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Further calculations are reported on the problem of the distribution in size of cosmic-ray
showers. In (2 it is shown that this distribution. is completely determined when the average
energy distribution of the particles in a shower is known. In )3 previous calculations of the
fluctuation in size of showers have been revised and extended. The main result is that for the
simpli6ed model chosen (the so-called Furry model) the fluctuations are small and roughly
equal to twice the Poisson value for all values of the thickness (see Table II; Fig. 3}. In $4
another simpli6ed model is considered for which it is possible to take the ionization exactly
into account. In $5 and $6 the calculations of the fluctuation are extended to the actual cosmic-
ray problem. For one value of the initial energy and for one depth a numerical calculation has
been made (see Table III). The result for the fluctuation is again a few times the Poisson value.

fr. INTRODUCTION

HE problem of the distribution in size of
cosmic-ray showers has been treated by

several authors but no satisfactory solution has
yet been given. The question is to determine the
probability P(B&, N, x) that X particles emerge
from a layer of matter of thickness x, when an
electron of energy Eo falls normally upon it.
Furry' succeeded in. solving the problem for a
special model in which the essential approxima-
tion consisted of the neglect of the ionization.
He found:

constant. On the other hand Bhabha and Heitler'
have asserted that the function P(X, x) will be
essentially the Poisson distribution:

P(X, x) =e "(E)"jX!

0./0

0. 05

where X is the average number of particles,
which in this case is equal to exp (Bx) and is
independent of Eo. The quantity 8 is a material

6' N /Z /8 Z4 30
h/

FIG. 1. The Furry and Poisson distributions
(1) and (2) for 8=10.

* Now at Amherst College. ~ H. J. Bhabha and%'. Heitler, Proc. Roy. Soc. 159, 432'%. H. Furry, Phys. Rev. 52, 569 (193tF'). See also B. (1937}.Compare also: H. Euler, Zeits. f. Physik 110, 450
Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941). (1938), N. Arley, Proc. Roy. Soc. 158, 519 (1938).
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This may be obtained by assuming no correla-
tion between the difkrent particles in a shower.
The striking difference between (1) and (2) can
be seen from Fig. 1. In the actual cosmic-ray
case one has to take into account both the corre-
lation between different particles and the ioniza-
tion. It seems likely that the result will lie some-
where between (1) and (2).

In order to estimate which one of the two
results is more nearly correct, especially when one
varies Fo and x, an attempt was made in a
previous paper' to calculate the fluctuation
(F —(¹)A,—(A )A,

' more exactly. The same simpli-
fied model, as chosen by Furry, was considered,
except that the ionization was now taken ap-
proximately into account by the so-called cut-oA
method (see I, p. 350). The results were found to
lie between the values which follow from (1)
and (2), namely:

for the Furry distribution4 and:

(¹)A,—(X)A,2=X (2a)

for the Poisson distribution. It seemed to us
necessary to refine and to extend these calcula-
tions, since no estimates of error were made in I
and since the dependence of the Huctuation on
the thickness x remained unclear. The results are
given in II3; in contrast to the values found in I,
p. 358, we now find that the Ructuation is much
smaller than the Furry value (1a), and that it is

roughly twice the Poisson value (2a) for the
interesting range of values of x (see Fig. 3).
The reason for this discrepancy was traced to the
fact that in I the calculation of the integrals by
the method of steepest descent was not made
with sufficient accuracy. The actual behavior of
the Huctuation as a function of x is quite curious
and is difficult to explain in a qualitative way.
In f4 we have therefore considered another
simplified model, which has much less similarity

' A. Nordsieck, %'. E. Lamb, Jr. , and G. E. Uhlenbeck,
Physica V', 344 (1940). In the folloming this paper mill be
quoted as I and me shall use the same notations as much as
possible.' In the comparison the value of 8 is taken mhich follows
from the multiplication curve with the ionization taken into
account, instead of the value exp (Bx).This procedure mas
6rst proposed by C. G. and D. D. Montgomery I Phys.
Rev. 53, 955 (1938)j.It is hard to give a logical justifIcation
for this, but it is the best mhich one can do.

with the cosmic-ray problem, but for which the
influence of the ionization can be taken exactly
into account. For this model one can show easily
that without ionization the fluctuation is X—1, or
practically the Poisson value. However, here
again the influence of the ionization on the
fluctuation (which can be computed exactly) is
strange, and difficult to explain qualitatively.

In $5 and $6 we have extended the ca,lculations
to the actual cosmic-ray equations. Again we
have taken the ionization into account by means
of the cut-off method. As was to be expected,
the results for the fluctuation are quite similar to
those for the Furry model.

Before going into the details of these calcula-
tions we shall show in $2 that the function
P(E0, A', x) is completely determined if one
knows the average energy distribution F(Eo, E, x)
of the particles in a shower. For the Furry model
we shall write down a formal expression for the
connection between these two functions. In the
case of no ionization this leads again to (1) with
8=exp (Bx) We have, .however, been unable to
use this connection when the ionization is taken
into account, so that the problem of the actual
shape of the distribution function P(X, x) re-
mains unsolved.

n;(x) =Sn, W(ng, n, ; x), (3)

where the round summation signs will always
mean a sum over all possible values that each n;
may have. Analogously one can form the quad-

)2. A FORMAL EXPRESSION FOR P(N, x)

As explained in I $3, all statistical questions
regarding the formation of showers can be
answered if one knows the probability of a given
energy distribution of the particles which emerge
after the thickness x. Let us assume first that
the energy of any particle can only have the
discrete values eI, e~, ~3 . An energy distribu-
tion is then specified by giving the numbers
n&, n2, n3- - -which have these energy values.
The function we seek is W(n~, n2, x), the
probability that at depth x we have the distribu-
tion n;. Ke shall call it the "master function. "
Every other statistical function may be obtained
from the master function by taking suitable
average values. For instance, the average number
of particles of energy e; is given by:
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ratic averages:

n;n, (x) = Sn,n;W(n n1 i2, x), (4)

and so on. For a continuous energy variation
ri;(x) will become the average energy distribution
F(E, x)dE; analogously (n;n, )«will become a
function of two energy variables, which we de-
note by F,(E1, E2, x)dEidE2, and so on.

The function P(N, x) is obtained from W by
the operation:

P(N, x) =5'W(ni, ri2, x), (5)

where the primed summation sign 5' means that
one has to sum over all values of e; with the
restriction: ;e;=¹
P(N, x) is completely determined when one knows
all the moments (¹(x))A,and one may write:

P(N, x) = Q aNA(N'(x))A„(6)

where the a~I, are numerical coef6cients, which

clearly are independent of the distribution func-
tion P(N, x).' Since on the other hand:

N(x) =Q, n;(x), (N2(x))A, ——P (n;n, (x))„„,(7)
1g

and so on, it is clear that in this way P(N, x)
will be related to the energy distributions F(E, x),
F2(E1, E2, x), etc.

To discuss this connection further, we mill

consider first the case of no correlation When the.
probabilities of finding a particle in the diferent
energy intervals are completely independent of
each other, the master function must have the
form:

(n )31(n )n2. . .
W(ni, n2, .) =A (8)

since 6, will then be proportional to the prOb-
bility of ending a particle with the energy e,',
the normalization constant A must be deter-
mined from:

(n )n;
SW=A g Q =A exp (Qn;) =1,

' ~'=0 n;f

so that A =exp (—N). From the definition (5)
one then shows easily that P(N, x) becomes the

' This follows by considering (6} as the solution of the
equations

~.Vk(X}}A„——r X~I'(X, X}; u = &, 2, 3 ~ ~ ~ .
N=1

Poisson distribution (2). The quadratic averages
(4) and also the higher order averages can in this
case all be expressed in terms of the n;. One 6nds
for instance:

(n;n;)A, n,n——;+e,,n;
(n,n, nA)A, = n, n;nA+t'1, ;n;nA+ t'A, An;n,

+8I„nI,n;+ 6;;6,I„-n;

(9)

and the generalization is clear. Consequently one
can express (¹)A„asa polynomial of degree k

in X:

(N")A. =Z bai(N)' (10)

Of the coefficients bk~ we will only need the
property:

( 1)l N-
E aNA41=

N!(/ —N)!

which follows immediately by introducing (10)
in (6) and remembering that P(N, x) is now the
Poisson distribution (2).

Consider now the actual case, in which the
diferent energy intervals will be correlared be-
cause of the splitting processes. When a particle
"splits" it adds simultaneously to the number in

each of two energy intervals and hence the
probabilities for particles to be in these ranges
are not independent. A general method would
now be to derive from the continuity equation,
which the function W has to fulfill Lthe so-called
"master" equation, see I, Eq. (22) j, equations for
all the average values n;, (n;n;)A„etc. However,
since these equations are almost self-evident, we
shall omit the formal derivations and in addition
pass immediately to the limit of a continuous
energy variation. One 6nds that the quadratic
averages F2(E1, E2, x) and the higher order aver-
ages Fi(E1, E2 Ei, x) are singular whenever
two or more of the energy variables coincide.
Analogously to (9) one then can decompose the
functions FI, into regular parts as follows:

F(E, x) =Ki(E, x), —
F2(E1 E2 x) K2(E1 E2 x)

+b(EA —E2)Ki(E1, x),
F3(E1~ E2i E3i x) K3(E1~ E2~ E3y x)

+b(EA —E2)K2(E1, E3, x)
+h(E2 —E3)K2(E2, Ei, x)
+ t'A(E3 Ei)K2(E3, E2, x)—
+8(E1—E2) b(E2 —E3)Ki(E1, x),
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(¹(x))A,= P bi, iMi(x),
/=I

(13)

3fi(x) = I il dEi dEiKi(Ei Ei,.x) (14)

and the coeflicients bii are the same as in (10).
Introducing (13) in (6) and using the relation
(11) one gets:

and so on. The functions Ki(Ei . .Ei, x) are
regular and symmetric in all the energy variables.
Since the decomposition rules (12) are exactly
the same as (9), except for replacing the products
of' average values n; by the functions E~, one
obtains:

The other terms correspond to the other ways in
which one can get the I energy variables occurring
in Ki by ops splitting process from (f —1) energy
variables occurring in E~ I. The interpretation of
(17) is clear: for Ii ——0 Eq. (17) would be separable
and the solution would be F(Ei, x)F(E2, x)
XF(Ei, x); Eqs. (12) would therefore become
identical with (9), and one would get the case of
no correlation. The correlation is therefore due
to the inhomogeneous part I&, and one may say
that I& is the probability per unit thickness that 1

particles with energies EI, E2 . .E~ are produced
from (I—1) particles by one splitting process.
Since one particle of energy E0 is falling in, one
has to solve Eqs. (17) with the initial condition

( ])I z-
&(Ã, x) = Q 3Ei(x)

i +l(I +) 1

(15) Fi(Ei Ei, 0) = b(Ei —Eo) 8(Ei —Eo).

The average energy distribution F(E, x)
=—Ki(E, x) fulfills a continuity equation of the
form:

BF/Bx =LzF(E, x), (16)

where Ig is a linear operator acting on the
variable E. Equation (16) is an abbreviation for:

F
F(E, x)

i
q(—E, u)du

X 0

From (12) one sees that this means that F(E, 0)
=b'(E Eo) while—all Ki for I) 1 are zero for
x=0. Writing for the solution of (16) with this
initial condition F(ED, E, x) it is clear that the
product F(gi, Ei, x) F()i, Ei, x) is not only
a solution of the homogeneous part of (17)
but that it is also the so-called fundamental
solution. One then verifies easily that with
Ki(Ei Ei 0) =0 the solution of the inhomo-
geneous Eq. (17) is given by:

BF
+2

~
duq(u, E)F(u, x)+P, (16a)

l9E

fI

Ki=
J df)

0 0 4 0

where q(E, u)du is the probability per unit
thickness that a particle of energy 8 splits into
two particles of which one has the energy be-
tween u and u+du, while the other has the re-

maining energy E—u; q(E, u) =q(E, E—u) since
one does not distinguish between the two par-
ticles. Finally p is the average energy loss per
unit thickness due to ionization. ' For the higher
order averages K~(Ei Ei, x) one then finds in-

homogeneous equations of the form:

BK i/Bx = (Lzi+Lz2+ . .Lzg)Ki
+Ii(Ei Ei, x). (17)

The inhomogeneous part I~ consists of a sum of
I(/ —1)/2 terms of which a typical one is:

2q(Ei+E2, Ei)Ki i(Ei+Em, Es . Ei, x). (18)

'See I, $2; the following considerations would remain
valid for an arbitrary ionization probability p(B, u).

XF($&, Ei, x t)Ii(&i .$i, —t). (19)

This is a recurrence relation for E~, it becomes
physically obvious when one considers the physi-
cal meaning of the Ki. From (19), (14), and (15)
one sees therefore that P(X, x) is completely
determined when the average energy distribution
F(E0, E, x) is known. Unfortunately, these equa-
tions seem to be of little use for the practical
determination of P(N, x). One can still write:

Oo )Qo

cVi(x) = dpi .d(i ' dtIi(&i &i, t)
~0 ~0

XÃ(&i, x —t) .g($i, x —t), (20)

but only for the case of no ionization (P = 0) and
"homogeneous" splitting probability Pq(E, u)
=x(u/E)/E; see I, CI2'j can one obtain from this
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a recurrence relation for the M~. In this case: TABLF. I . 8{x') for the Furry model with "=4.75.

with
E(E0, x) =es* N

main term
N

+0 correction corrected
I

~ d(x(f)
0

Substituting in (20) one finds:

3IIi(x) = l(l+ 1)Bs's~ ~ dte 's'Mi (/).i—i ~

Since Mi(x) =E(x) one then finds by induction:

3f&(x) = l!e's*(1—e—s*)'

Substitution in (15) leads to the Furry for-
mula (1).

(3. CALCULATI0 N OF THE FLUCTUATIO N
FOR THE FURRY MODEL

1/==0.21
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1 .3
1.4
1 .5
1.6
1 .7
1,8
1 .9
2.0

0.00
1 .20
2.20
3.09
3.95
4.80
5.67
6.57
7.50
8.48
9.47

10.54
1 1.6
12.8
13.9
1 5.2
16.4
17.8
19.1

1 .084
2.89
5.57
8.68

11.93
1 5.1
17.9
20.0
21.1 5
21 .25
20.4
18.5
16.1
1 3.3
10.4
7.96
5.84
3.97
2.65

1 1.80

17.6

—1.6

—1 .5

—1.5

18.2

13.1

7.84

143 2.62

—8.3 0.996

(1P(s, x))A, ——$(s, x)+2) d&I(s, x, p),
D

e&
—'*

r p I'(s) I'(/)
I(s, x, P) = I, I dsdt

(2ni)' ~ ~ 1'(s+t+2)

2 $
Xexp (s+ t)s+

s+t+ 1

(22)

+2(x- ~)( +
&s+1 k+1]

As in I we shall take q(Z, u) = 1/F (which
makes 8 = 1) and we shall take the ionization
into account by means of the cut-oR method.
One finds for X and (¹)i,the expressions (see I,
Eqs. (18) and (38)):

e '
p ds

g(s, x) =——exp [ss+2x/(s+1)1, (21)
2%i & s

method. The following improvements were made
over the analogous calculations reported in I:

1. Al 1 variable factors in the integrand were
written into the exponent and included in the
saddle point expansion. Or in other words: no
part of the integrand was considered as "slowly
varying. "

2. The equations which determine the position
of the saddle points for given values of x [in (21)j
or of x and $ [in (22)] now become quite in-

volved. To circumvent this difhculty we have
turned the question around; convenient values
of the saddle points were chosen and the corre-
sponding values of x or of g were then determined
from the equations.

3. In order to estimate the errors involved in
the saddle point method we calculated for a few
values of x a next approximation by extending
the Taylor expansion around the saddle points up
to the fourth-order terms.

For X one obtains:

q "(~0) Sy'"(i'0)'
x 1+

8q "(so)' 24'" (so)'
The connection between e and P can be fixed by means

of the relation:

Here s= log (Zo/e), where e is the cut-off energy . ~ +exp ( —g+ y(so))
a11 the integrals must be taken along paths
parallel to the imaginary axis and to the right of [2ire" (&0)j
all singularities of the integrand. They can be
computed approximately with the saddle point (23)

f g(x)Ch =ED/p,

which follows strictly from (16a} and which is also physi-
cally obvious. Introducing (2 1) and carrying out the
i ntegrals one 6nds: 2e' - 1 =EojP so that ~=2P.

q (s) =ss+
s+ 1

—log s (23a)

alid so is the saddle point determined by rp'(so) =0.
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where

2$
P(s, t) = (s+t)s+

s+t+1

4t0

/0

F1r. 2. The integrand I(s, x', g) of Eq. (22) as function
of ( for a=4.75 and for the four values of x indicated.
For the calculation Eq. (24) is used; the full l.ines are the
result of taking only the first term, while for the dotted
lines the other terms given are also used.

In Table I one 6nds the results for a=4.75. The
correction given in the fourth column is com-

puted from the terms with the third and fourth
derivatives in (23). One sees that by using the
main term only the error is already less than 10
percent over the whole range of x, while with

the correction it is even less than 0.5 percent.
For I(s, x, t) one obtains:

exp [P—2x+P(so, so)]Iz, x, ) =
2~(4' —0',) '*

sass+44ssl a+P3sfst ttassss P ftss
X 1+ — +

16(kss+4si)' 8(P P)—

1 1 q 1'(s)1'(t)
+2(x-P)~ + (+log

Es+1 t+1& I'(s+t+2)
and the subscripts denote differentiations after s
and t. Since f(s, t) is symmetric in s and t, the
saddle points so and I0 for the s and t integrations
will be equal to each other; they are determined
by |t,(so, to) = lt &(sp, to) =0. The terms with the
third- and fourth-order differential quotients are
again correction terms and they have been sim-

plified by making use of the symmetry of P(s, t)
For a given value of x, one now chooses a suitable
set of values for the saddle points st) and one
then computes the corresponding values of $ from

P, (so, so) =0 and of I(s, x, P) from (24). Figure 2

shows the integrand I($) for a few values of x
and for x=4.75; the full lines are the result of
taking only the main term of (24) into account,
while for the dotted lines the complete expression
(24) is used. The integration over g must be done
graphically, and in Table II one 6nds the results.
One sees that the inffuence of the correction
terms in (24) amounts to roughly 3 percent for
all values of x. Table II also gives the values of

the fluctuation o =(1P)As (X)As divide—d by S,
which are plotted in Fig. 3. The accuracy of
these results depends mainly on the accuracy of
the values for (¹)A,. We believe that with the
correction terms in (24), the error in (¹)A„is at

most 1.5 percent. Since the error in (X)A„is
certainly much smaller, the error in r will be at
most of the order of 25 percent.

TABLE II. {E')A„for the Furry model with x =4.75.

4'sass 4gsss &+34'as tt 3 (4'ass+ 34'sat)
+

16(4'- —4 ~)' 48(4" +|t"~)'

2 2

Pass +24'sss4'sss 34'sst

8(4"*+0.i) (4' —4',)

3 (4'sss 4'ss () + s ~ ~

16(4' —
lt ',) (4-—k.~)

(24)

0
2.20
3.95
5.67
7.50
8.48
9.47

10.54
12.8
15.2
17.8
19.1

mam
term

0
38.40
169.2
349.0
459.2
455.0
418.6
348.6
191.1
79.38
24.74
12.83

mam
term

1
43.97
181.1
366.9
480.4
476.3
439.0
367.1
204.4
8?.34
28.71
15 48

M =2 Id) {N )Ay =
%+M

0
2.33
3.25
2.60
1.57
1.16
1.14
1.34
2.00
3.01
3.26
3.19

—3.4 175.4-3.3 355.6—3.4 464.8

3.07
2.56
1.59

—3.6
3 2

354.8 1.24
198.1 1.96

—2.2 15.18 3.18

N
&N2&Ay —{N)'Ay

% corr. {¹)Ay o jN
N to M corrected corrected
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Ke believe therefore that for the Furry mode1
with ionization the ff uctuation Of N is squall and

roughly equal to twice the Poisson value for all

values of x. This result is quite different from the
one reported in I (see table on p. 358), where for
instance for s =4.75 and near the maximum of the
multiplication curve ~/N was found to be equal
to 9.6. The origin of this discrepancy can be
traced to the fact that in I the factor I'(s)1'(t)/
I"(s+I+2) was considered to be "slowly vary-
ing. "This is not correct, because this factor has a
pole for s =0 and t =0, and the saddle point
sQ=tQ lies near zero when x is small. We have
verified that as a consequence the correction
terms Lanalogous to those in (24)] become now

quite appreciable and since the values of 0 are
very sensitive with regard to errors in (¹)A„,large
errors in 0. can be expected. ' Ke have also verified
the same fact by only taking the factor I/st
into the exponent, considering I'(s+1)1'(/+1)/
l'(s+t+2) as "slowly varying. " The correction
terms then again become quite small, and the
results for o. are in good agreement with the
values of Table II. This is of importance for the
actual cosmic-ray problem, since there it is
quite complicated to take all variable factors into
the exponent.

The sha.pe of the curve a/N as a function of x
is quite curious and we have been unable to find
a qualitative physical explanation for it. We
believe that the shape is real and not due to
possible errors in computation. It probably arises
from the mathematical form of 0.. One can show
that for very large x, e/N will approach one, but
whether there will be further maxima in the
curve is difFicult to deride without numerical
computations.

$4. THE MODEL VfITH q(E, u) =1

One may look upon the effect of the ionization
on the fluctuation as due to the fact that because
of the ionization the particles lose their potency
for producing pairs. Arley has considered a
model in which the particles "degenerate" after
a certain number of' "generations" and he found
that as a consequence the fluctuation soon reaches

' The pole at s = t =0 also explains the difference between
Fig. 2 and the analogous Fig. 3 in I. By taking all variable
factors into the exponent no special consideration of the
region $=x is necessary.

0
0

FiG. 3.The relative fluctuation cr/X as a function of x for
the Furry model with ". =4.75. ~ =one term; + =two
terms.

the Poisson value (2a). It is therefore perhaps of
interest to study a Furry-like model for which
the splitting probability g(E, u) is a constant.
This makes the total splitting probability pro-
portional to the energy B of the particle, so
that it will really diminish by the successive
splitting processes. Furthermore, this model has
the advantage that the infIuence of an ionization
term PBF/BE can be studied exactly, although of
course the model has very little similarity with
the actual cosmic-ray problem.

Without ionization one easily sees that P(N; x)
will fulfill the equation:

BP(N, x)/Bx = EpP(N, x)+E—pP(N 1,x). (25)—
This is because the total energy is conserved and
since the splitting probability of each particle is
proportional to its energy, the sum of the
splitting probabilities for all particles mill be
constant, and equal to the initial energy EQ,
when the unit of x is so chosen that q(E, u) =1.
The solution of (25), with the initial condition
P(N, 0) = h~N is given by:

(E~)N 1—
P(N, x) =exp ( —Epx), (26)

(N —1)!
so thatN =1+Epx and (¹)p, (N)A„=Epx=N —1. —
As soon as EQx)) i one gets therefore the Poisson
distribution.

lVith the ionization taken into account, we werc
unable to determine P(N, x), but from the
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general formula of II2 one can of course again
compute the Auctuation. Equation (16a) be-
comes for our case:

BF 00 F—= —ZF+2 I duF(u, x)+p . (27)
Bx ~g BE

The solution, with the initial condition F(E, 0)
= t'&(Zo E) c—an be found exactly and is given by:

F(Eo, E, x) =exp (—Eox+-', Px') b(Eo —E—Px)

+x exp (—Ex—-', px')

X [2+x(Eo E Px)—] —(28)

=0 (E+Px&Eo),
20 25 50

from which follows:

E,'0—P~

X(Eo, x)= f dZF(Eo, E, x)

FIG. 4. The average number of particles E and the rela-
tive Ructuation o/8 as a function of t =Ega for the model
with q(B, I) =1; p/802 is taken equal to 0.01. The dotted
lines show the corresponding quantities when the ionization
is neglected.

= [1+x(Eo—Px) ) exp ( ——',Px"-) (29)

= 0 (x&E,/P).

One then finds from (20), after a lengthy com-
putation:

(N'(Eo, x))&&,

=2Px(2+Eox —2Px') exp (—Px')) exp (-,'Pt')dt

+(3Px' —E~—1) exp (—oPx')

+ [4P'x' 4PEox'+ (Eo—' —10P)x'+4Eox+2]

Xexp (—Px'); (x (4o/2P)

behavior as in the Furry model case, hut the
deviation from the Poisson value unity is con-
siderably less. o/i&&t' presumably begins to ap-
proach one for 5 somewhat greater than 30.

$5. THE COSMIC-RAY PROBLEM

Before considering the fluctuations we shall
collect here briefly the results for the average
energy distributions of the electrons F(Z, x) and
of the photons C(Z, x). We shall mainly follow
the notations and method of Landau and Rumer. '
I' and C fu1611 the equations:

BI'
F(E, x) x(E—, u)du

Bx 0

=2Px(2+Eox —2Px') exp ( —Px') jf exl& ( ',Pto)dt-
0

+ (3Px' —Eox —1) exp (—~oPx')

+2(1—Px') exl& (Px' 2Eox+Eo'/2P);—

(Eo Eoi
i
—(x(—

i

(2P P )
=0;

i
x&—i.)

(30)

In Fig. 4 the results are plotted for X and for
&r/8'; here t=Eox and P/Eoo is taken equal to
O.oi; the dotted lines are the results when the
ionization is neglected. One sees the same peculiar

+2 due(u, x)y(u, E)

=—Ls~'& F(E, x) +Ls&'&C (E, x), (31a)
BC ~E—= —C(E, x) y(E, u)du
Bx at p

+~ duF(u, x)&r(u, E)

=Ls&'&4(E, x)+L»&4&F(E, x). (31b)

9 L. Landau and G. Rumer, Proc. Roy. Soc. 166, 213
(193S),
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These are the analogues of Eq. (16) for the Furry
problem. They must be solved with the initial
condition F(E, 0) = 8(E0—E); C'(E, 0) =0, corre-
sponding to the fact that one electron is falling in.
The term PBF/BE is omitted since we will take
the ionization into account by the cut-o6 method.
The thickness x is measured in radiation units;
n.(E, u)du is the probability per unit thickness
that an electron or positron of energy E produces
a photon of energy between I and n+dN;
y(E, u)du is the probability per unit thickness
that a photon of energy 8 produces a positron-
electron pair of energies u to I+dl and E—I to
E—u —du; y(E, I) =y(E, E—u) since no distinc-
tion is made between electrons and positrons.
The functions s (E, I) and y(E, I) have again the
homogeneity property:

1 ~N~ 1
(E, u) =—

(

—i, y(E, u) =~( —
) (32)

E (E)' '
E &Ei

and from the calculations of Bethe-Heitler follows

that:
4 4 4 4

=(&)=—-+&, ~(~)=-~'—~+1 (32 )
3$ 3 3 3

Because of (32) Eqs. (31) can be solved again by
the momentum method (see I, $2), and one finds:

1

B(s) =2~~ dkPv($) =
0

+
s+1 3(s+2) 3(s+3)

(34)

C(s) = d &V~(k) =—— +
3s 3(s+1) s+2

dB($) =
aJ 0 9

Here Ci is Euler's constant and 4'(s) =I"(s+1)/
I'(s+ 1).The functions A, B, C, X, and ii, together
with some of their derivatives, have recently
been given by Rossi and Greisen. "

For the average number of particles E(E0, x)
one then finds:

I

&o

&(Eo, x) =
) dEF(EO, E, x)

D —X(s)
ds ssz —sx(si (35)2' " s[ii(s) —X(s)]

where z=log (E0/s) and e is the cut-o8 energy.
In F we have neglected the term with exp (—iix)
since for the values of x in which we are interested
it contributes at the most 0.7 percent to X, and
generally considerably less. The value of e can
be related to p, the ionization loss per unit thick-
ness, by means of the relation:

F(EO, E, x) = I dsE ' 'g(s, x),
2~i ~

(33)
$(EO, x)dx =Eo/p,

«i 0

(36)

where

C(EO, E, x) =—
i

dsE ' '8(s, x)
2mi ~

A(s) =
I

d((1 —p)rr(1 —p) =—[@(s)+Ci]
0 3

5——+ +
6 3(s+1) s+2

(D —X)e—"*—(D p,)e-
. g(s, x) =ED'

p, —)

I

(33a)

B(s x) —E s (z
—xz s w~)—

p, —X
'A'

)=-', (A+D) w-', [(A D)''+4BC]l (—33b)-
ij

and A, 8, C, and D are functions of s, given by:

which is a strict consequence of the Eqs. (31)
when the ionization term PBF/BE is added to
(31a). Introducing (35) (and using the complete
expression (33) for F) one obtains:

Ep D gsz

ds
p 2m & s(AD BC)—

From (34) it follows that s(AD —BC) has only
one zero point, namely for s= I. By computing
the residue there, one finds:

Eo/P = [63/(14ir2+ 5) ]e*

or a=0.44P.

"B.Rossi and K. Greisen, Rev. Mod. Phys. 13, 240
C', j.94j.). These authors have used slightly more accurate
forms of the probability functions % and $, (32a), in which
the factor 4/3 is increased by 0.021'. With the exception of
the second derivative, the resulting values of the functions
differ from ours by 2 percent at the most.
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$(Ep, x) =
D X(—sp)

sp[t (sp) —X(sp) j
1

&( 2~ —) "(sp)x+— s"* "'"" (3&)
S0

where x and s0 are related by:

The integral over s in (35) must again be com-
puted by the saddle point method. The factor
(D —))/(ti —X) can be considered to be "slowly
varying, " but the 1/s must be taken into the
exponent. One obtains:

E2, II2, and J2 in the form:

(1) (1)= (L~i+Lsp)Kp(Ei, Ep, x)
Bx

(2) (2)
+LzpHp(Ei, Ep, x)+LziHp(Ep, Ei, x)

+2y(E, +Ep, Ei)4(E,+Ep, x),
(1& (3)= (Lzi+Lzp)Hp(Ei, Ep, x)

Bx
(4) (s)+LEpK 2(Ei& Ep, x) +L&i+2(E1~ +p~ x)

+pr(Ei+E. , Ep)F(E)+Ep, x), (40)

(3) (3)
=(Lzi+Lzp) Jp(Ei, Ep, x)

axs —xX'(sp) —(1/s, ) =0. (38) (4) (4)
+L@1H2(El& Epy x) +L@2H2(E2y Ei) x) ~

F.(Ei, Ep, x) = b(Ei —Ep) F(Ei, x)
+Kp(E), Ep, x) (39)

C p(Ei, Ep, x) = a(Ei —Ep)C (Ei, x)
+A(Ei, Ep, x).

Using the operator notation of Eqs. (31) we can
now write the equations for the regular functions

I+as.E III. {.V2)Av fOr the COSmiC-ray CaSe; x=5.67 and X==..

Present
calculation

Previous
calculation

={»')Av

{»)Av
—{»)Av &/» ~Furry ~Poisson

16.12 309.4 49 &16 3.0 &1 243.7 16.12

17.0 442 153 9 272 17

& W. T. Scott and G. E. Uhlenbeclr. , Phys. Rev. 57, 1061A (1940).

$6. CALCULATION OF THE FLUCTUATION
FOR THE COSMIC-RAY PROBLEM

To calculate (¹)p,one must first generalize
the results of $2. We have to introduce three new
distribution functions. Fp(Ei, Ep, x)dEidEp de-
notes as before the average product of the num-
bers of electrons in the energy ranges F1 and
dEp, Cp(Ei, Ep, x)dEidEp denotes the correspond-
ing quantity for the photons, while Hp(E&, Ep, x)
gdE1dB2 denotes the average product of the
number of electrons in dB1 and the number of
photons in dE~. The functions I"2 and 42 are
symmetric in E1 and E2, and are singular for
E&=22', the function II2 is not symmetric but is
regular for all values of Ei and Ep. As in (12) one
can separate ofF the singular parts of Ji2 and 42
by introducing two new functions Kp(Ei, Ep, x)
and Jp(Ei, Ep, x), such that:

These equations may be derived from a "master
equation, "but they are almost self-evident from
the physical meaning of the operators I.('); the
inhomogeneous terms again give the correlation
between the different energy intervals, because
of the splitting processes.

The solution of (40) is straightforward. One
introduces the momenta

k(s, t, x) =ffdEidEpEi'Ep'Kp(E&, Ep, x)
0

and the corresponding functions h(s, t, x) and
j(s, t, x) formed with Hp and Jp. These fulfill
then the differential equations:

ak/ax= —[A(s)+A(t)]k(s, t, x)

+B(t)h(s, t, x)

+B(s)h(t, s, x)

+5(s, t)a(s+t, x),

ah(s, t, x)/ax= —[A(s)+Djh(s, t, x)

+ C(t) k(s, t, x)

+B(s)j(s, t, x)

+T(s, t)g(s+t, x),
(41)

ah(t, s, x)/ax = —[A(t)+D jh(t, s, x)

+C(s)k(s, t, x)

+B(t)j (s, t, x)

+T'(t, , s)g(s+t, x),

aj /ax = 2Dj (s, t, x) +C(s) h(s, t, x—)

+C(t)h(t, s, x),
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11.5X109 ev and to a depth slightly beyond the
maximum of the multipheation curve S(Eo, x)
as given by (37)." Table III summarizes the
result and Fig. 5 shows the integrands as func-
tions of $ for the two terms considered. The
previous calculations referred to in Table III are
results reported at the %'ashington meeting of
I940. At that time we did not know that it was
important to include the factors 1/s in (35) and
1/st in (43) in the rapidly varying part of the
"The maximum occurs at x—4.8 and has the value 17.5.

integrand. Just as in I we found as a result far
too great a value for the Huctuation. The accu-
racy of the present calculations is hard to esti-
mate and the limits given are more or less a
guess. However, it seems sure that also in the
cosmic-ray case the fluctuations are much smaller
than the Furry value (2) and of the order of a
few times the Poisson value (2a).

One of us wishes to acknowledge the assistance
of the Horace H. Rackham fund, without which
much of this work would not have been possible.
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Relations between 28-day fluctuations of intensity of the
cosmic radiation and both terrestrial magnetic activity and
sunspot areas were investigated. Definite pulses, both in
the magnetic character and in sunspot areas, were found
to be associated with the primary pulses in the cosmic
radiation at Boulder, obtained by Chree's "superposed-
epoch" method. They were in general phase opposition to
the cosmic-ray pulses, but the tip of the magnetic-character
pulse preceded the tip of the opposite cosmic-ray pulse by
one day; the lead was three or four days in the case of the
opposed sunspot pulses. Similar relations were not found
among secondary pulses, although a 34-day periodicity in
sunspot-area pulses referred to days selected on the basis
of cosmic-ray intensity was displayed. Direct application

of Chree's method to the magnetic character and sunspot
areas, individually, indicated a 27-day periodicity in the
former and a 34-day periodicity in the latter. A second
method of investigation, used by Graziadei, Kolhorster,
and others, was also employed. This yielded results in some
respects contradictory to the first. In particular, it indi-
cated 27-day Ructuations in sunspot areas in phase with
the cosmic-ray fluctuations and out of phase with changes
in magnetic character. However, it also indicated the 34-
day periodicity in sunspot areas for the period of the
investigation was more pronounced than the 27-day
periodicity. Among other possibilities, the possible effects
of sunspots through the agency of their magnetic fields
were considered.

INTRODUCTION

"N a recent paper' the author reported a
- - statistical investigation of cosmic-ray inten-
sity fluctuations at'Boulder (lat. 40' N; long.
105'16'%; alt. 5440 ft.) by Chree's "superposed-
epoch" method of analysis. This provided evi-
dence for the existence of secondary pulses at
about 28-day intervals both preceding and sub-
sequent to the primary cosmic-ray pulses. These

~ Preliminary reports on some portions of this investiga-
tion were made in a Letter to the Editor, Phys. Rev. 59,
678 (1941), and at: the Lubbock, Texas, meeting of the
Southwestern Division of the A.A.A.S., April 29, 1941; the
Golden, Colorado, meeting of the Colorado-%'yoming
Acad. Sci., Nov. 8, 1941; and the Detroit, Michigan,
meeting of the Am. Phys. Soc., Feb. 20, 1942.

~ J. VV. Broxon, Phys. Rev. 59, 773 (1941}.

secondary pulses represented deviations from the
mean amounting to about 0.2 percent of the
general average cosmic-ray ionization rate (cor-
rected' for barometric variations) of 38.19 ions
per cc per sec. in a heavily shielded, high pressure
chamber.

' In the paper of reference 2, this general average was
incorrectly given as 38.16. It is not supposed that the
difference exceeds the error of measurement of the absolute
value of the ionization. However, 38.19 is nearer the
average of the values used in the statistical investigation.
Consequently, the upper pairs of curves in Figs. 1 and 2
of reference 2, and the cosmic-ray curves of Figs. 1, 2, 6,
and 7 of this paper, are drawn 0.09 percent too high. Con-
fidence that few errors in the statistical work have gone
undiscovered is due to the fact that all tabulations have
been checked, and each step in the computations has been
performed at least twice except in the case of a few of the
probable error computations.


