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A Generalized Electrodynamics

Part I—Non-Quantum
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If one wishes to derive generalized field equations from a Lagrangian, at the same time
preserving the linear character of the equations, one must admit terms involving derivatives
of the field quantities. It turns out that the only non-trivial generalization of this kind,
leading to differential equations of order below eighth, is obtained by taking Ly = (1/8+) J ~z F p'

+a'(8F p/axe)'). This leads to a theory that contains the Lande-Thomas theory and accounts
for the choice of sign required when one wishes to consider the total field as consisting of
the Maxwell-Lorentz and the Yukawa fiel'ds.

Ig = I I.gd V= E'—d V. —(2.1)

1. INTRODUCTION
" 'F one assumes that the equations of electrody-
~ ~ namics are derivable from some Lagrangian
L, and wishes to preserve the linear character of
the field equations (The Principle of Superposi-
tion) in order to make the quantization easy,
then, unless one is prepared to introduce new
kinds of field quantities, the only way of gener-
alizing the Maxwell-Lorentz theory appears to be
by permitting the Lagrangian of the field to con-
tain terms involving derivatives of the field
quantities E and H.

One then obtains, as the field equations, partial
di8'erential equations of an order higher than the
usual second. Far from being objectionable, this
appears to be what is needed. For, the various
proposed methods of "cutting oH" e6ects of
higher frequencies seems to indicate clearly that
the higher derivatives, which become important
for higher frequencies, are not properly taken care
of by the usual second-order equations. Further,
the extra freedom of choice of a solution to be
used in any particular problem, provided by
equations of higher order, permits of an imposi-
tion of finiteness conditions, analogous to
Schroedinger's procedure, which serves also to
remove infinities inherent in the usual treatment
of point charges.

2. NON-RELATIVISTIC CASE

The usual Lagrangian of the field in this case,
in electrostatic units, is:

(1—a'7') Ps = —4irp (2.4)

To preserve the linearity of the fieM equations
the additional terms have to be quadratic in E
and its derivatives. If we limit ourselves to field
equations of an order not higher than sixth, the
highest derivative of E that may occur is second.
Investigating all possible combinations of the
operator V' and E satisfying these requirements,
one finds that all such combinations either vanish
identically, by virtue of the condition E= —V'q

(the result of preserving unchanged the term in
the total Lagrangian representing the interaction
of the field and particles), or diRer by a diver-
gence from (V E)'. Since addition of a divergence
to Jy does not alter the field equations, we may
take, as the only generalization giving anything
new,

Iy= (1/8 )itrE+ (aV E)'].
The constant u thus introduced has the dimen-
sion of length, but otherwise remains arbitrary,
as does also the sign of the whole additional terni.

The field equations are now:

(1&a'P)V E=4irp and V'XE=0. (2.3)

Although both choices of the sign admit of solu-
tions without infinities, I am inclined to the
belief, based on the study of the types of waves
occurring in the corresponding relativistic gener-
alization, that eventually only the upper sign
will turn out to give physically significant results.
The following investigation is therefore based on
the tentative assumption that the upper sign is to
be used in Eqs. (2.2) and (2.3).

The generalized Poisson equation is now:
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and if we put
p =e~(r). (2.5)

The only independent relativistically invariant
generalization of Eq. (2.2) is found to be'

which corresponds to a point charge e located at
the origin, the only solution of Eq. (2.4), finite
everywhere and vanishing at infinity, is:

y = (e/r) (1—e-"'). (2.6)

This result is of the same form as the electro-
static potential obtained by Lande and Thomas. '

However, we are here not limited to values of a
consistent with their special assumption of meson
involvement in the electronic interaction. In fact,
later considerations seem to suggest that

(2.7)

1 1 (BF~p) '
Ly= —F—.p'+ a'(

8~ 2 EBxp)

=—E' —H'
Hx (1)2-

+a (V Z) -~ VXH--Z
~

c )

The resulting field equations are:

( B' )BFp,
a

I
'=4~jp,

Bx.') Bx,

(3.8)

(3.10)

which, on the Land&-Thomas theory, would cor-
respond to the meson mass being equal to m

(instead of 2X137 m). This would mean that the
meson here is a neutrino. However, no such
interpretation is here necessary, nor apparently
desirable. In Section 4 we shall consider more
fully the relation of the present theory to that of
Lande and Thomas.

3. RELATIVISTIC EQUATIONS

Using x4 ——icI, and —ds'=dx ' with the usual
summation convention, we need not distinguish
between covariant and contravariant tensors.
Letting

F.p= —Fp. ——(Byp/Bx. ) —(By./Bxp) (3.1)

and
(1 —a'D)V E=4irp

1.)
(1 —a Z)~ VXH —-Z

~
=4~pv/c, (3.11)

c i
where the four-vector j is defined by

with
j =(pv/c, ip),

p(r) =P, e,B(r-r,).

(3.12)

(3.13)

The summation here is over all the particles; the
sth particle having the charge e, and the position
r, =r, (t).

Kith the usual restriction on the potentials,

(By /Bx.) =—7' A+ (1/c) y =0, (3.14)
with y. =(~, &y), we obtain:
where A is the vector potential and cp the scalar
potential, we have: I'j.2=III, F23=II&, ~i4
= —jB~, ~ etc. ; and, as usual,

(1—a'CI) a y. = —4~j., (3.15)

a set of fourth-order partial differential equations.

E= —Vy —(1/c)k and H='7X&. (3 3) 4. RELATION TO THE LANDS-THOMAS THEORY

One set of the field equations is then the usual

BF p/Bx, +BFp,/Bx, +BF, /Bxp=0, (3.4)

Vxz+(1/c)H=O and 7 H=O. (3.5)

Equations of motion of a particle are, in the
usual way,

(d'x /ds') = (e/mc') F,p(dxp/ds), (3.6)

Although the present generalization consists
merely of an addition of a comparatively simple
term to the Lagrangian of the field, see Eq. (3.8),
it contains the Lande-Thomas theory as a special
case, and shows in a way why their particular
way of combining Maxwell-Lorentz and Yukawa
fields should work.

For, let
(1 —a'l-]) y. =—y.". (4.1)

d iitv f v
=e] E+—XH /.

dt (1—v'/c')& L c
(3.7)

' A.. Landd and L. H. Thomas, Phys. Rev. 50, 5I4 {1941).

'A possible addition of a term bE H is trivial, since, by
virtue of Eq. (3.4), E 8=BJ /Bx, a four-dimensional di-
vergence of the four-vector J =(~/4}~~p&yFp~qq, and does
not aSect the resulting field equations.
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then Eq. (3.15) becomes In electrostatics this reduces to

Qy "=—4~j,
so that q

" is the usual Maxwell-Lorentz po-
tential. If we now put Making use of VXE=O, and assuming that

E'7 E vanishes at infinity faster than 1/r', one
finds that Eq. (5.3) can easily be put in the form

1
F= I—E'+a'(V. E)'}dV, (5.4)

8

(4.3)lf IPa= Pa Pa s

substitution into Eq. (4.1), with the use of Eq.
(4.2), gives

(4 4)(1—a'C])y '=4''j .

(4.2) F= I —IE' —'[(V' E)'+2E 7'Ej }dV. (5.3)
8 J

Equations (4.2) and (4.4), with a suitable choice
of a, are just the Landb-Thomas equations for the
Maxwell-Lorentz and the Yukawa parts of' the
field, respectively. The minus sign in Eq. (4.3),
which Landh and Thomas found necessary to
introduce ad hoc, is here required to give Eq.
(4.4). In other words, if we wish to consider y, as
the sum of the Maxwell-Lorentz and Yukawa
fields, these tnust be combined by subtracting the
latter from the former. The same kind of analysis
applies also to the energies. The choice of the
opposite sign in Eq. (2.2) would lead to solutions
of entirely diferent form, and has nothing to do
with the present question.

5. ENERGY-MOMENTUM TENSOR

The derivation of the energy-momentum tensor
is dosely related to the problem of finding the
Hamiltonian corresponding to the Lagrangian
(3.8), which is necessary for the quantization of
the 6eld. I theref'ore reserve it for Part II of this
report, giving here merely the result:

4xzcT„„=F„F„——,'F pF pb„„

+(a'/2)[F pal F.p+(BF p/Bxp)(BF. ,/Bx, )]b„„

[aF„C]F, +F. C7F„

+(BF„ /Bx ) (8F,p/Bxp) j. (5.1)

This leads to the expression for the energy

c
Z= —

~
T44dV= ~t (E'+H')d V

+2(H ClH+E. C3E) d V. (5.2)

which is obviously positive. For the field of a
point charge given by Eq. (2.2) this turns out to
be e'/2a.

6. WAVES

In the absence of electrified rnatter Eq. (3.15)
becomes

(1—aiCI) Oe.(r, t) =0. (6.1)

When we assume e (r, t) to be real, the general
solution of this equation is:

(1)& t

y.(r, t)=}—
}

~ Ie (ir) exp'(k r ckt). —

+e *(k) exp i(—k r ckt) }dk-

f 1'l' t
+I }

~~~ I &.(k) expi(k r ckt)—
(2+)

+j *(ir) exp —i(k r ckt) }dk; (6.2—)

where k is the wave vector, the direction of which
is the direction of propagation of the component
plane wave and the magnitude of which is
k = 2x/X, X being the wave-length; dk =dk, dkgk„.
k=(1+a'k')&/a; e (lt) and e (It) are two arbi-
trary independent functions of k; and the asterisk
denotes the complex conjugate of the quantity to
which it is attached. If the reality assumption is
omitted, the asterisk then denotes merely another
independent function of k.

The first integral in Eq. (6.2) is the general
solution of the ordinary wave equation, which
was previously used and found convenient. ' I
shall refer to waves thus represented as the ordi-
nary waves. The second integral gives the ex-

traordinary waves, and are distinguished by a
tiMe ( ).

If a wave is considered as being associated
with a particle, then, corresponding to a term

' V. Fock and B.Podolsky, Physik. Zeits. der Sovrjetunion
1, g01 (1932).
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y.(lt) exp (ilt r —hut), quantum mechanics as-
signs the energy E=h~ and the momentum

p =kk. Thus, corresponding to the ordinary
waves, since in that case au=ck, the relation be-
tween the energy and momentum is

Since we have assumed space to be free of
electrified particles, we must suppose that the
general electromagnetic field contains neutral
particles, which I tentatively assume to be
neutrinos. Then, m is the neutrino mass, and

PR = c2pl (6.3) a =h/mc. (6.6)

which is the relativistic relation between the
energy and momentum for a free particle of sero
I11ass.

For the extraordinary waves, however, co=ck,
which gives

N = (chk)' =c'p'+ c'h'/a'. (6.4)

This is the relativistic relation between the
energy and momentum of a free particle of a
finite mass

ra =h/ac. (6.5)

Finally, we note that the second integral in

Eq. (6.2) satisfies the differential equation

(1—a'Cl)/=0, (6.7)

and is the de Broglie wave for a particle of mass
given by Eq. (6.5). In the non-relativistic ap-
proximation Eq. (6.7) is the Schroedinger equa-
tion for a neutral particle.

I am grateful to Professor Samuel J. M. Allen
for his friendly interest in this problem.
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The characteristic frequencies of infinite piezoelectric plates vibrating between the grounded
electrodes of a plane parallel condenser have been rigorously investigated. It is found that
the frequencies depend on the piezoelectric constants as well as the elastic constants of the
crystal. The effective elastic constants for a piezoelectric crystal do not in general satisfy
the same symmetry relations as the true elastic constants. For odd harmonics, which are
the only modes which can be excited by a uniform electric held, the strain does not vanish
at the surface of the plate for a finite gap between the electrodes. Consequently, the frequencies
of free vibration also depend on the separation of the electrodes, and the rigorous theory
shows this dependence should not be linear as hitherto supposed. The effect of the gap decreases
as the square of the harmonic number and hence the higher frequencies of vibration are not
exactly harmonics of the fundamental.

'HE object of this paper is to give a rigorous
treatment of the free vibrations of an

infinite piezoelectric plate vibrating between two
grounded infinite electrodes. These frequencies
are the resonant frequencies of the plate when
driven by an alternating voltage on the elec-
trodes. This theory is an excellent approximation
for a finite plate whose thickness is small
compared to its lateral dimensions. The general
theory of non-piezoelectric plates has been given
by Koga, ' and special cases of piezoelectric

i I. Koga, Physics 3, 70 (1932).

plates have been discussed by Cady. ' The
general theory for piezoelectric plates is similar
to that of Koga for ordinary plates but is
complicated by the fact that it is necessary to
solve Maxwell's equations simultaneously with
the differential equations for the propagation of
elastic waves. It will appear that Cady's par-
ticular solution is an excellent first approximation
but is not self-consistent.

If, in an anisotropic substance, I is the
displacement vector, 8 the strain tensor, @ the

~ W. G. Cady, Physics 7', 237 (1936).


