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The present paper treats the symmetrical and charged pseudoscalar theories of the meson
field, using the strong coupling approximation; it restricts itself to the case of a single source.
The energy levels of the excited states of the heavy particle and the scattering cross section
for free mesons are computed by wave mechanical methods. An expression is also obtained
for the magnetic moment of the proton or neutron. While the scattering cross section can,
with reasonable assumptions, be brought into agreement with experimental values, the results
for the magnetic moment are qualitatively at variance with the known values in that equal
and opposite moments are predicted for proton and neutron.

1. INTRODUCTION

HE perturbation theoretic treatment of the
coupling of the meson Field to the heavy

particle, based on the assumption that the
coupling is weak„encounters several funda-
mental diSculties in its application. The di-
vergences which arise from the treatment of the
heavy particle as an inFinite point mass have
been in some instances arbitrarily removed by
cut-o6 methods, but it can be shown that such
methods cannot be consistently formulated in

such a way as to satisfy the criterion for weak
coupling. ' Moreover, calculations of the scatter-
ing cross section for mesons in this theory lead
to values which are generally much too high to
agree with cross sections observed for cosmic-ray
mesons. The results vary somewhat depending

' This point will be more fully discussed in a subsequent
paper in which the two-source problem will be considered.
%'e are indebted to Professor R. Serber for valuable
discussions on this point as well as on several others
considered in this paper.

on the particular type of meson Field assumed.
If we assume that the spin of the meson is zero'
(charged or symmetrical pseudoscalar), pertur-
bation theory leads to the following result' for
the scattering of a meson by a nucleon. '

dg=g414 (p/e) (1+COS g)dQ fOr hp))MC,
dq=g414 '(p'/eE)tdQ for hp((Mc, 3f~~.

Here g is the dimensionless constant which
expresses the magnitude of the coupling; 14 = ttc/h
where t4 is the rest mass of the meson; p is the
momentum of the incident meson divided by h;
E the total energy divided by ht. ; M the rest
mass of the nucleon; and 8 the scattering angle.
These cross sections refer to processes in which

'This is one of the two possibilities left open by a
consideration of the electromagnetic radiation processes
of the meson. See R. F. Christy and S. Kusaka, Phys.
Rev. 59, 405 and 414 (1941}.The other possible value
of the spin (q) will be discussed by J. R. Oppenheimer
and E. Nelson in a forthcoming publication.

s H. Yukawa and Y. Tanikawa, Proc. Phys. Math. Soc.
Japan 23, 445 (1941).

4 Nucleon is equivalent to "proton-neutron. "
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the meson is scattered with the original charge.
In the case of the symmetrical theory there
exists also a scattering process in which the
meson changes its charge. If a negative (positive)
meson collides with a proton (neutron) it can
be scattered as a neutral meson, while the
nucleon changes into a neutron (proton). Ac-
cording to computations of F. Adler, not yet
published, the corresponding cross section is

dq = g'~ '(p/~)-'(1 —cos tt/2)'dQ for hp&) Mc,
dg=g4K (2p /2tcZ) 22sln~ HdQ for hp((Mc, M~ ~.
A numerical estimate of the total cross section
depends upon an assignment of the magnitude
of g. This is ordinarily done by considering the
nuclear forces predicted by the theory and
adjusting g to 6t the properties of the deuteron.
This involves a cut-oR or other readjustment of
the radial dependence of the interaction. As
remarked above, such a procedure cannot be
carried through in a manner consistent with the
weak coupling hypothesis. Nevertheless, the
value of g so determined (g' 0.1) will be used
to give an order of magnitude estimate of the
scattering cross section. Ke obtain a total cross
section 2&(10 " cm', as compared with the
upper limit of 5 )& 10 " cm' determined from
experiments on cosmic-ray mesons. '

Two apparently diRerent theories have been
.proposed to explain the smallness of the meson
scattering cross section. Heisenberg pointed out
that the reaction of the eigenfield of the nucleon
to the motion of its spin —and particularly the
terms proportional to 1/a which one can con-
sider as an inertia of the spin —are considerable. '
As an example, he computed by classical
methods, the scattering in a neutral theory with
spin 1 mesons; he found a scattering cross
section proportional to a'(p/E)' if g'»~a. '

The second theory is due to Heitler' and
Bhabha' and based on the assumption of the

existence of excited states (isobars) of the nucleon
with higher values of the charge (Bhabha) and
of the spin (Heitler). In this theory the energy
diRerence ~ between consecutive isobaric states
is not derived, but arbitrarily assumed. On the
basis of these assumptions, one finds a con-
siderably reduced value for the cross section for
scattering of a meson by a nucleon (of infinite
mass) at rest:

8 is the meson energy and go is the total cross
section (given above) for scattering as calculated
by perturbation theory.

It was shown by Oppenheimer and Schwinger"
that the two explanations are in reality one and
the same. One can indeed derive from Heisen-
berg's assumptions the existence of excited
states of the nucleon, corresponding to the degree
of freedom associated with the reaction of the
nucleon spin. It is easy to see that if we assume
this excitation energy proportional to

z'a/g'

and combine this with Heisenberg's result

we obtain Heitler and Bhabha's formula for
gy/gp. The above formula for M, presumably
valid for vector mesons, is identical with the
corresponding formula that will be rigorously
derived for the pseudoscalar case (see below).

2. RESULTS AND CONCLUSIONS

Ke give here the principal results of this
investigation, including the excitation of the
isobaric states, the cross section for meson
scattering, and the resultant magnetic moments
of the proton and neutron. As the condition for
the validity of the strong coupling approximation
we obtain g&)~a, in the case of small source size

~ For instance, see R. P. Shutt, Phys. Rev. 61, 6 (1942).
Older literature is reviewed.' The quantity e measures the radius of the nucleon.
A precise de6nition is given by (4).

%. Heisenberg, Zeits. f. Physik 113, 61 (1939}.The
problem of interaction of a dipole with its own electro-
magnetic or meson 6eld is treated in detail by H. J.
Bhabha and H. C. Corben, Proc. Roy. Soc. A178, 273
(1941) and H. J. Bhabha, Proc. Roy. Soc. A178, 314
(1941). A classical but relativistically invariant method
is used. The terms in the Hamiltonian proportional to
1/a are replaced by terms containing undetermined

constants. Such a procedure may approximate an exact
treatment more closely than the one used in this paper,
but it is not suitable for a quantum-mechanical treatment
of the problem.

'Compare the detailed paper of W. Heitler and S. T
Ma, Proc. Roy. Soc. A176, 368 (1940).

9 H. J. Bhabha, Phys. Rev. 59, 100 (1941).We refer to
this paper for the discussion of the influence of the Coulomb
forces on the probability of the generation of a doubly
charged proton."J.R. Oppenheimer and J. Schwinger, Phys. Rev. 60,
150 (1941).
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(~a&&1). For the energy of excitation of the
isobars we find

hR 3 ~a 3=——j(j+1)—— in the symmetrical theory,
pC2 2 g2

AB 3 ~a 5=——2j(j+1) n' —in t—he—charged theory.
pC2 2 g2

Here the half-integer j is the total angular
momentum, and the half-integer quantum
number n is the electric charge (in units e) minus
one-half. In both cases, the value of n is restricted
to —j—n —j, otherwise the isobar energy in the
first ease is independent of n. The definition of
the radius a of the nucleon is given by (4). The
proton and neutron are identified as the two
lowest states of this system, corresponding to
j= -,', n = +-', . Higher states will be stable against
"meson decay" to these ground states only if
AE«pc' or g'/aa»1.

For the total scattering cross section (elastic
plus inelastic scattering with and without change
of the charge) we find under the conditions
g&&~a, ~a&(1, pa&(1:

dq = 34(f~/E)'a'(1+cos' 8)dQ,

q =4s.(p/E)'a' in the symmetrical theory;
dq= '(p/E)4a'(1+-3 cos' 8)dQ

q = 6m (P/E)'a2 in the charged theory.

As has already been shown by Oppenheimer and
Schwinger, one gets agreement with the experi-
mental cross section for meson scattering, in the
symmetrical theory for instance, by assuming
a-6/Vc=2)&10 " cm which means aa 0.1.
Referring to the condition for strong coupling,
g))~a, we see that values of g'&&0.01 satisfy this
condition.

The magnetic moment of the system nucleon
+meson field is found to be

10 g'-1
& ——+— proton magnetons

36 aa 6

the & symbol referring to proton and neutron,
respectively. As regards order of magnitude, this
is not inconsistent with the known magnitudes.
A moment of 1.93 proton magnetons, such as
has been observed for the neutron, can be
obtained by taking g'/ca=6. 3; using ma=0. 1
we find g'=0.63, well into the strong coupling

domain. However, the prediction that the
neutron and proton moments are equal and
opposite is in contradiction with experience.
The second term in the bracket above represents
the contribution of the nucleon itself. This
contribution is somewhat uncertain because of
our ignorance of the fundamental properties of
the "bare" proton or neutron. Consequently
the discrepancy cannot be taken as an unam-
biguous disproof of the strong coupling hy-
pothesis. However, the hope that the anomalous
moments would follow in a simple way from the
theory has not been justified.

It is to be noted that the results obtained
above are quantitatively different from the
results of the application of semi-classical meth-
ods employed by Oppenheimer and Schwinger
and described in detail by Schwinger. " The
latter method treats the spin e and the isotopic
spin ~ as classical unit vectors. In the charged
scalar and neutral pseudoscalar theories, it gave
a quantitative agreement with the wave me-
chanical results in the limit of strong coupling.
This is, however, not true in the present case;
in particular the restriction —j—n —j does not
appear. The discrepancy cannot be considered
surprising in view of the neglect, in the semi-
classical method, of the commutation relations
between the various components of ~ and e.
One sees in the wave mechanical treatment that
these relations play an essential part in deter-
mining the minimum eigenvalue of the inter-
action energy (see Section 4). Once this part of
the problem has been solved, however, there is
no difference between the two methods of
treatment.

The remaining sections are devoted to the
derivation of the results quoted above. In

Sections 3 to 6 we introduce such new field
variables for the symmetrical pseudosealar field
as to express the energy in terms of unbound
mesons and mesons bound to the nucleon. In 6
we find the dependence of the energy on the
charge and angular momentum of the bound
meson cloud, and discuss in detail the conditions
for validity of the various strong coupling
approximations introduced. In 7 we calculate
the scattering cross sections. Section 8 contains a

"J. Schwinger, publication in preparation.
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specialization of all these calculations as applied
to the charged pseud oscalar case. Section 9
consists of the magnetic moment computation
and an appendix describes an alternate method
for expanding field quantities, with the use of

second by the spin matrices o„o„,o„ore. Both
of them fulfill the same kind of relations

~~r2=~r3,

0~0@=ZOzp ' ' ' 0'~ = 1)
Euler angles. where the denotes similar relations derived

by cyclic permutations. The interaction energy3. SPLIT OF THE FIELD INTO A ZERO STATE
AND UPPER STATES is then given by

In the symmetrical pseudoscalar theory it is
convenient to describe the field by three real
quantities rp (x), a=1, 2, 3. The Hamiltonian II
consists of the part Ho of free particles and the
interaction energy H&. The first part is given by"

IID P-' [w——'+(Vq )'+»'q 'jd V
a=i

where the x are the momenta conjugate to y
and fulfill, at a given instant of time, the com-
mutation rules

II= —(g/»)(4x)~/v2 Q K(x)r (e V) p.d V
J

= (g/»)(4ir)&/v2 Q VKr. oy.d V (8).
a

The factor (4x)& is introduced in order to measure

g in ordinary units, not in Heaviside units; the
factor 1/v2 in order to bring it into accordance
with the notation in the theories which introduce
charged particles only; and the factor 1/» in
order to make g dimensionless. "The total charge
of the system meson field+nucleon, measured in
the unit e of the electron charge is given by

i[n .(x), yp(x')j = b.pb(x —x'). (2)
(+1&2 @2%1)dV+ 2 (1+TS).

In the interaction energy we suppose the heavy
particle, which we shall call nucleon, to be at
rest and characterized by a spherically sym-
metrical source function K(x) =K(~x~) which is
normalized according to

The symmetrical theories are characterized by
the fact that the charge is only one component
of the isotopic spin T p= —Tp (a, /=1, 2, 3)
which is a more general integral of motion and
given by

K(x)d V=1 (3)
T p= I (p harp

—(@pwca)d V+-', r p. (10)

and determines a radius a of the nucleon:

K(x) (1/r) K(x')d Vd V',

with v~2= —v2~ ——v3, ~ . The charge is then the
12 component of the isotopic spin, ~= T~~+-', .

The form (8) of the interaction energy suggests

(4) the definition"

t BE= 4ir q,d V, (11)
BxgFurthermore, the nucleon is capable of existing

in two states corresponding to proton and
neutron, and moreover to two states correspond-
ing to diR'erent directions of the spin. The first
degree of freedom is described by the isotopic
spin matrices rj., v2, ~3, or v with 0.=1, 2, 3; the

which gives
f)

II1 Q ra&% pak
g,

(8')

Moreover, we split the field y (x) into two parts

"The connection of our constant g with the constant
g~ introduced by Yukawa is

g=g~(kc) &.

'4 Small roman indices i, k, run from 1 to 3 and
denote vector components in the ordinary space.

~ We always use here natural units where h=c=1 or,
in other words, energies are divided by kc, momenta by h,
angular momenta by 5, electric charges by (hc)&; ~ is the
rest mass p of the free meson divided by hc.

0 ~Pa
where here and in the following, rhasthe meaning wa&= (4ir)

J
K(x)

BxIp

r= Ix —x'[. (5)
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commutation rulesof which one, ip '(x), is orthogonal to the gradient
of the source function 0 0

i'I craig ppk] = bapbiki

Lx-k ~p'(x)j=Lx-'(x) V pkj=0

&Lx-'(») k p'(») j
= B p(b(xi —x2) —V'iE Vk)). (21)

(19)

(20)tip 'VEd V=O (12)

and the other proportional to the gradient of the
potential X(x) which the source function gener-
ates according to

The latter relation is also in direct agreement
with the orthogonality conditions (12), (12').

The isotopic spin (10) decomposes simply into(—6+k')X=4irE,

X(x) Jl E(x)p .r/rd V—'. (13)
2 ap =Jt (pa il p pp ira)d V

If we define
0 0 0 0+pk (ipak&pk Wpkirak) + 2 rap (22)

BX BE
bkI=J dV

BXi BXk
The kinetic energy however gets cross terms in

m; and w '(x), and if we use the abbreviation
14

f BE BE
dt/

BXi BXk

('BEe ""BE
dVdV',

BXi ~ BXk

X(x) t Bg BE
$(x)=-, b;k ll

—— d V,I 0 BXi BXk
(15) or

4x ZX=—' (VE)'d V,
3 0

(23)
then it follows from (11) and (12) that

it is given by
o B1:

q.(x) =1/(4ir)& Q q.k +ip. '(x),
BXk

hence

—, P l .dv= —,'xg(.'.-)
CL a, k

0

GABE

+(4x)*'Q n. k ~l ir '(x)d V
BXk

y-'(x) =ip-(x)-V» j VEip~V (17)

The circumstance that we choose the 6rst part of
the field as a linear function of the BX/Bxk (and
not of the BE/Bxk) has the consequence that in

0
virtue of (12) no cross terms between p k and
ip '(x) occur in the potential energy Hk. Indeed,
one has, using (13), (15),

+2 2 (x-')'d V (24)
a

One gets the total Hamiltonian by collecting (24),
(18), (8'):
~= 2& 2 (x-k)'+ 2 2 (V -k)'/I

a, k a, k

0
+g/&V2 2 &a&kPak

(~P-k)'
2 E, ' vo-( —~+~')k-d V=1 E

a

+-,' Q ~P '( —6+k')q 'd V. (18)

a, k

+(4ir)' Q x,
J

(BE/Bx,)x '(x)d V
a, i

+2 Z (x-')'d V
a

+2 2 ~v-'( ~+~')v-'d V (—I)
aJ

Just as for the isotopic spin there exists in virtue
of the spherical symmetry of the source function
E(x) the integral of the angular momentum
I;k= —I.ki given by

The conjugate decomposition of the momentum
7I (x) 1S glveil by

0 BE
s (x) =(4x)& P ir.k +w '(x), (16')

Jl ir 'Vpd V=O, (12')

vr k
——1/(4ir)&JI (Bg/Bxk)ir& V, (11')

x (x) VE Vbrj V,

x.
l

x, —x. l~gV+-2~, k (10')
which leads, in accordance with (2), to the J & Bxk Bx„)
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It decomposes as follows:
0 0 0 0

+ik pOik+Pa ('Pai&ak VakSai)

p I'BZl' 8 8 $—(4s.)& g pr i ) x, —xk ~pp
'd V

ax& & 'axk ax;j (ByoA) „=Q,h„ (28)

We shall prove now that we can choose the or-
thogonal matrices A, B in such a way that the
new matrix Bq0A becomes diagonal:

o t', ( 8 B)8$
dv

Bxg Bxi) Bx~

or, according to (26),

kp. k (BQ——A).k
——p, B,.Q„Ak, . (29)

, ( 8 8)
x.'I x, —x, ) o.'d V. (22')

Bxk Bx;I

The orthogonality relations (12), (12') do not
make the cross terms disappear in this case. We
emphasize, however, the simple form of the
angular momentum of the zero field, given by
the first sum in (22').

4. THE EIGENVALUES OF THE INTERACTION
ENERGY. NEVf VARIABLES FOR

THE ZERO STATE

While in the usual treatment the interaction
energy IIi is considered as a small perturbation
(weak coupling), we consider in this paper the
opposite limit of strong coupling. In this case one
has first to investigate the eigenvalues of the
interaction energy H& given by (8'), and then to
retain only the lowest of them under the assump-
tion, whose validity will be investigated, that the
next higher level of IIi will not appreciably
perturb a system in this lowest state.

In order to determine the four eigenvalues of
the form

0
7 a&k Pak

a, I;

0
in which the 9 coefficients y I„-were real, we have
to bear in mind that we 'are free to subject the
~'s and o 's to independent real orthogonal
transform ation s

3

r.= P r, 'B... ok ——P Ak, o, ',

We choose A as the orthogonal matrix which
transforms C to principal axes (which is always
possible because C is symmetric) and denote the
eigenvalues of C by (Q,)'. These are certainly
never negative because the form

p C;kx;xk ——p. (pk y.kxk)'-'

is definite. This means that we have

CA =AQ' or ACA =Q' (31)

Ke note that the matrix A is unique except for a
sign, and except for the case where some of the
Q, 's are zero or some of them are equal to each
other. We now define the matrix B by

ipA = BQ,

where Q, is defined as the square root of the
eigenvalue Q„'of C, the sign of which we shall
choose later. Multiplication by g from the left
gives, by virtue of (30), (31)

AQ'=@BQ,
or

AQ=vpB, AAQ=Q=A@8,

and by transposing the matrices, Q being diagonal

For this purpose we consider the two sym-
metrical forms

0 0C= pq or C;k ——Ck, =p. q.;k.k, (30)
and

0 0C'=op or C.p=Cp. =gk q.kvpk. (30')

Q r, '(Bq 'A)„o,'. (27)

where B and A fulfill orthogonality conditions
which we can write in matrix notation

AA=AA=1, BB=BB=1, (26)

where A and B are the transposed matrices
(A, k ——Ak„B„=B„).The eigenvalues of our
form are therefore the same as those of the other
form

which proves Eq. (28). Now multiplying (32) by
B from the left, we get

BvpA =Q=BBQ

Therefore BB= 1, which proves the orthogonality
of B. (For the case of a multiple eigenvalue Q,
the orthogonality BB=1 does not follow, but
can easily be achieved. ) Multiplying AQ= pB
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by By from the left, we get

BipAQ =Qs =BipipB = BC'B,

BC'=Q'B or BC'8=Q',
(33)

The equation AQ= ipB is in this case not a con-
sequence of the pro~ed equation AQ'= yBQ but
can be used for r =3 as a definition of the third
row of the matrix B, namely

0

Qa kSakBSa = O.

This can always be fulfilled, the determinant of

q ~ being zero in this case. There is still an arbi-
trary factor independent of o, undetermined in

B3 . This factor can be adjusted to satisfy the
equation Q=BBQ; it can simultaneously be
made to satisfy the equation

2

83 ——1,

which does not follow directly from the above.

Combining Q=BBQ and g Bs ——1, we obtain
again BB=1.

In Section 8 we shall meet the particular case
0

Qs ——0, Qi AO, Qs WO, kssk ——O.

In this case one has B3 ——0 for ~ =1, 2, which
follows from

0
Qa pakBsa

Moreover, (32) leads to B.s ——0 for n = 1, 2.
Finally, 833 is fixed by 88=1 and is equal to
one. The latter condition also expresses the
orthogonality of the two-row and two-column
matrix B„(r=1,2; is=1, 2).

In a similar way the case of a multiple eigen-
value zero of C and C' can be treated by con-
sidering all equations in the preceding proof
which cannot be directly derived as possible
additional defining postulates.

In order to have the determinants of A and 8
both +1, which is essential for the validity of the

which is analogous to (31) and shows that C' has
the same eigenvalues as C.

If the eigenvalue Q, is zero, the row B„ofB
is not defined by (32) and the preceding proof is
incomplete. Let us assume first that there is a
simple eigenvalue Qs=O, QiWO, QsWO. Froill
Eq. (32) we get for r =3

0

Qk k akAks 0 ~

ol
(g/Kv2) P, Q,s„with sissss = 1

&i= —(g/&~&) (Qi+ Qs+ Qs)

Es = (&/"v2) ( —Qi+ Qs+ Qs),

&s = (g/xv2) (Qi —Qs+ Qs),

~4 = (g/&~2) (Qi+ Qs —Qs).

(36)

The sum of all four E's is zero, but if B is an
eigenvalue in general —E is not an eigenvalue
unless at least one of the three Q„'sis zero. We
repeat that the Q, 's are the square roots of the
eigenvalues of the symmetrical matrix C (or C').
From (31) we get immediately by evaluating the
trace

0

E Q.'= Q Ckk = p (s.k)'.
r=l Ip a, k

(37)

The sum of the Q„'sthemselves, however, cannot
0

be expressed rationally by the field p k.

We now introduce into the kinetic energy of
the zero field the variables corresponding to Q„
A~„,B„.Instead of expressing the latter variables
by Euler angles and using their conjugate
momenta, we can also use the components of the
angular momentum

0 0 0 0 0I ik ga ('Paiirak SSakiraf ) y

and the isotopic spin
0 0 0 0 0

2 ap Qk (gaksrpk Ppksrak) ~

(22s)

(22s')

correct algebraic relations for the 7.„',0.,' we get
from (32) the condition

det. ks = QiQsQs. (34)

Apart from this condition, the signs of the Q„'s
are arbitrary and can be fixed by definition. This
means that to every combination of signs of the
Q„which fulfills (34) there exist, for a given

0

q k, matrices A and B which are orthogonal in
the usual sense and which fulfill (28). We can for
instance define all signs of the Q„'s as positive
(negative) if det. kp is positive (negative).

Now inserting (28) in (27) we get

Q r.irk'. k PQ——„r,'0„'. (35)
a, k

The eigenvalues of every v„',0„'are +1, but the
product of the three matrices ~„'cr„'is always —1.
Therefore, the eigenvalues of Hi for a given field

0

q I, are
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As operators they correspond to infinitesimal ro-
tations of the ordinary space and of the isotopic
spin space, and fulfill commutation relations with
the Ak„and B„analogous to those with the

, namely
0

i[L,g, Ai,]=ai.iA,„b,—iAi„

Akr and of T0ra with the B„aregiven by

~[La"', Aii] = &.iAa* &*i—Ai. ,

v',[To'*, B& ]=a„&B, &,&B—, ,

and of the L0ra or the T0ra with each other

v[L rs L lu] a L su

(43)

(43')

[L,i, B,.]=0, (38)
0

i[T-p Bv.]= AvB- &-—vBp. ,

[T.p, Ai, ]=0, (38')
0 0

while the components of L„kor T p fulfill with
each other the well-known commutation relations

0 0 0
[~L; i«]=biiL;

0 0 0
+&;&i,i a;iLi —"pi L, i, —(39)

or, with the vector notation L~0, L2', L3' for
0 0 0

L~3, L3i, Li~,

+ a Lo"' 8 iL—O""—8„„LO" (44)

g[Trs T iu] a Tsu

+ fir u To"' Isa To"—"—h„„TO".(44')

The signs in the relations (43), (44) or (43'),
(44') are just opposite to those in the relations
(38), (39) or (38'), (39").

Inserting (29) (220), and (220') into (41) we get
Lo"' ——Q (Q,A„,B„vr„Q,A„,B—„vr„), (45)

k, a

T; = P (Q„A,„B.. ., Q,A„,B...—.,)
i[Lio, I.2']= -L30, (39')

As scalars the Q,.'s commute with both the
0 0

Lk and the T p,

[L;i, Q,]= [T.p, Q„]=0. (40)

k, a

From this we get the important expression
0

P AI„B..vr. i,
k, a

L ra+T ra J ra T ra

Q.—Q. Q +Q
(46)

i, k

0 0To"=Q B..B.pT.p=p T pB-B.p.
a, P a, P

Ke note that in spite of the non-commutativity
0 0

of L,k with the A~„and of T p with the B„~the
L0r' and T0ra are Hermitian operators like the

0 0
L;k and T p as a consequence of the equalities
indicated in (41) which follow from (38), (38').
The total square of L0 and T0 is given by

Lo'—=Z (L'.)'= Z (Lo"')', (42)

To'—=Z (T-p)'=Z (To")' (42')

The commutation relations of the L0ra with the

In the same way we have
0 0 0

&[T p, Tv)] = fipv Tai
0 0 0

+b iTpv —LvTpi 5piT „,(3—9")
0 0

the T p and the L;k commute.
It is useful to introduce the components of

(L'), (T0) with respect to the axes defined by
(Ai.„),(B„.) which we define by

0 0
Lo'* ——Q A,,Ai,L,i ——Q L;iA;„Ai„

(41)

Finally, we get the variable canonically conju-
gate to Q„which we call P„byputting for r =s,

Q Ai,B, vr i, =Pr. (47)
k, a

Therefore, we have finally
0

krak = Q AkrBsa
rr S

1Lrs+Trs1LrsTrs
Q. —Q. 2 Q.+Q.

where the second term is to be taken for r 4 s only.
Assuming

[P„A&s] =[P„B,.]=[P„I.O"]
=[p„T,]=0, z[p„Q.]=a... (49)

one can verify the canonical commutation rela-
0 0

tions (19) for the vr; and rppa with the help of (43)
(44), (43'), (44'). It may be noted that the
operator P, defined by (47) is not Hermitian and
that P„in (48) has to be replaced by P,+ if the
factor Ak„B, is put on the right side of the
bracket. For the kinetic energy of the zero field

(apart from the factor X/2) we get from (48),
taking into account the anti-symmetry in r, s of
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(Lp"' —Tp"')/Q. +Q, and the symmetry in r, s of
(Lo"+Tp")/Q. —Q.

(L rs+ 7 rs) 2

2 (~-.i)'= 2 P.'P.+- 2
(Q —Q )'

(I rs T rs)2

+— . 50
(Q.+Q.)'

We conclude from (46) that if Q, =Q, then it
must also be true that 1.0"' ———T0"'. In view of the
importance of this case it is sometimes convenient
to use diAerent coordinates. Indeed, if all three
Q, 's are equal, which will be proved to be true in

good approximation in the case of large coupling,
according to (29) only the orthogonal matrix

which fulfills

P. e.;e.p ——8;i, Qi e.iepp ——4p, (51a)

is uniquely determined by the field q I, and not
the AI„.„and 8,. themselves. Therefore, besides
the three independent variables e ~, we can intro-
duce the six symmetrical quantities

0 0 0
gap = Qi 'paiepa= gr BraBrpQr =&pa (52)

terms in the bracket in (48), we put

0 Lr0" +T0"
p p

——Q B, B,pP, +Q'B, B,p — . (58)
2 Q„—Q,

From (48) we find also
x

0 0

p.p
———,

' Pp (e.,«rpp+eppv. p). (59)

The remark made about the non-Hermitian
character of the P, in (47) applies also to the

0
p, p defined here. One can prove (57) with the
help of (54), (43), (43'), and moreover

Lp.p, Lp"j=0. (60)

Ke have therefore three kinds of variables for the
zero held:

0 0

Peky ~akt

(2) Qrr Ai„B„;P„I.p", Tp"',
0 0 0 0

(3) gap=gpas eaiI pap= ppas Lp

While we were able to get an explicit expression
for the kinetic energy in terms of the variables

(2), this is not rigorously possible with the
variables (3). From (48), (50) we get only

p pt p 1 (Lp" —Tp")
2 (~-p)'= 2 p-pp-p+ 2-, (61)

In the next section we shall see, however, that in

the case of small deviations of the Q„from a large
common value Q, '= D, further simplifications are
possible, and that the variables (3) are the most
convenient ones in this case.

to d|*seribe the held
0 0

e'ak —Qp epl;gap. (53)

S. MINIMUM OF THE POTENTIAL ENERGY.
STRONG COUPLING APPROXIMATION

We determine first the minimum of the total
potential energy of the zero field which is, ac-
cording to (18), (36), (37), equal topLLp"', e,pj= S.„epp—Sp,e.i, (55)

i[I.p P, I p«']= 8 „I.pe'

The components
0

Lp P=Q B,.B,pLp"'=Q e.;ep,L, (54).
t', a i, k

commute with the q~q and fulfill similar commu-
tation relations with each other and with the e,
as do the I 0"' with each other and with the A~~,

+ pppLp « "pp«Lp ' —
~1 pLpp«. (5—6)

Finally, we search for symmetrical quantities
0 0 0

p p=py which are conjugate to the g p in the
sense that they fulfill the commutation relations

0 0
&TP p v«p]=p(& «&pp+~ p4«) (57)

(This means, for instance, that i[piip, g»')=1,
iTpipp, qipp$=p; this is more convenient than to
have the value 1 for the latter bracket. ) This is
just the case if, with the help of the first two

(pipppp = —1). (62)

The minimum corresponds to

p, = pp
——p, = —1, Qi ——Qp ——Qp ——D= I,

~92

3 gE;„=—— I. (63)—
4 ~'

According to (53) the corresponding field is given

by
0

g
——De I;
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or, in vector notation

(64a)

0'k =StrkS = Qa eak&a (65b)

The state in question can be described as the
singlet state inasmuch as the composition of the

and cr is analogous to the composition of two
spins of equal magnitude. This state is not
degenerate according to (36'), while the three
other eigenvalues of the interaction energy are
equal:

I i —(g/k@2) 3D——, Z2 ——Zk ——Z4 ——(g/ttV2)D. (66)

In the following we assume that it is legitimate
to restrict our attention to the lowest, or singlet
state. This implies a condition on the magnitude
of such terms in the Hamiltonian as couple the
lowest to the three upper states of the inter-
action energy.

For the eigenvalue E~, the following expres-
sions are diagonal:

This field corresponds to the smallest eigenvalue
of the interaction energy, determined by (36),
and to the absence of free mesons [we neglected
y']" but still contains the q numbers e .
Moreover, it corresponds to the state of the T

and 0. ~here
Q &.trke k

———3.
a, k

By a suitable S transformation of the Hamil-
tonian (see Appendix) we can bring this to the
form

S(g r.oke.k)S '= Q—r.o.. (65)
a=1

The S transformation is not uniquely deter-
mined, just as is true for the A and 8 matrices;
it is, for instance, sufhcient in this case to trans-
form one system of the matrices T or o.~ alone.
In view of the application to the charged pseudo-
scalar theory, which is discussed in Section 6, we
decided to leave the T 's unchanged and to
transform the 01,'s,

Sr S '=r, ; S(gk e kirk)S '=o, . (65a)

This is equivalent to

On the other hand, the matrices T„o„and
7 &02 —T20.&,

. are not diagonal. We shall simply
neglect terms in the energy in which these
matrices appear as a factor. In Section 6, we
shall discuss the region of validity of this ap-
proximation.

As is shown in the Appendix, the 8 trans-
formation changes the angular momentum L
according to

0 2 g 0
+pot = 2 ('Pak) + p &atrkpak.

2I aV2 I,

This leads, by the S transformation (65) which
0 0

does not change the y q but does change the m„I„
to

1 0 2
&p t=S&p tS '= Z(tf e)—2I, p

Using (67) we have

+ Q rfae g(ra&e+trera) ~

~K2, p

0 2 g&"t=—2 (rf-e)—2I, p ~N, p

L'=SLS =L——,'tr'=L —-', Q„tre, . (68)

As a consequence of this and (54) we have the
relation

SI.p &S—'=I 0 & ——,'fr p.

One checks directly that L' commutes with e' if
L commutes with tr using (55). As the tr can be
disregarded in our strong coupling approximation
if they do not occur multiplied by the T 's, the
L have in this approximation the same eigen-
values as the L, while the total sum I."[see (42)]
has eigenvalues 4 larger than I.'. Moreover, the
eigenfunction O'=S% is double-valued in the
angles which enter in S and in which + is one-
valued. Therefore (I ')' has the eigenvalues
—,+j(j+1) with half-integer j.

0
We now split the variables g e defined by (52)

into two parts according to (64)
0 (&)

gar|ml D ~aP+ gaP) (70)

of which we consider the second part as small.
With D given by (63)

T)0 y
= T2%2= T30'3 = —1 ) T10 2+ T2&1

which simply reduces to

"It will be shown in Section 7 that the field p' describes
free mesons.

(71)
p 3g 1 (1)2

Zp, t ———— I+ Q(q e), — —
4 ~' 2I p
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We now introduce (64) into (220), which means
(&)

that we disregard g p and get
0 0 0

(p.;~.i —p is. ~)

and from (54)
0 0L;P—=D P,. (e.,~pi epics—.i ). .

It therefore follows from (59) that

0 I'O
~.-=E pp ( P-p+

E 2D )
( ot=2

] P.p+ Lo' )pp- (72)
p 0 2D )

0
Inserting y I,

——De ~ one can finally check directly

T t'= —I. (73)

where the disregarded terms are of the relative
order of magnitude D ' in comparison with the
main term. This is in agreement with the result
of the last section. If we introduce 10"'=—L,o"'

and Q, +Q, =2D in the last term in (48) we get
(72) directly. The relation (73) has the important
consequence that the total square of the isotopic
spin is equal to the total square of the angular
momentum; after the S transformation, both
correspond to half-integer quantum numbers.
Therefore the quantum number n, which is equal
to the charge number minus 2 Lsee Eqs. (9),
(10)j, always has for the zero field (that means
in absence of free mesons) an absolute value
smaller than the total angular momentum
quantum number j:

(74)

This is of course due to the fact that the r and
o are in the "singlet state" defined by (67); this
also enables us to disregard the terms linear in 7.

and a as already mentioned.
0 0 ot

If we introduce (p~p)ii=2(p p+p p), the ( }ir
denoting Hermitization, we get

0 0 1.p
——P epi, (P p)ir+ (Lo Pep~)ir (72').

p 2D

This leads to the following expression for the
kinetic energy of the zero field (neglecting an
additive constant in the term proportional to
D—2) .

o ~ & o. 2—2 (x-~) = —2 (P-p)H +,Lo', (7»)2, p 2D'

where the square of the total angular momentum
is given by (42). A result identical with (72a) is
obtained from (61) if we insert in the last term
Q +Q = 2D, To =Lo" . We note that the
only result of the S transformation is that j gets
half-integral values, the constant 4 added to I.02

being negligible for our applications.
Inserting (71), (72), (72a) into the Hamiltonian

(I), we get the "reduced" Hamiltonian of the
strong coupling approximation

3g' 1 o 2H= —— I+ N—Q —(P p)a+ Io'
4 It,

" 2 p 2D'

(&) 2 0
+—2 (g.p) y(4~)& P e„(P.p)02I p a, P, k

pe% 1
X ~ ir.'(x)d V+—Q I ~r."d V

Ox' 2

1
t+—Z v'- (—~+~')~ 'd V2. J

1 p8E
+(4')& P (ep,,Lp P}H

' =sr '(x)d V. (II)
pg2D 0 Bxg

Inspection with respect to the approximation
contained in (72) shows that the disregarded
terms in H are of the fo1lowing type: terms of

0
the order D ' independent of 1.;~, terms of the

0 (I)
order D ' linear in the J,I, and in the q;~, and
terms of higher order than D '. We shall see in
the next two sections that such terms are of no
importance for the questions which are treated
in this paper. The last term in (II), however,
will be essential.

6. THE EXCITED STATES (ISOBARS) OF
THE NUCLEON

We shall now treat two diAerent kinds of
problems. In the first kind we investigate the
states of the nucleon in the absence of free
mesons, while in the second kind we treat the
scattering of free mesons by the nucleon and its
proper field. It will turn out in the next section

that the field which is described by p p, x '(x);
(1)

g p, y '(x) represents free mesons, which are
partly undisturbed plane waves, partly scattered
waves. On the other hand the problem described

0
by e I„L,p is the problem of the possible states
of the free nucleon in the absence of free mesons.
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For the latter we have to retain the terms up to
the order D ' but we can omit terms of the order

0
D ' which are independent of L„I,or terms of the

order D ' linear in L;I, which are at the same time

linear in q,» or bilinear in ir '(xi) and yp'(xg).
The latter terms do not have an expectation
value of the order D ' in the state where the cor-
responding waves are unexcited, and the terms

0
independent of L;I, do not infiuence the energy
difference between the excited states of the
nucleon and the ground state (isobar separation).
These more complicated terms, however, give
rise to a correction of higher order to the scatter-
ing of free mesons, which question is not treated
in this paper. In the following section we treat
the meson scattering only as a problem of the
order D' and disregard all terms of higher order,
while in this section we treat the problem of the
nucleon in the absence of free mesons up to the
order D '.

In order to get rid of the last terms in (II) we
have to shift the zero point of s. '(x) but in such
a way that the orthogonality relation (12'),
namely fs '(Bg/Bxq)dU=O is not violated. The
suitable assumption is

(4ir)&
~.'(x) =x."(x)— Q (ep~Lo P)H

2D ~p

BE Bp/Bxi
X

Bxi, f(B$/Bx)'d V
(75)

which agrees with the orthogonality condition
(12') because of (15). Indeed, we have, again
using (12'),

(ir ")'d V= Q —,
' (ir.') 'd U

a

(4ir)& 9 BE
+ P (epiLO P)H m '(x)dV

Ie~p + BXk

4' r BE Bg/Bx+ L 21 dV.
2D' ~ Bx J(Bf/Bx) 'd 'V

Taking into account (15) and the definition (23)
of N we find

BE Bg/Bx ' 4ir
Vd= N-

J Bx f(Bp/Bx)'d U f (Bg/Bx)'d V

"We omit the index on the variable x if an integral
has the same value for all three values of this index.

The term with E just gives the second term
in (II); therefore we get finally, inserting
$(x) =X(x)/I and the value (63) of D

4x g2
I.o' —— I+H—i, (76)

2g2 f (Bx/Bx)2d V 4 K2

0 2 ~ (1) 2~i= 2& 2 &I -p)H+ Z—(v-p)
es, p 2I a, p

p &BE
+(4s)& Q (p.p)Hepg ir."(x)d V

~ p Ie ~ BXIe

+-,' P I (m. ")'dV
a

+-,' P " .'( —5+ ') 'dV. (77)
a

In the third term of the shift of s. '(x) does not
give any contribution, because

Q Io pp p=0,
a, p

Lo P being antisymmetric, P,p symmetric in n
and p.

Before we proceed, it is necessary to complete
the discussion of the shift (75) of ir '(x). As this
shift depends on Zp p and epA, it is a q number and
necessitates corrections to I p

P and ep~ them-
selves to insure that they commute with the new
s "(x) and at the same time maintain their own
commutation relations. This goal is reached by
the canonical transformation

F e'~F'e '~= F'+i[U, F'j
2

+—(» L» F'jj+ (7g)2!

We can substitute for F the old variables ir '(x),
L,~P, ep&, for F' the new variables n. "(x), Lo P',

epI,
' if we choose for U

(4x)&, p Bg
U= P (ep„LO"P')ir q.'(x)d V2D, p I„. J Bxk

which again gives the shift (75) for the first-order
correction to ir '(x) as a result of (21).

Fortunately it is not necessary to give here
the explicit formulas for the corrections to Lp p',
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e ~ and the second-order corrections to x '(x)
because the additional terms in the Hamiltonian
of the order D ' are either independent of 1.0 &

01 11near in I 0 & a,nd at the same time linear in

q '(x) or bilinear in m '(x), pe'(x). The expecta-
tion value of the terms linear in I.0 t' is zero in
the stationary states of the Hamiltonian (76),

0
(77). It may be noted that L„I,is only an approx-
imate integral of the motion, but if we replace it
in (76) by the exact integral (22') of the total
angular momentum, the additional terms in the
Hamiltonian are again of the type which is dis-
regarded here.

Because the eigenvalues of L,02 are j(j+1)
with half-integer j after the transformation (54),
we get directly from (76) for the energy of excita-
tion of the levels of the nucleon above the ground
level

of a if Ka is small. Therefore we get

(VX)'d V= —,
6

3 Ku=——{j(j+1)—~3 I for Ka((1.
pC~ 2 g~

(80K)

4~( 1 1
{K(x),)K K K

The expression (AZ/pc'), p being the rest mass
of the meson, refers to ordinary units of the
energy and it is equal to EF/~ in our units.

For 1arge sources Kc&&1 it is possible to inte-
grate (13) by the following development

3 K' 4msE=-— {j(j+1)—-' I.
2 g' J'(qX)'dV

which corresponds to a development in increasing

(80) powers of (za) ' in the resulting integrals. The
leading term gives Lsee (23)j

4m 3
(V'X)'d U=— (V'K)'d U=

4x J K4

The charge quantum number n does not enter
but is restricted by (74) to values less than or
equal to j. It is characteristic of the symnsetricol
pseudoscalar theory that the system is degen-
erate and the energy of all states with the same

j and di8'erent charges has the same value. For
the ground state, j=~, the number n has the
two possible values n = —

~ and n = ~, which
correspond to neutron and proton.

The integral

Hence we get, using %=au ' (with a numerical
factor n depending on the shape of the source
function)

1
"(VX)'d V=3a(~a) 'a '

4x J
aZ 1(.~)5

{j(j+1)——,
'

I for Ka )&1. (80b)
pC~ 0.'g21

(VX)'d V= ——I Xd Xd V
4x 0 ~~J Ke have now to consider the various terms

neglected and the conditions which are implied

XKdV X2dV by such procedures. In the first place, we ne-
J 4x glected terms in the Hamiltonian which had as

factors v„,0„,since these had no diagonal matrix
elements for the system of states chosen, but

see 13 and can be evaluated in the two
limiting cases of small sources ~a&&1 and large .

d d l b t th I d f1ntro uced coup ing etween t em. n or er o
sources Kc&&1 as follows. Consider the expression magnitude, such terms are given by

I XKd V= II II K(x') K(x)d Vd V'.

In the erst limit we may substitute 1 for e "', the
error being of the relative order Ku. This means,
according to (4), that we put J'XKdV=u '. In
this limit the second integral (a'/4m) J'X'd V can
be disregarded because it becomes independent

K
—1

(VX)'d V
g2 J

For small sources (aa«1) we get from (80a)

~'a/g'.

The energy of separation between the states of
(62) is of the order g'I/~'. An evaluation of the
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In the same limit D=gI/~ g/«'. Once again,
the criterion proves to be

«/g((1 .

Finally, we consider the unitary transforma-
tion (78). To the first order, its elfect was simply
to shift s. '(x) according to (75) in such a, way as
to separate the Hamiltonian completely into a
bound part and a part (77) associated with
unbound mesons. However, higher order terms in

(78) spoil this separation; they give a depend-
ence of the isobar energy on the distribution of
free mesotrons, or conversely a dependence of
the scattering of mesotrons on the isobaric state.
They make possible such processes as the transi-
tion from one isobaric state to another with the
inelastic scattering of mesons. If we demand that
the ratio of these terms to the isobar separation
be small (i.e. , that the half-width of the isobaric
states be small compared to their separation), we

arrive at the condition

r 8$ (&$) '
y. '(x)d V

BXfs (Bx)
(82)

Again we substitute for q
' values corresponding

integral I, defined by (14), shows that in the
limit «&(1, I 1/a'. Consequently, if we demand
that h be small compared with the energy of
separation we get

«/g(&1. (81)

The second approximation was introduced in
(1)

(70) and (72) when g s was treated as small

compared to D; we restricted ourselves at this
point to small oscillations of the field about its
position of equilibrium. This restriction is not
necessarily essential to the strong coupling hy-
pothesis, but was introduced for mathematical
simplicity. If it failed, the isobar energy (80)
would have had a more complicated dependence
on the angular momentum quantum number j.
Ke estimate the validity of the approximation

(1)
2by computing ((g, s)') H/D'; we do this for the

case where no free mesons are present, so that
03

the only contribution to ((g s)')~ comes from
the zero-point oscillations of the field. We find

for small sources
0),

((q.s)')s a ' for ««1.

to the zero-point oscillation of the unbound
meson field. Evaluating the expressions in the
small source limit, we find"

(«) ln «
(&1.

g2
(83)

7. THE SCATTERING OF FREE MESONS

As mentioned already, in this paper we treat
the scattering with disregard of all terms of
order D ' which means that we do not distinguish
between elastic and inelastic scattering. Our
treatment of the problem therefore will give us
the total scattering cross section. Omitting the
irrelevant self-energy constant, we can use here
the Hamiltonian (77) directly, where the differ-
ence between s. '(x) and s "(x) can be disre-
garded. The quantities e or e I, can be treated
here as c numbers for they commute with all
other observables in the Hamiltonian. " It is
convenient to go back from the variables in (77)
with the help of (16), (16'), (70), (72), to the
functions

o BE
O-(x) =(4 )' Z e«~ss. +~-'(x)

j, p Bxg

1 BE=s (x) — Q epI,Lp &, (84)
2D p, A, BXI„

g.(x) =1/(4~)~ P q."a'ep;(a]/ax;)+v. '(x)
s, P

= q (x) —1/(4~)i Pp e i(8$/Bxg). (85)

'" The condition from which (82) was derived also
restricts the values of j for which the approximation
holds. We find j((g/~f2.

'8 If, on the other hand, one uses a matrix representation
0 0

where T12, L12, and L0 are diagonal, the e~I, are matrices
which are a generalization of the rotator matrices already
used by Heitler and Ma (reference 8).

For ~a (1, this condition is certainly fulfilled for
values of g large enough to satisfy (81). For
comparison we give the preceding expressions in
the large source limit («))1):

h ~'a'/g' I 1/a'a' D g/~'a',
(&)

((g p)')s 1/«'.

Condition (81) for the first and second neglects
is replaced by

(«)'/g' «I (81a)

Inequality (81a) also expresses the validity of
(82) for this hmit.
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We see that p (x), q (x) represents a field of
free mesons, the meson eigenheld of the nucleon
being subtracted. It fulfills the commutation
relations [see (21), (55)j
~[I-(xi) qp(») j= 6-p~(» —X2)

BE 8$ BE 8$—2Z ~ p-+2 Ze ~ep* (86)
Bxn; Bx2a s, I;

These relations correspond to the fact that the
r~) 0

syminetry of the q p and p p makes the field

p (x), q (x) fulfill the subsidiary conditions [com-
pare (12), (12')]

8$ I' 8$
e g,

~
ppd V—epg., p dU =0, (87a)

Bxp BxI,

r BE BE
Q ie.i. qpdV epp ~

—
q dV =0. (87b)J Bxl„. 0 Bxk

the form
8$

q. =P.—2 2 ep.
i Ie, p Bxlc

BE
X~I (P ep; P—pe;) d V, (89a)

Bxs

7'-=—( ~+—&")q-.

The same equations follow froni (86) with the
help of the relation f=i[H, fj for f=p and
f=q-

If we first consider q, P as classical quantities,
ive can integrate (89a, b) by putting

Pa=&ad qa=ua 2 2 epa
s, ~, p

BE
X)I (u.ep; upe.—;) d U, (90)

Bxi

On the other hand, the Hamiltonian (77) ~h~~~ u has acco„d;„gto (89b) to fulfil
becomes formally a Hamiltonian for free plane
waves

II= ', p p.'d V-+g p q.(—~+&')qAU. (88) ( apj 2I;,„p axe

The fact that the equations of motion differ from
the wave equation of free particles is entirely
due to the symmetry conditions or to the
difference of the commutation relations (86)
from the usual canonical ones. "

From (87a, b) and (88) we get, by the method
of Lagrangian multipliers which have here the
form of antisymmetric constants X p

= —Xp and
p

X p= —)p, the equations of motion

q =P 2 & pep&(~(I»~)
p, k

—j = ( &+&"-)q QX—.pep'(BE/B—xl,.)

With the help of the time derivatives of (87a),
(87b) in which one has to insert the expressions
for j„,j one gets

E
~-p=k 2 I"(f-ep' Ppe-.)—

Bxg,

Therefore we get the equations of motion in

"The analogous result in the charged scalar theory was
first obtained by J. Schwa'inger.

BE
(u ep, upe;—) d V (91)

Bxj,

and the subsidiary condition

ep~ ~ u dV e~ — updV =0. (91a)
J BXIe J Bx@

This condition is, however, not independent of
the wave Eq. (91), for the second time derivative
of (91a) vanishes as a consequence of (91).
The subsidiary condition essentially excludes
only the static solution

8$
u '= P e,~ of (91).

Bxy

The quantum-theoretical formalism leads to
an analogous result. Let u '"' be a normalized
orthogonal set of functions (c numbers), which
fulfill (with the usual boundary conditions in a
hole)

4m BE
( —&+%'—co„')u '"'=—Q epl.„

21', x, p

BE
X, I(u.&" &ep; up&"&e. ;) —d V, (9. 1b)

Bxj
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and the subsidiary condition (91a). We put

1 B$
q. =Q A„(2&d„)-1u. '"& ——Q e&&«

n, 2i kp Bxjc

plane wave, fulhlls the wave equation for free
particles without the right side of (91) while the

(92) scattered wave and therefore the whole ex-
pression (95) fulfills the equation

—(5+k')u &»

= 4&rA Q (B,n« e.—,e,„n,) (BK/Bx«) (.95')

=A„+,

If we assume

(—n)
gg (n) 4a a CO n = COn 0' 0.

BE
(u.&"&e»;—u»& "&e.;) d V,

In order to check (91b) we introduce the ab-
breviations

E(x) exp [ik(n x)]d V

[A, A +]=[A,, A ]=3„, (93)

we get just the commutation relation (86), the
system n (") being incomplete because, as a result
of (91a,), the static solution u '=P«e, «(B)/Bx«)
is missing. Moreover, the Hamiltonian (77)
assumes the normal form

sin kR
E(x) d V= F, (96)

kZ

(where R= ~x~, r= ~x —x'~)

&' I' BE(x) cos kr BE(x')
d Vd V'= B;«J. (97)

Bx; r BXIe

II= +„co(A +A +-',). (94)
Further we have to evaluate the integral

Our scattering problem is therefore reduced
to the determination of the solution of (91)
[or, aside from a factor exp ( i&et), o—f (91b)]
which describes a plane wave incident in a given
direction and an outgoing scattered wave.
Corresponding to the three pseudoscalar fields
u (&&&=1, 2, 3) we shall get three linear inde-
pendent solutions I (p) or u ('), u "', I (" of this
problem, which correspond to an incident
particle with p= 1, p=2, or p=3.

Instead of this we can also use the solutions

u +=(1/%2)(u &'&+iu &'&)

u.—= (1/v2) (u.&'& iu. &'&)—, u.&'&,

which correspond to an incident positive or
negative charged or neutral particle.

We now solve (91b) by the assumption

u «&(x) =B,exp [ik(n x)]
B

+A Q (b.,n« e.,e,«n~—)

X X(x') d V'. (95)
r

I' I' BE(x) sin kr BE(x')
d Vd V'

Bx; r BxA,
'

1 &' &' t' sin kr)=- ~

~ E(x)~ —S )E(x')dVdV'
&, r )

k' " f' sin kr
~ E(x) K(x')d Vd V'.

3J a

But as a consequence of the fact that sin kr/kr
has no singularity for x =0, J'(sin kr/r)E(x')d U'

is a solution of the wave equation (6+k')u =0,
and therefore

(sin kr/r)K(x')d U'= (sin kR/R) C.

Moreover, C= F because for 8=0 the left side
of the equation is equal to kF, the right side
equal to kC. Therefore

&' & BE(x) sin kr BE(x')
d Vd V'= B,« F' , (98—)-

Bx; r ax, ' '3

k'
=B,.

(
J+i F'- (. (99)—

3

Here &&&= 1, 2, 3 enumerates the three diferent "
& BE(x) e'"" BE(x )

d VdU'
solutions, n is a unit vector in the direction of J J Bx y Bx&
the incident wave, k = (sP —«')&, and the constant
A has to be determined. The first part, the
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Kith the assumption (95) we get

8E
"(e&»,u. «& e—.&,u&&&») d V

Ic & ~&Ie

= Q&; (b,.e&»,n&, 8,&—&e.&,n&,)
ik'

ikF+—2A
~
J+ F'—

()
The di6erential Eq. (89b) therefore gives

4m BK—(6+k')u &»=—Q (ngb p e,&,e,—n;)

zk'
X ikF+—2A~ S+—F (,

I 3 )

This is the cross section dq for the solid angle
dQ= 2s sin 8d8; inserting (100') we get

sin' 8 3
dq = —(1+cos' 8)dQ,

k' 4

and the total cross section

(103)

q= (sin' 8!k')4&r. (104)

On the other hand, if we integrate the square of
the amplitude over all angles 8, which means
averaging over n, without summation over a,
we get

(kFA)'-', [h.,—28.,(e, n)+(e. n)'].

and the comparison with (95') gives

ikF ( ik'
IA= — +A( J+ F'

~,
—

2 & 3 )'
ik F/2A=

ik'J—I+—F"-
3

Introducing

k'
tan b= F' (J —I)—

3

k'
slIl 8 =—F

3

g. =4&r(sin' 8/k') ', (1+8.-,} (105)

In other words, if the incident particle is a
"1 particle" the number of scattered "1 parti-
cles, " "2-particles, " and "3-particles" is ~, —,', 4.
This also holds if one takes for "1," "2," "3"
i&t any order, ueutra/, positive, and negative as can
be shown by using the above-mentioned eigen-
functions

Averaging over the orientations of the axis
system gives

(k FA) '-,' (8.,+1)

(100) which means

we get
A = (3i/2k'F) sin be~. (100')

We get the asymptotic behavior of the scattered
wave for very large r in the direction n, of the
scattered wave by putting r =R ik(n. —x),
V'= —ikn„
[u.&"(x)]„„,ikFA [8,.(n n, )

—(e n) (e, n, )](e"s/8). (102)

We now compute the square of this amplitude
for a given n, and sum over 0.,

P. [u.&»(x)]'...« ——k'F'A'[(n n, )'
—2(n n, )(e, n)(e, n.)+(e, n, ) ].

Further, we take the average over-all directions
of the axis system e and get for the right side, "
with cos 8=(n n, ), 8 being the scattering angle

(kFA) 2-', (1+cos' 8).
~0 This is in the approximation where the energy loss of

the meson in the scattering is disregarded, the same as
averaging over-all directions of the angular momentum

Jik in the initial and in the final states.

3J= ") K(x)[(—A)(cos kr/r)]K(x')d Vd V'

=4s)"K'(x)d V

+k' ~
~ K(x) (cos kr/r) K(x')d Vd V'.

In the same way

~
—ttr

3I=)")IK(x) (—6)
r

K(x')d Vd V'

g
—ttr

=4x K'(x)d V—&&'
~

~ K(x) K(x'}d Vd V'.
r

u.+= (1/&2)(u &'&+iu &'&)

u = (1/K)(u &'& iu &2'—)

as well as u (3).

Finally we evaluate the integrals J, I, and F
for the physically important case ka« i, aa«1.
In this case we can 6rst put 7=1. Further we
have, according to (97),
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Therefore

3(J—I) = E(x) (k' cos kr+ i ie2")—
1

X—X(x')d Vd V'. (f06)

according to

2r =—(2rk+i2r2),
K2

2r* =—(2ri —i2r 2),
K2

1
0

=—(01—202),
K2

1
0
*=—(01+20 2),

V2

(110)

So far this result is exact, but for ka&(1, ~a(&1
we can substitute 1 for cos kr and e "" arid get,
with co'= k~+ a"'

3(J—I) =102/a for ka((f, Ka((f, (106')

and get

1 2

II= p~ -[e.'-+(V V.)
' +k-"e.'-' j-d U

hence
sin ii tan h (kka/102)

(42r)' K(x)r e 702 d V . (111)
~v2

(p) 4

dtf =
)
—

~

a200(f +cos'-8)dQ
(&i

which was quoted in the second section.

for (103), (f04) we get f'ina}ly on wrjtjng We can therefore take over the whole develoP-

v/c= p/8 for k/00 ment of Section 3 if we simply drop the 6eld
components x3, y3 and let the summation index
o. take only the values 0.=1, 2. Of course there
exists as an integral of motion only the T~2

g=) —
[ a4fpP t component of the isotopic spin in this theory,

which gives the electric charge minus ~~.

&&) The determination of the eigenvalue of the
interaction energy

8. THE CHARGED PSEUDOSCALAR THEORY

Although the symmetrical theory is, from a
mathematical standpoint, more elegant than
the "charged pseudoscalar theory" which uses
only positive and negative charged, but no
neutral, mesons, it is also of interest to develop
the corresponding results for the latter theory,
because neutral mesons have never been observed
and because in the case of strong coupling the
charged theory also leads to forces between two
like particles.

Kith a complex pseudoscalar held y the
Hamiltonian of this theory can be written

0 0
IIint p (rlekti21k+ r2ekV 2k)

K%2 k—1

here is somewhat simpler than in the case of the
symmetrical theory. Computing the square of
the interaction energy, we get,

L"(o s')+ ( s")3'
=(S ')'+(O")'-2"( [fl ', O"])

The four eigenvalues of the interaction energy
are therefore

I(fft')'+(02')'~ I[01' 02'li I
~%2

II= d V tr"2r+(V00*) (Ve)+~2e*p

—-(42r)&E(x)(V'02 r+e+V'00* r e), (108)

where

r+=r'( rk+ir2), r = —',(r1 —ir2). (109)

In order to facilitate the comparison with the
symmetrical theory we split x and q into the
real and imaginary parts which are normalized

{($ 0)2+ (ff 0)2+2[($10)2($20) 2

-(~'O")'j'I', (»2)

with all possible combinations of the + and
—signs.

The application of the formalism of Section 4
leads here to the case wlrere one of the eigen-
values Q of (C) [Eq. (30)j or (C') [Eq. (30')$

is zero because ps; —=0. The matrix C' has
therefore only two rows and two columns and is
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given by

and Q12, Q22 are the roots of the equation

}(01')'-x}}(02')'-2:}—(01' 42')'= o

which gives

g
(~Q1+Q2)

~&2
(112')

is in agreement with (112). The orthogonal
matrix B„hashere only two rows and two
columns and can be assumed as

Q1. 2=—
I (41')'+(42')'~L(41')'+(02')'

W2

—4((y, p) 2(y, 2) 2 —(y, 'y, ')')]~}~. (113)

The expression (36) for the interaction energy

0 0
The symmetrical quantities &I p, p, p have to be
defined only for &2, p=1, 2 and according to (51)
we get e")=n(" cos g —n(" sin 8,

e(') =n") sin 8+0("cos 8,

e(3) —~(3)

and from (52)
0

&I» ——Q1 cos' 8+Q2 sin' 8,
0 0

I712
——I721 ——(Q1 —Q2) sin 8 cos 8,

0
&I22

——Q1 sin 8+Q2 cos' 8.

(117)

0 D 1 gE = ——= ———Imin I 2K~
(63c)

For the description of n(") and L 0"' by Euler angles
and their conjugate momenta, see Appendix.

For the minimum of the potential energy we

get from (62) the old value (63) for Q1
——Q2 D;——

but because Q2 ——0 we now have

( cos 8 sin 8)8, =
( —sin 8 cos 8)

(114)
(1),

In the approximation where g„pis disregarded, we
now get

If we write n'"' for A&, „
the normal form (29) for

0
~Ic gives Us

&}11'
——Q1 cos 8n'" —Q2 sin 8n&",

&}12'——Q1 sin 8n&" +Q2 cos 8n&2).
(115)

The significance of n(", n&2) is therefore that n("
is orthogonal to the plane through 1}212and &}122 and

the orientation of the 0"),n'" axes which we may
call for the moment the t and &7 axes is defined by
the condition

0 0 0 0

Pl )P j.2I+ +2&+227 =0. (116)

This can be immediately derived from (115) and
means that the matrix C defined by (30) is
diagonalized by going to the ($, g, t') axes, the
diagonal ma, trix elements being Q1, Q2, 0.

In the Eqs. (45), (45') we have to put
0

rag, =—0, 83 —=0, 8„3=—0 for 0, r = 1 2; 83=0;

L "=DI(e- ~p') —(ep ~-') },
L22 ———L2 ' ——D(e2 22 ') (12 = 1, 2).

Therefore

p 1 i 1
22.'= p } epp.p+ (epL;p)„—I+—e,L

p=, , & 2D ) D

hence

0 1 1
Q (22 ')'=Q (p p)'+ (L2")'+—p (L2 ')."

~, p 2D' D' ~ I 2

0 1=~ (»)'+
a, p

This is in accordance with (50c) if we put in the
last two terms Q&=Q2=D, To&2= La&2. In (II)—
we have therefore to substitute 2L2' (T2")"-—
for L0'.

In the sa&ne way we have to substitute in (75)

hence

I 12+T 12 2

2 (~-')'= Z &.+&.+
2(Q1 —Q2) '

t P ep;L2 P+ 2e2,L '
} for

2D p

and get instead of (76):

Pep;L2 P

2D p

(L 12 T 12) (L r2) 2

50c "
2(Q1+Q2)' .=1, 2 Q, '

' We denote corresponding equations in the symmetric
and charged theories with the same number and add in
the latter a c.

K 4~
H= 2 7" 12 2

2g2 J(8X/82&)2d V'

1 2

I+H& (76c)—
2 K
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where Hi is again given by (73), and instead of The solution is

(80), (80a), (80b)
u. '»(x) =8,.exp [ik(n x)]

3 X2 4XsB=-— [2j(j+1)—ts' —5/4], (80c)
2 g' J'(VX)'dV

AR 3 ](a=——[2j(j+1)—n' —5/4] for ~a&&1, (80ac)
@g2 2 g2

hZ 1 (~a)'
, [2j(j+1)—u' —5/4]

p, C a g
for aa)& 1. (80bc)

The restriction (74) j=—n~j is of course
unchanged.

In the computation of the scattering the
following modifications of Section 7 take place.
The functions p (x), qp(x) (n, P=1, 2 only in the
following) fu161I, besides (87a, b), the condition

1

ep ~~ V'Eg+V=O, ep
~

V'$P d V=0, (87c)

+A {h,.[(n v)+(n. e,)(e, v)]
e 'I iF

—(n e.)(e, 7) I E(x') d V', (95c)
r

where A is again given by (88), (89). Asymp-
totically for large R we have

[u.i &(x)]s««. ikFA[b, .(n n, )+h,.(n e3)(n, e,)
gi'kg

—(n e )(n, e,)]
R

Q ~u. '»(x) ~'s..«. ——(kFA)'{[(n n, )
a=1, 2

+(n ep)(n, ea)]' —2(n n, )(n e,)(n, e,)

—2(n ep) (n e,) (n, .el) (n, e,)

+(n, e,)'-(n e,)'(n, e,) I.

The process of averaging over the directions of
and the commutation relations (86) get a the axis system ei, e2, ep gives (for any value
corresponding additional term: of p, and for the solutions which correspond to

an incident charged particle)

Kith

1 8K 8$ 1 BX 8$
h»p+ P e»kepis

Xlk»2k 2 i, k ~Xli »2k

1 BX 8$—by Qe„eag
2 i, k l9Xli »2k

(86c)

dg= (sinn 8/km) 3(1+3 cos28)dQ, (103c)

q= (sin' 8/k') P4x (104c)

where for sin' h/k' we can again substitute

(P)'
„a2 a2

&c) E &&
e=&a)

1 8$
g» = u» ——g t (u»&~p+u»ep'e3i

2;, k BXk 0
BX—Pp upepge;) d V,»i

we now get

if ka« i, aa«1.
If the incident particle has a + charge, we

find for the total cross section (integrating over
all scattering angles) for scattering with the

90c
same (+) and the opposite (—) charge, re-

spectively,

ep
~

Vgu. dU —e. t VgupdV=O, g+
——(sin' b/k')4 x(5 4/),

g = (sin' b/k')4x(1/4),
(105c)

t qgu d V=0, (91c) the sum of both agreeing with (104c).

9. THE MAGNETIC MOMENT OF THE NUCLEON
4m BX

( —&+a' —»i')u =—P2I ', k, P»k The meson field surrounding the heavy particle
gives rise to a magnetic moment which will prove

{ {u (~ „+e,e„) u e „e I d V (91c) to be of equal magnitude, but of opposite sign
Bx, for the proton and neutron, just as in the case
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M=-'e I [x Sjd Vp (119)

of the weak coupling theory. " The results of
this section are equally valid for the symmetrical
and charged pseudoscalar theories, since the
neutral mesons give no contribution to the
magnetic moment.

The magnetic moment is related to the current
density $ by

These follow from the general rule Bf/Bt =i[H, f]
and the commutation relations (2), (6) applied
to the Hamiltonian given by (1), (8) with
f=n. (X), (t (X), rp. We obtain

8$0
+div S= —(r [rp grad s)i —ri grad pppjE(x)

8$

+E(X)(r I d V(rp grad q)i —ri grad (()p)E(x).

or, in tensor notation,

M,p
———M p;=-', e, I [x, Sp—xpS, jd V, (119a)

J
e being the absolute value of the elementary
electric charge. The definition of the charge and
current densities $0 and 8 becomes essentially
ambiguous in a theory which uses finite distance
operators, such as the source function E(x).
Indeed, in such a theory it is not possible to
fulfill the continuity equation

&Sp/&t+div S=0 (120)

everywhere inside the source. It is fulfilled
outside the source, as well as (on the average)
over a volume V of dimensions of order a in
which the source is included.

J([(15p/Bt+div Sjd V=O.

Therefore the continuity condition is fulfilled
both for points outside the source, where
E(x) =0, and on the average over the source as
indicated by (120a). As a result of the lack of
validity of the continuity equation inside the
source, we may apply the assumed expression
for the current density to the computation of the
magnetic moment only if this moment is gen-
erated in a volume large compared with the
dimensions of the source; in other words, we are
restricted to small source size, Ka(&t.

Introducing the strong coupling approxima-
tion, we apply the 5 transformation (65a, b) to
the second part of the current (12lb); then we
insert the values (68) for r,o„namely r„(r,
= —b„,. This gives

S= ((()p grad (pi (pi grad pp)

—-(2pr) &((()ie(') —(pie(')) E(x). (122)

1
(()„(x)= De') grad t (a=1, 2).

(4)r) &

+-(2pr) &(chirp —capri)(rE(x).
If now we use

Expressions for $0 and 8 which fulfill this weaker
condition and which agree with the definition (9) We insert for the field its value corresponding to
of the total charge are given by the absence of free mesons and the lowest

eigenvalue of the interaction energy, (16), (64).
0 —Plfr2 —+27''l~gk +7'3) R)&

S= ((pp grad (()i —())i grad happ)

To prove that these satisfy the conservation
conditions, we make use of the relations(, ~'& a

I
—~+)('+—

I (p. +-(2pr)& .( grad E) =0,
at')

1 BV3 g——= --(2)r)&(r
2 Bt

I(rp grad (pi —r i grad ppp) E(x)d V.

'2 H. Frohlich, W. Heitler, and N. Kemmer, Proc. Roy.
Soc. A166, 154 (1938}.Their result, given in Eq. (63} of
their paper, agrees formally {apart from a numerical
factor) with our result, Eq. (124}below.

D= I [Eq. (63)j, $=—X Eq. (15),
1

K42 I
1 g

(().(x) = 6(-& grad X.
(4pr) & )(v2

The current becomes

82X Bx

BX
(e)())ei(P) e((2)ep(i)) E(x)

Bx~

g2 3

Sp —— Q (ei'"e —"—ei P'e ")
2K ~ re i 4' i9XIeBX) l9XNs
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a,nd the magnetic moment (119a) becomes

1
d V—(ei "e„&'—e('')e '")

4x

( (&'X (&'X '& &&X

Xl x, —x.
E ax,ax, ax;ax(] ax

can be neglected for ~a&(1 while

1
~~ (grad X)'d V=1(a.

4~~

Changing to vector notation and using
[e'"Xe'"-']=e'" we get the final result

d V[ei& "ek('& —e(('&e~(")x.
e g 1

M = ————e(').
a~a12

(124)

BX—(ei'"e '"—ei"&e "&)x),] I(.(x) (123)
Bx~

The first volume integral is transformed by
partial integration with respect to 8/Bx(, half
the terms vanishing in the sum over l and m.
In the second integral one substitutes for IC(x)
its expression (4s.)

—'( —6+»')X taken from (13)
and gets

BX BX
4x x,—I(.(x)d V= x, ( 6+»—')Xd—V

Gx) Bx)

d Vx, X(—6+»')X
BXE

( (&'X BX (tX ')
+-;P dv. ,

l
x

l9xr ( Bx)Bxt Bx( l9xp)

K= -'(1; t XBXd V——i);(Jl X~d V
2

'

(' (BX 8X (&'X
+-; tl ---x ld V

i&x( &x; (&x((&x;&(

= —
2b;&J (grad X)'d V ('&;(J X'—d V—

2
'

t 8X 8X
+ ———dV.

8x) 8x,

Using the spherical symmetry of X we have

Ke now compute the component of M in a
fixed direction, say along the x3 axis. Ke
introduce a matrix representation for the e~' ',
where L&2' =—L»', (Lo)', and To&2= —Lo&'& [cf.
Eq. (73)) are diagonal with eigenvalues m,
j(j+1),and n, respectively, with —j—m~j and
—j~n —j. From the commutation relations
(39), (55), (56) it follows that L(») =I."com—mutes
with all LI, and is therefore diagonal with respect
to j, m, and LI,.

Moreover, e(') commutes with L(') and is
therefore diagonal with respect to n. However,
e3&') is not diagonal with respect to j and we
need the diagonal element (j, n, m

l
ea&"

l j, n, m).
Ke have the following relations:

(m
l
Li+i I.2 l

m —1) = [(j+m) (j—m+1)') &,

(mlI. , iL, lm+1) =[(q+m 1)(z —m)]:—

To satisfy the commutation relations [analogous
0

to (38)] of e((3) with L;), we set

(j, m, n
l

e3&"
l j, m, n) = (j, n

l
C

l j, n) m,

(j, m, n
l
ei'"+ie2&"

l j, m —1, n)

=(j, n l'Cl j, n)[(j+m)(j —m+1)]i,
(j, m, n

l
ei&" ie2&'&

l
j—, m+1, n)

=(j nlClj n)[(j+m+1)(j—m)]'

Inserting this in the equation

t BX BX
d V= —,'i);(J~(grad X)'d V we get

(L.e(i)) ——L(3) —T(3)

- (j, n
I
C

I j, n) j(j+1)=n
or

We get —(j, m, n
l
e3'"

l j, m, n) =j (j+1)e g'
~(i:= +— (e( 'A ' —e('"ei ")

8Ã 2K Therefore, for a given isobar, we find that to the
leading order

X ——', (grad X)'d V+»' X'd V .

As was shown in Section 4 the second integral

e g 1 Qtps
M3 —————

»»a 12 j(j+1)
(125)
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For the proton e= m =j= -,', hence

eg' j
353—————

K KC36
(126)

This moment, while small compared to the
empirical moments of proton and neutron, is
again equal in magnitude and opposite in sign
for the two. For the two states n= ~-'„m=j=-,'

For the neutron n = —2, hence 3I3 simply
changes sign, as was mentioned above.

If, for a hrst orientation, we identify this
magnetic moment with the total empirical
magnetic moment of the neutron —1.93 proton
magnetons —and assume a meson mass equal to
1/10 proton mass (e/"= 10 proton magnetons),
we And g'/aa 6.95. Inserting the value of
~a 0.1 determined from consideration of the
scattering, we 6nd g' 0.695, or g/"c 8.3, well

within the range of the strong coupling
approximation.

However, the fact that the proton and neutron
magnetic moments are not of equal magnitude
cannot be explained in any simple way in this
theory. Of course, (126) does not give the total
magnetic moment, but only the part due to the
meson cloud. To it must be added the moment
due to the nucleon itself." If we assume that a
'bare" proton or neutron would have a magnetic
moment or one or zero proton magnetons,
respective1y, then we can compute the nucleon
n&oment in the two lowest states by calculating
the expectation value of

3I3' ——&—,'proton magneton.

A 1f, =cos 8 cos y cos f—sin q sin p,
cos 8 sin y cos P+cos cp sin f,

A2q= —cos 8 cos q sing —sin q cosp,
—cos 8 sin y sin f+cos y cos f,

A3I, =sin 8 cos q, sin 8 sin rp, cos 8,

—sin 8 cos P,

sin 8 sin f,

which means that the right side is the transposed matrix
A. In the same way we put for the matrix

8 Icr =cos 0 cos 4 cos 0 —sin 4 sin 4',
cos 0 sin 4 cos ++cos C sin 4, —sin 0 cos +,

82 = —cos 0 cos 4 sin 0 —sin 4 cos 0,
—cos 8 sin 4 sin % +cos 4 cos 4', sin 0 sin %,

83 =sin O~cos4, sin 0" sin@, cos 0
and for the e I, defined by (51)

(2)

eII =cos a cos b cos c—sin b sin c,
cos a sin b cos c+cos b sin c,

elf = —cos a cos b sin c—sin b cos t, ,
—cos a sin b sin c+cos b cos c,

e3I = sin a cos b, sin a sin b, cos a.

—sin a cos c,

sin a sin c,

APPENDIX

1. Introduction of Polar Angles

It is possible to express by means of Euler angles the
orthogonal matrices {or, in other words, the three or-
thogonal-unit-vectors) introduced in Section 2. For
instance, we can put

8k 1
M' = —(1+r3)e.

m~c 2
(127) Defining the operators pg, p„,py simply by pg= —ia/a8,

P, = —ia/ay, Plt, = —ia/a&, we find from the volume
element sin HdHd+p that p„,pp are Hermitian, but

8 1
M' = — -e&'),

mac 2

the expectation value of e being zero. Ke
compute the component of 3E along the x3 axis
as before and get

1 sm 8.~V3' ———
2 j(j+1)m c

(128)

"YVe are indebted to Dr. J. Schwinger for valuable
discussion of this question.

In the weak coupling theory v-3 is diagonal with
the value + ~ for the proton and —

~ for the
neutron, giving rise to the same values for the
moment which were assumed for the bare core.
However, in the strong coupling theory we have,
after performing the S transformation,

L —=L = —s'n bp +(cos b/ ln a}(p,—cos apb)
= —p t sin b+(p, —pf, cos a) (cos b/sin a),

L2=L81=cos bp +{sin b/sin a)(p, —cos apf,)
=p,t cos b+(p, —pf, cos a) (sin b/sin a),

L3=L» =pl.

Analogously for the isotopic spin

pl = 123= —sin 4pg+ (cos 4 /sin 0}{py—cos p4}
= —at sin y+ (p+ —p+ cos 0}(cos 4 /sin 8),

(5)

Pyt=(sin 8) 'Pg sin 8;

similar expressions are found for &~, pJ .
A direct evaluation of the angular momentum operators

gives

L1—=L23 ———sin @PE+(COS y/sin 8)(Py —COs HP„)
= —at sin y+(py —p„cos8) (cos y/sin 8),

L2 =—L31=cos yptt+ (sin cpj'sin 8) (pp —cos 8p„)
=pfit cos rp+(pp-p& cos 8)(sin y/sin 8),

L3=L»-p„,
and also
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T2 —T31=cos @pe+(sin 4/sin IH) (py —cos Op@}
=pe~ cos 4'+(py p@ cos e)(sin 4/sin g),

T8 = T12 p4.

For the components L"' and T"' we find

L'=I23= sin ppg 1(cos p/sin 8}{cos8' —p&)
=Pe~ sin f+ (Py cos 8—P„)(cos f/sin 8),

L'=—L» =cos &pe —(sin p/sin 8}(cos8'—p„)
=Pgt cos P —(Py cos 8—P„)-(sinP/sin 8), (~l) +{~2) ~l +1++2 +2+ 2+(p.+p,)' (p.—p,)'

2( 1— 2)'

+ '"'.p p'+p. tp. D-. (13c)
SlIl a

L3 =L12 —
p~

T'=—T~= sin 0'pe+(cos 0 /sin 0) (cos 8p@—p@)
=pet sin 4'+ (p@ cos O~ —p@)(cos % /sin 8),

T'—= T» =cos% pe —(sin +/sin O~)(cos O~p@ —p@) (8)
=pet cos +—(p@ cos 8—p@)(sin +/sin 0),

T3= T12 —p@

And„analogously for the components L & which we write
L&'l, L|2&, L|@ or L&23& L&»~ L&"l to distinguish them from
Lra

2. The 8 Transformation

By using the expression (3) for the e q the 5 transforma-
tion defined by Eq. {65a) is simply obtained by putting'4

c a bS=exp io 3- exp io 2
— exp io 3—

2 2 2
a . cS '=exp —icr~— exp —icr2— exp

2 2 2
(14)

L&» —L&"&= sin cP + (cos c/sin a) (cos aP, —Pb)
=p,t sin c+(p, cos a —pb) (cos c/sin a),

L&» =L&3» =cos cP —(sin c/sin a}{cosaP.—Pb}
=p t cos c—{p,cos a —pb) (sin c/sin a),

L(3) =L&12& =p

AVe note that all components L"', T"', L ~ turn out to be
Hermitian. For the total square of L and T we get

(py —cos 8p„)
sin' 8

which can also be written out as
(9)

a b c . b . c
S,=cos — cos —cos ——sin —sin — I

2 2 2 2 2

a . b c b . c+i Sin — —Sin —COS —+COS —Sin — o 1
2 2 2 2 2

a b c . b . c+i Sin — COS —COS —+Sin — Sin — cr2

a . b c b . c+i cos — sin —cos -+cos —sin — o 3. (15)(cos 8' —p„)'
sin2 8

(p@—cos Op@)'
sin2 0

(cos Hp@ —p@)'+p4sin2 O~

(10}
The expression for 5 ' is obtained from it by changing i
into —i. One easily finds

SP 5 '=P —y(cri Sln C+cr2 COS C},

SPbS '=Pb —2( —oi sin a cos c
+cr2 sin a sin c+o3 cos a),and also {16)

Sp,S '= p, —-'cr3.(p, —cos ap )
sin a

(cos ap —pb)2

sln2 a

Inserting this in the expressions (5) and (9) of the last
section, one easily checks the Eqs. {69},(69') of the text,
namely

(12)

{6} which, however, gets rather complicated even in the
approximation where one puts Q,+Q.=2D because of the
terms containing Q, —Q„.The analogous expression (50c)
for the charged scalar theory is simpler, because here we
have simply T"=T»=pp. In the approximation where
we can put in the last two terms Ql+Q2=2D, Q, =D
we get

The expressions (7}, (8) can be substituted in the
expression (50) for

~ {~as)2

SL5 '=L —~25oS '=L ——,'Z o e,
SLaPS—1 LaP

'4 See W. Pauli, Helv. Phys. Acta 12, 147 {1939),
Section 3, where the special case c=0 is treated,


