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¢a(K) exp (1k-r—1iwt), quantum mechanics as-
signs the energy E=hw and the momentum
p=#hk. Thus, corresponding to the ordinary
waves, since in that case w=ck, the relation be-
tween the energy and momentum is

Er=cp?, (6.3)

which is the relativistic relation between the
energy and momentum for a free particle of zero
mass.

For the extraordinary waves, however, w=ck,
which gives

E2=(chk)2=c2p*+c*h?/a?. (6.4)

This is the relativistic relation between the
energy and momentum of a free particle of a
finite mass

m="h/ac. (6.5)

Since we have assumed space to be free of
electrified particles, we must suppose that the
general electromagnetic field contains neutral
particles, which I tentatively assume to be
neutrinos. Then, m is the neutrino mass, and

a="h/mec. (6.6)

Finally, we note that the second integral in
Eq. (6.2) satisfies the differential equation

(1—a20)y =0, (6.7)

and is the de Broglie wave for a particle of mass
given by Eq. (6.5). In the non-relativistic ap-
proximation Eq. (6.7) is the Schroedinger equa-
tion for a neutral particle.

I am grateful to Professor Samuel J. M. Allen
for his friendly interest in this problem.
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The characteristic frequencies of infinite piezoelectric plates vibrating between the grounded
electrodes of a plane parallel condenser have been rigorously investigated. It is found that
the frequencies depend on the piezoelectric constants as well as the elastic constants of the
crystal. The effective elastic constants for a piezoelectric crystal do not in general satisfy
the same symmetry relations as the true elastic constants. For odd harmonics, which are
the only modes which can be excited by a uniform electric field, the strain does not vanish
at the surface of the plate for a finite gap between the electrodes. Consequently, the frequencies
of free vibration also depend on the separation of the electrodes, and the rigorous theory
shows this dependence should not be linear as hitherto supposed. The effect of the gap decreases
as the square of the harmonic number and hence the higher frequencies of vibration are not

exactly harmonics of the fundamental.

THE object of this paper is to give a rigorous
treatment of the free vibrations of an
infinite piezoelectric plate vibrating between two
grounded infinite electrodes. These frequencies
are the resonant frequencies of the plate when
driven by an alternating voltage on the elec-
trodes. This theory is an excellent approximation
for a finite plate whose thickness is small
compared to its lateral dimensions. The general
theory of non-piezoelectric plates has been given
by Koga,! and special cases of piezoelectric

11. Koga, Physics 3, 70 (1932).

plates have been discussed by Cady.? The
general theory for piezoelectric plates is similar
to that of Koga for ordinary plates but is
complicated by the fact that it is necessary to
solve Maxwell’'s equations simultaneously with
the differential equations for the propagation of
elastic waves. It will appear that Cady’s par-
ticular solution is an excellent first approximation
but is not self-consistent.

If, in an anisotropic substance, # is the
displacement vector, 6 the strain tensor, ¢ the

2 W. G. Cady, Physics 7, 237 (1936).
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stress tensor, ¢ the elastic tensor, E the electric
field intensity, P the polarization, e the piezo-
electric tensor, k the susceptibility tensor, and
p the density, we have for our fundamental
elastic wave equations

2i0¢ii/dx;=pii;, j=1,2,3; 1)
where
Pij= Z} Cijapbup— 2 €ijyEy, (2)
@ v
and 0. =0u,/dxs, if a=g;
Oas=0Uy/dxp+Oug/dxa, if a=p. (3)

The use of this somewhat cumbersome notation
is to ensure that the magnitudes of the elastic
and piezoelectric constants will be the same as
those employed by Voigt. Finally, we have

Pl:zﬂ eaﬂieaﬂ+z k-yiEJ. (4)
@ k]

It is immediately evident from Eq. (4) that the
polarization in the medium is not in general
collinear with the electric field intensity.

Now, if we restrict our attention to the case
of a plate oriented perpendicular to xi, then
we have

In virtue of Egs. (2), (3), and (5), we may write
Eq. (1) as

92 dE,
i ——(C1ja1ta) — €1ja
o | 9x,2 0x;

= pti;. (6)

Moreover, we have from electromagnetic theory
¢cVXE=—B, ™
where B is the magnetic field intensity, and
V-D=0, (8)
where D is the electric induction vector. From
Egs. (5) and (8), we obtain

aEl (')E,, au,,
—+4r Y kal——+eau———} =0, (9)

0xy @ X1 9x1

where the quantities E, are the components of
the electric field along axes chosen perpendicular
and parallel to the surface of the plate. Thus
E, is the electric field intensity along x;. Neg-
lecting B in Eq. (7), we have

0E./3xs—03Eg/3x.=0, B=a—1; a=1, 2, 3, (10)
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whence
6E2/6x1=6E3/6x1=0. (11)
So Eq. (9) reduces to
6E1 aua
Kij—+4n Z €a11 =0, (12)
0xy « 9x
where
K1151+41rk11, (13)
which when substituted in Eq. (6) yields
62
{€*1ja1tha} = pii;, (14)
a ax12
where
4we1j1€a11
*lia1 =Cljar+ (15)

1

Taking the origin at the center of the plate,
we shall now assume that

nwx, X
uy=A; sin exp iwd, nodd; (16)
Sr
and
nrxy .
uy=Aj cos exp tw,, mneven. (17)
Sr
We then have the secular system
Za C*ljalAar—Kr2 ir=07 j=11 2, 3y (18)
where
k2=4ps f2/n% fr=w./2x. (19)
We define
=2 A7uy. (20)
Theén our differential equations become
a2 p.
=—%, 7=112v3; (21)
ax12 K,-2

where K2, ko?, ks® are the roots of the cubic
equation

% Y * %
cFrn—«? 71121 €7 1131
* * 2 * —
1211 c*1221— k% c*a |=0. (22)
* * *
€7 1311 €7 1321 c*1331— K*

Corresponding to Egs. (16) and (17), we assume
that
nwX1

£&=¢§"sin exp iwd, nodd; (23)
Sr
and
nwx1 .
£=£§"%cos exp tw,d, mneven. (24)
Sr
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Here we regard s, as an unknown to be deter-
mined by the boundary conditions, which are
at x,=+a.

X,=X,=X,=0, (25)
nX(E—E?) =0, (26)
n-(D—DY) =0, (27)

when the origin is chosen at the center of the
plate and 2a=/, the thickness of the plate.

The exact formulation of these conditions
depends on the physical situation. In practice,
the crystalline plate is inserted between two
electrodes which are parallel to the surface of
the plate. An alternating difference of potential
between the two plates is used to excite resonant
vibrations in the plate. We shall, however,
assume that the plates are at zero potential and
inquire into the characteristic frequencies of free
vibration in this case. These are also the fre-
quencies at which a driving voltage on the
electrodes will produce resonance, but the
expressions for the displacement are then con-
siderably more complicated.? Since only the
resonant frequencies are of practical interest,
we shall not attempt to formulate the expressions
for the displacements in the case of forced

3 See, for example, P. M. Morse, Vibration and Sound
(McGraw-Hill, 1936).

vibrations. Confining our attention to the case
when the electrodes are grounded, we conclude
by symmetry that the external electric field E°
is entirely along the x; direction, that is, perpen-

dicular to the surface of the plate, or
EY=E' E%=FE%=0. (28)

Consequently our boundary conditionsatx,= +a
reduce to

KuE14-41Y 0 a1(0a/d21) =E°,  (29)
Zcx Cl;‘al(aua/axl) “81;'1E1 =0, j= 1, 2: 3 H (30)

and, solving these equations simultaneously,
we obtain

aua eljl 0
=—E y

dx, 11

; C*ljal ]= 1, 2, 3. (31)
It remains to determine E° in terms of the
quantities #;. This requires the solution of
Poisson’s equation, which is most conveniently
carried out in a manner suggested by Cady.

We treat the cases #» odd and 7 even separately.
We assume that in both cases, however, the
configuration is that shown in Fig. 1, where 2d
is the total gap between the electrodes in which
the specimen is symmetrically inserted. Denoting
by 1, 2, and 3 the regions occupied by the first
air gap, the specimen, and the second air gap,
respectively, we have, since

V2V = —4mp,(x1), ¢=1,2,3, (32)

the relation

V,= —41r‘ f[qu(xl)dxl]dxl-i—qu1+Cq'},

(33)

where V, is the electrostatic potential and
pq(x1) is the charge density in the g¢th region.
These latter quantities have the values:

(34)
(35)

p1(x1) = ps(x1) =0,
pa(x1) = — (d/dx1) Py’ (x1),

where P,/(x;) is that part of the polarization
arising from the strain. Confusion may arise at
this juncture because some authors consider the
strain to produce free charge, while others
consider the strain to produce polarization. It
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is clear that we have assumed the strain to
produce polarization equivalent to that arising
from a free charge distribution ps(x;). While
both points of view lead to the same result,
confusion may arise due to the difference in
definition of P and D. In order to proceed
further and evaluate the constants C, and C//,
it is necessary to know the space dependence of
P,’(x1). Here, and until further notice, we omit
the index 7, since it is understood that these
equations obtain for each value of 7.

For n odd, we have according to Egs. (4)
and (16)

Py (x1))=Pycos ——=—3_ eq11dq COs
s a s

(36)

ntxy =n nwxy
S

Consequently, we obtain for the electrostatic
potentials

Vi= —411'[C1x1+ Cl'],
Pos

4x
Vam ——[————sin
Kyl nr s

Va = -—41r[C3x1+ Cal].

37)

nwXy

+ Cox1+ Cz'], (38)

(39)

We seek to evaluate the undetermined constants.
By symmetry,

c1 = Cs. (40)
Moreover, at x=—d:
V1= —41r[—C1d+C1’]=0, (41)
SO
C/=0Cd, (42)
and, at x=d:
Vi=—4r[Csd+C5']=0, (43)
%)
Cy'=—Cud. (44)
Consequently, we obtain
Vi=—4xCi(x+d), (45)
and
Vi= —41rC;(x—-d) (46)
At x=—a, V1=V, so
—4r[—a+d]Ci=
4r Pys —nra
————[-—— sin —Cga+C2’] 47
Ku nw S

and D;=D,, so
—nma
—41rC1+41r[——P0 cos +C2]
s
—nmra
= —4xP, cos , (48)
s
whence immediately
Cx = C2- (49)
Similarly, at x=a, V=13, so
—41I'C1[d—d]=
Ar[ Pos nra
————[—— sin —+ C2(1+C2,:|. (50)
Kyl nr s
Adding Eqgs. (47) and (50) yields
C)'=0. (s1)
Hence from Eq. (50) we obtain
4r Pos nra
—4xCi[a—d]= ——[———— sin —+ C;a],
11 nw N
(52)
%)
E'=47C,= (87 Pos/nrw) sin (nwa/s), (53)
where
w=2[a+Knu(d—a)]. (54)

This differs from Cady’s solution of the problem
by a factor sin nwra/s.

Inserting the value for the external electric
field in the boundary conditions, we have at
x=za,

u.” 8eij1 nra

sin
dx; wKi Sr

; €* tjar = az eannda", (55)
in which we have again inserted the index 7.
Multiplying each equation by A4;7, adding and
taking cognizance of Eq. (20), we have for the
corresponding boundary conditions on £, at
x==a:

nwK,? nma 8w nwa
£9cos —= [>«€a11da]? sin —,
S Sy WA g Sr
(56)
or
nra  8s.e’? nwa
cos — = sin , (57)
Sr n‘ZUKrOKu Sr
where

er,2 = [Za 6«11Aa’]2/[2a Aﬂ’]2' (58)
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In Eq. (58) it is not necessary to know the
absolute value of the 4, to determine e,”? but
only the ratio Ay : 49" : A3 which is determined
by Eq. (18) for a given «,2.

Since cos nra/s,=cos —nma/s, it is apparent
that our solution & =§£° sin nwx,/s, exp iw,t will
satisfy both boundary conditions provided s, is
the solution of the transcendental Eq. (57).
This completes the formal solution of the
problem for »n odd.

It should be noted, however, that in general
s- is not equal to the thickness of the plate.
Physically, this means that in virtue of the
electric field arising from the charge distribution
caused by the strain, neither the stress nor the
strain vanish at the surface of the plate. This
is an important qualitative difference between
this solution and that of Cady, who assumed
that there was a node of strain at the boundary
of the plate and then calculated the external
electric field and found it to be finite. Thus,
his result is fundamentally inconsistent with his
initial assumption, which, however, is an excel-
lent approximation owing to the small difference
between ! and s,. Indeed, the difference is so
small that it is worthy of mention only for the
sake of clarity of interpretation.

The foregoing state of affairs is somewhat
altered when 7 is even. In this case we must
write

Vi=—4n(Cix+CY), (59)
Va=—(4n/K1)[ — (Pos/nx) cos (nwx1/s)
+C2x1+ Cz’], (60)

Vs= —4r[Cx+Cy']. (61)
From V=0 at x= +d, we obtain

Vi= —4xCi(x1+d), (62)
and

V3= —41rC3(x1—d). (63)

From continuity of potential we have, at x=+a,

Cs[—4n(a—d)]
= — (4n/K11)[ — (Pos/nr) cos (nwa/s)

+C2(1+C2,]r (64)
and, at x=—a
Ci[—4nr(—a+d)]
= —(4nr/Kn)[— (Pos/nr) cos (—nwra/s)
—Cwa+CyY].  (65)

From continuity of electric displacement, we
have, at x= +a,

—47xC3+47[ Py sin (nwa/s)+Cs ]

=47xP, sin (nwa/s), (66)
and, at x=—a
—47FC1+47FEPO sin (—71,71"(1/5) +C2]
=4xPy sin (—nwa/s), (67)

whence Cy=C;=C;. Adding Eqgs. (64) and (65)
we find

Cy' = (Pos/nm) cos (nra/s). (68)
Subtracting the same equations we find
C1= C2=C3=0. (69)

So, for even harmonics, we conclude that the
external field vanishes. Consequently,

& =£" cos nwx./l,

where [ is the thickness of the plate. The faces
of the plate are nodes of displacement for the
even harmonics and consequently cannot be
excited by a uniform electric field applied
perpendicular to the plate.

Now by returning to Eq. (57) and realizing
from a physical standpoint that 5,22/, we are in
a position to obtain a sufficiently accurate,
explicit approximation for the value of s, and
hence of f., the frequency of free vibration when
n is odd.

First, we demonstrate that s,>1! for n odd.
In Eq. (587), if s;=!/, we must have sin nwra/s,
and cosnwa/s, with the same sign, since
8e,'%s,/knwKq; is essentially positive. This is
only possible if s,>2a=1.

Next we show that Cady’s result for an X-cut
crystal vibrating in its fundamental thickness
mode is the quantitatively correct first approxi-
mation. Now Cady defined a quantity

¢ =4pf I, (70)

and found

e’ =cn*— (326112l/ﬂ0K11),

(71)

To achieve this result we return to Eq. (57)
and shift the origin from x;=0 to x;=—3%s and
thus obtain

n=1,

tan Al,nw/s,=8s.e.’2/c.*nwK 11, (72)
where

24l =s,—1, (73)
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and
(74)

From Eq. (72), we obtain as the first approxi-
mation for Al,:

Al =8e,"*I*/n*rwK 11¢,*. (75)
From Eqgs. (19) and (73) we have
4p*(f2/n?) (P44l =c,*, (76)
which with Eq. (75) yields
4p£l2(1+——iz—ei) =c¥, (77)
n? TwK 16, n?
o ¢ =¢*—32e¢,l/anwK ;. (78)

For an X-cut crystal this expression reduces to
that of Cady. It is further evident that the
effect of the gap on the frequency vanishes when
the gap is infinite, and decreases as the square
of the harmonic number for a finite gap.

Finally, this theory should be capable of
explaining the observed dependence of frequency
on gap. According to Cady, the frequency should
be related to the reciprocal of the equivalent
electrical gap w by a linear relation. Actually,
Dye* and Cady observed a slight curvature to
the relation. The second approximation for Al,
should yield the sign of this curvature. We may
write

fr/n=v,/25,=y3v,, (79)
where
v, = (k*/p)}, (80)
and
V= 1/Sr— (81)
Then the second approximation for s, yields
ly2—y,+D.=0, (82)
where
D,=16e,"2/k,*n*wK 1, (83)
so to the second approximation
1
yr=”l'—Dr"'l-Dr2- (84)

If Af, is the increment in the frequency as the

4+ D. W. Dye, Proc. Phys. Soc. London 38, 399 (1926).

gap is decreased from an infinite value, for which
the frequency is f,°, we have

Af,/f:*=—(ID,412D.?).

The frequency therefore drops more rapidly
than linearly. This is qualitatively in agreement
with experiment, although experiment would
indicate that this drop is somewhat more rapid
than the theory predicts. This quantitative
discrepancy is possibly due to the lack of a
uniform field and the fact that the experiments
were conducted on the fundamental mode of
vibration where the edge effects are more
important than for higher modes. This is because
the frequencies of vibration of a finite plate will
only be equal to those of an infinite plate as the
wave-length of the sound waves approaches zero.

In summary, we state the main result of our
considerations. The frequencies of free vibration
of a piezoelectric crystal in the form of an
infinite plate inserted between two grounded
electrodes are given by

n sc*\?
fr=—' _) ’

25.\ p
where ¢,* are the roots of the secular determinant
(22) and s, is the root of the transcendental
equation cot nra/s,=8s,e,'2/nwc,*K 11, for n odd ;
and s,=1, for n even where the various quantities
have the connotations ascribed in the text.

It has been pointed out elsewhere® that this
theory is capable of explaining the discrepancies
in the elastic constants of quartz calculated by
Atanasoff and Hart® on the basis of a somewhat
less rigorous theory. The agreement between
this theory and the careful results of Atanasoff
and Hart is very satisfactory. It is worthy of
emphasis that the effective elastic constants of a
piezoelectric plate, the so-called c*, do not obey
the same symmetry relations as those obeyed by
the ordinary elastic constants.

The author is indebted to Professor W. G.
Cady and Professor J. V. Atanasoff for stimu-
lating conversations and correspondence, and
considerable constructive criticism.

(85)

5 A. W. Lawson, Phys. Rev. 59, 838 (1941).
8 J. V. Atanasoff and P. J. Hart, Phys. Rev. 59, 85 (1941).



