
condition and which agree with the definition (9)
of the total charge are given by

So= g1 — pam1+3(1+715) K (x),
S=(ps grad ¢,— ¢; grad ¢,)

(121)

+§(27r)5(¢172 —¢2m1)oK (x).

To prove that these satisfy the conservation
conditions, we make use of the relations

92
(—A+ K2+—‘) ga..+g(21r)*ra(o'-grad K)=0,
at? K
19
~00 S on)ke
2 at K

. f (72 grad o1— 7 grad ¢2)K(x)dV.

2 H. Frohlich, W. Heitler, and N. Kemmer, Proc. Roy.
Soc. A166, 154 (1938). Their result, given in Eq. (63) of
their paper, agrees formally (apart from a numerical
factor) with our result, Eq. (124) below.

105

These follow from the general rule 8f/dt=14[H, f]
and the commutation relations (2), (6) applied
to the Hamiltonian given by (1), (8) with
f=ma(X), ¢a(X), 73. We obtain

aS
—a—to+div S=—0¢-[7; grad ¢1— 71 grad ¢;]K(x)

+K(X)o-fd V(7 grad ¢1— 71 grad ¢2)K(x).

Therefore the continuity condition is fulfilled
both for points outside the source, where
K(x)=0, and on the average over the source as
indicated by (120a). As a result of the lack of
validity of the continuity equation inside the
source, we may apply the assumed expression
for the current density to the computation of the
magnetic moment only if this moment is gen-
erated in a volume large compared with the
dimensions of the source; in other words, we are
restricted to small source size, ka<1.

Introducing the strong coupling approxima-
tion, we apply the S transformation (65a, b) to
the second part of the current (121b); then we
insert the values (68) for ,0,, namely 7.0,
= —§,,. This gives

S=(¢2 grad ¢1— ¢1 grad ¢,)

—E2m)(pe® — pe MK (x). (122)

We insert for the field its value corresponding to
the absence of free mesons and the lowest
eigenvalue of the interaction energy, (16), (64).

1
@) iDe“") -grad ¢ (a=1, 2).

If now we use

‘Pa(x) =

g 1
= — . 3 = E . 1 y
D K\/?I[Eq (63)1, ¢ IX q. (15)

@alx) =(Tl1:)—% Kf/je(") -grad X.
The current becomes
Skzi i —(e1Ven® — g, e,, ) X 9}_
2k? | me L4 0xk0x1 0%

X
— (el(l)ek(m —_ el“’"ek“’)—K(x)
ax;
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and the magnetic moment (119a) becomes

e g2 3
M=o
"0 ,Egl
97X 9°X \ 0X

X(m — X
8xk8x1 axiaxl axm

{fd'Vi(ez(”em‘” —e,De,, (V)
4r

_fd Ve Ve —e,@e,M)x;

X
— (e, Ve;® —81(2)ei(1))xk]'5_—K(x) } (123)
%1

The first volume integral is transformed by
partial integration with respect to d4/9x;, half
the terms vanishing in the sum over / and m.
In the second integral one substitutes for K(x)
its expression (47)71(—A+«?)X taken from (13)
and gets

X 0X
41rfx,—-K(x)dV=fx,--(—A+x2)XdV
8x; dx;

9
=%dex,~—X(—A+x2)X
ax;

a 9?X 99X 9X
+1 f dVx; X -
” dx,\ 0x:0x, 0x; 0x,

K2
=%6“fXAXdV—?5an2dV
dX 9X 92X
f 2 x T )av
0x; 0x; éxlax.-

2
- ——%6;lf(grad X)d V—%ai,fxw y

+

[P

Using the spherical symmetry of X we have

4X 8X
——dV= %5.-;f(grad X)dV.
axi axz
We get
May= +i g—(ei“)ek(” —e; e, (V)
87 22

X[——%f(grad X)2d V+x2fX2dV].

As was shown in Section 4 the second integral
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can be neglected for xa<1 while

1
— f(grad X)2dV=1/a.
47

Changing to vector notation and using
[e®Xe®]=e® we get the final result
e 2
= ___g___e(s> (124)
kka 12

We now compute the component of M in a
fixed direction, say along the x; axis. We
introduce a matrix representation for the e.(®,
where L1205L30, (Lo)2, and T012=__L0(3) I:Cf
Eq. (73)] are diagonal with eigenvalues m,
j(j+1), and =, respectively, with —j=m=j and
—j=n=j. From the commutation relations
(39), (55), (56) it follows that L® = L2 commutes
with all L, and is therefore diagonal with respect
to j, m, and L.

Moreover, e® commutes with L® and is
therefore diagonal with respect to ». However,
e;® is not diagonal with respect to j and we
need the diagonal element (j, n, m|e;®|j, n, m).

We have the following relations:

(m|Li+iLs|m—1)=[(G+m)(G—m+1)]
(m|Li—iLs|m+1) =[(j+m—1)(j—m)].
To satisfy the commutation relations [analogous

to (38)] of &,® with Li, we set
(jym, n|es® | j, m, n)=(j, n|C|j, n)m,
(F, m, n|er®+ies® | j, m—1, n)
=, n|Clj, MLG+m)(G—m+1)T,
(7, m, n|es® —iex® | j, m+1, n)
=0, n|C|j, M)[(G+m+1)(G—m)]
Inserting this in the equation

—(L-e®)=—L®=T®

we get e
o -y n|Clj,m)j(i+1)=n
(G, m, ] es® | G, m, m) =—
- ]’ m’n € ]v mrn = . .
’ JG+1)

Therefore, for a given isobar, we find that to the
leading order

eg? 1l mnm

@12 G+

(125)
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For the proton n=m=j=1%, hence

=t 8! (126)
T ka 36
For the neutron n=—3, hence M; simply

changes sign, as was mentioned above.

If, for a first orientation, we identify this
magnetic moment with the total empirical
magnetic moment of the neutron—1.93 proton
magnetons—and assume a meson mass equal to
1/10 proton mass (e/k=10 proton magnetons),
we find g?/ka~6.95. Inserting the value of
ka~0.1 determined from consideration of the
scattering, we find g2~0.695, or g/xa~8.3, well
within the range of the strong coupling
approximation.

However, the fact that the proton and neutron
magnetic moments are not of equal magnitude
cannot be explained in any simple way in this
theory. Of course, (126) does not give the total
magnetic moment, but only the part due to the
meson cloud. To it must be added the moment
due to the nucleon itself.?® If we assume that a
“‘bare’’ proton or neutron would have a magnetic
moment or one or zero proton magnetons,
respectively, then we can compute the nucleon
moment in the two lowest states by calculating
the expectation value of

eh 1
M ' =——(1+m3)e.

MpC 2 (127)
In the weak coupling theory 73 is diagonal with
the value +% for the proton and —% for the
neutron, giving rise to the same values for the
moment which were assumed for the bare core.
However, in the strong coupling theory we have,
after performing the S transformation,

e 1
M=—— —-e®,
MpC 2

the expectation value of ¢ being zero. We
compute the component of M’ along the x; axis
as before and get

1 nm e
M= (128)
2 j(j+1) mye

2% We are indebted to Dr. J. Schwinger for valuable
discussion of this question.
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This moment, while small compared to the
empirical moments of proton and neutron, is
again equal in magnitude and opposite in sign
for the two. For the two states n=+4%, m=j=%

M3’ = 4% proton magneton.

APPENDIX
1. Introduction of Polar Angles

It is possible to express by means of Euler angles the
orthogonal matrices (or, in other words, the three or-

thogonal-unit-vectors) introduced in Section 2. For
instance, we can put
Ax=cos 0 cos ¢ cos Yy —sin ¢ sin ¢,
cos 6 sin ¢ cos Y+cos ¢ siny, —sin 6 cosy,
A= —cos 0 cos ¢ sin Yy —sin ¢ cos ¢, (1)
—cos 8 sin ¢ sin Yy+cos ¢ cos ¢, sin 0 sin ¥,

Ag=sin 0 cos ¢, sin @sin ¢, cos 6,

which means that the right side is the transposed matrix
A. In the same way we put for the matrix

Bia=cos © cos ® cos ¥ —sin ® sin ¥,

cos O sin ® cos ¥+cos ®sin ¥, —sin © cos V¥,
Byg= —cos © cos ® sin ¥ —sin & cos ¥, (2)
—cos O sin ® sin ¥+cos ® cos ¥, sin O sin ¥,
B3y=sin @ cos®, sin @sin®, cos O
and for the eqx defined by (51)
e1,=cos a cos b cos c—sin b sin ¢,
cos a sin b cos c+cos bsin¢c, —sinacosc,
esx= —COs a cos b sin ¢—sin b cos c, 3)
—cos a sin b sin ¢+cos b cos ¢, sin a sin ¢,

es=sina cos b, sinasinb, cosa.

Defining the operators pg, Py, Py simply by pg= —18/36,
po=—10/3¢, py=—1d/dy, we find from the volume
element sin 8d0dedy that p,, py are Hermitian, but

pot = (sin 6)1pg sin 6;

similar expressions are found for pef, p.T.
A direct evaluation of the angular momentum operators
gives

Ly=Ly3= —sin ¢pg+ (cos ¢/sin 8) (py—cos 6p,)
= — pyt sin o+ (py— P, cos 6) (cos ¢/sin 6),
Ly=Lj =cos ¢pg+ (sin ¢/sin 6) (py—cos 0p,) 4)
=pgt cos ¢+ (py— p, cos 6) (sin ¢/sin 6),
Liy=Lis=p,,

and also
Li=Lys= —sin bps+ (cos b/sin a) (p.—cos aps)
= — p,t sin b+ (p.— p» cos a)(cos b/sin a),
Ly= Lgi=cos bpa+ (sin b/sin a)(p.—cos aps) 5)
= pt cos b+ (p.— p» cos a)(sin b/sin a),
Ly=Liz=po.
Analogously for the isotopic spin

T1=Ta3= —sin ®pe+ (cos ®/sin O)(py—cos Ops)
= —pol sin @+ (py — pa cos O)(cos ®/sin O),
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To=T31=cos ®po+ (sin ®/sin O)(py —cos Ops) (6)
= pot cos &+ (py — pa cos O)(sin ®/sin O),
Ty=Ti2=ps.

For the components L™ and 7* we find

L'=L%=sin ypg+ (cos ¥/sin 8)(cos Opy— p,)
= pgt sin ¢+ (py cos —p,) (cos ¥/sin 6),
L2=L3=cos ypg— (sin ¢/sin 6) (cos Opy— py) ()
=pgt cos Y — (py cos 86— p,)(sin ¥/sin 6),
3=Lr=p,,
T'=T%B=sin ¥pe-+ (cos ¥/sin O)(cos Opy— ps)
=pot sin ¥+ (py cos @ — pg)(cos ¥/sin B),
T?=T3=cos ¥po— (sin ¥/sin ®)(cos Opy— ps) (8)
= pot cos ¥ — (py cos O— pg)(sin ¥/sin O),
T3=T12=2py.
And, analogously for the components L which we write

Lo, L® L® or L@ LGH 102 to distinguish them from
Lrs

LW =L =sin cps+ (cos ¢/sin a)(cos ap.— pv)
= p,t sin ¢+ (p. cos a— ps) (cos ¢/sin a),
L® =0 =cos cp.— (sin ¢/sin a)(cos ap.— p») 9)
= pat cos c— (pc cos a— ps) (sin ¢/sin a),
LO=LW=p,

We note that all components L7, T3, L*8 turn out to be
Hermitian. For the total square of L and T we get

(py—cos 0p,)?

Lr=pylpo+-— g + 04
= pot po (05 Pu— o) :ll; ‘i;h)z +pst (10)
T“=Pe"?e+(?‘p_s§:;s§m)2+h2
= patpo+ C ORI e 1y
and also
Li=prtp+ BSR4
= pulput BB 4 (1)

sin?a

The expressions (7), (8) can be substituted in the
expression (50) for

0
2 (Ta)?
ak
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which, however, gets rather complicated even in the
approximation where one puts Q.+ Q,=2D because of the
terms containing Q,— Q,. The analogous expression (50c)
for the charged scalar theory is simpler, because here we
have simply T2=T;;=ps. In the approximation where
we can put in the last two terms Q1+Q:=2D, Q,=D
we get

2 J— 2
(Rt ()= P Pi Pyt Py SRR ()

(cos ap.— pv)? » .
sin—2a+PJP"}D 2, (13¢)

+

2. The S Transformation

By using the expression (3) for the e the S transforma-
tion defined by Eq. (65a) is simply obtained by putting?*

s (1) 0 (1) o (i)
=exp (iow; ) exp (iox; ) exp (ios3);
. b . .
S1=exp (—wsi> exp (——102%) exp (—wa%) (14)
which can also be written out as

S=cos %(cos 2 f_-é-f),
,—COS2 COSZCOS2 sm25m2

... a . b c b . ¢
+1 sin 2(—sm 3 cos §+cos 3 sin —2)01
... a b c, . b. ¢
+1 sin i(cos 5 €0s §+sm 2 Sin 2)0’2

. af . b ¢ b . ¢
+icos é(sm 5 cos —2+cos 5 sin i)”' (15)
The expression for S1 is obtained from it by changing
into —1. One easily finds

SpaS™1=ps— }(01 sin c+o2 cos c),
SppS1=pp—3(—a1sina cos ¢

403 sin a sin ¢c+o3cos a), (16)
SpSt=p.— }os.

Inserting this in the expressions (5) and (9) of the last
section, one easily checks the Egs. (69), (69!) of the text,
namely

SLS1=L—3}SeS'=L—}Z,4 0a€q,
SLBS1=12—1g,p.

2% See W. Pauli, Helv. Phys. Acta 12, 147 (1939),

Section 3, where the special case c=0 is treated.



