
NOVEMBER S AND &S, I942 PHYSICAL REVIEW VOLUM E 62

Theory of Complex Spectra. II
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The spectra of two-electron configurations in (jj) and (jl) coupling and of the configurations
d", f3, d'p, and dsp in (LS) coupling are calculated with tensor operators. The agreement with
the odd terms of Ti II and Ni II is satisfactory. It is also proved that G~/(2k+1) is a positive
decreasing function of k.

$1. INTRODUCTION

' "N a hrst paper on this matter' a general formula was given for the coeAicients of Slater's integrals
& ~ for the two-electron configurations in (I.S) coupling. It was also shown that this formula gives the
possibility of calculating the terms of more complex configurations, and some simple examples were
given. But the method used for the configurations p'/ still necessitates for d' very long calculations,
because we must calculate the fourth power of the matrix of the scalar product of two angular
momenta. It appeared therefore more convenient to develop a new method, based on tensor operators.

The algebra of tensor operators is developed in analogy to the treatment of Chapter III of TAS'
for the vector operators. Kith this method some group-theoretical results of Kigner and of Kramers
are obtained by a direct algebraical way, and in some cases also in a more simple and general form.

Expressing the coefhcients of Slater's integrals as scalar products of tensors, we give a direct
demonstration of Eq. (12 ) I, and obta, in also its extension to (jj) and (jl) coupling. This new method
is more suitable for calculations of many-electron spectra, and applications are made to the con-
figurations d", f', d'p, and dsp.

Since the whole method is based on signer's' transformation formula for vector addition
(TAS 14 5), we shall begin with a direct algebraical derivation of this formula, without the use of
the theory of groups.

I2. THE ALGEBRAIC CALCULATION OF ij~jmm~m2lj&j~jml

It is shown in $14' of TAS that the transformation coefficients (mimml jm) for the addition of two
angular momenta are de6ned by the relation

p(pjijmjm) = Q @(yj ijmmim2)(mim2ljm)

and are completely determined by the initial condition

(jijml ji+j~ji+j2) = 1 (2)

and by the two recursion formulas

LU+m)(j —m+1)3'(mimml jm —1)= L(ji+mi+1)(ji —mi))'(mi+ lmml jm)

+$(j i+mal+1)(j 2 mm) j&(mi—m~+1jlm) (3)

l (j—m)(jism) ji(j—1'Ii'j)(mimml j—1m)

= Lmi —m(j': ji::j)3(mim2ljm) —L(j—m+1)(j+m+1) 1'(j+1::j'i':j)(mimml i+1m) (4)

' G. Racah, Phys. Rev. 51, 186 (1942), which will be referred to as I.' E. U. Condon and G. H. Shortley, Theory of Atomic SPectra (Cambridge, 1935).%'e refer to this book (TAS) and to I
for definitions, notations, and bibliographical indications.

3 E. %'igner, GncPPentheorie (Vieweg, 1931), Chapter 17, Eq. (27).
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But it is also pointed out there that a general formula for such coefficients is very difficult to obtain
from these relations.

The calculation is however much simplihed if we add a third recursion formula, which follows
also, as (3), from TAS 3'3 if we take the upper sign instead of the lower:

[(j m—) (j+m+ 1)]&(m&m2~ jm+ 1)

= [(ji—mi+1)(ji+mi)]'(mi —1m2l jm)+[(j,—m, +1)(j2+m2)]~(mim2 —1Ijm) (5)

In order to avoid the irrational factors we put

(mim2~ jm) = ( —1)&' f(mim2, jm) [(ji+mi)!(j2+m2)!(j+m)!]&/[(ji—mi)!(j2 m—2)!(j—m)!]', (6)

and obtain from (3) and (5)

f(mim2, jm —1)=(j2+m2+1)(j2 m, )—f(mim2+1; jm) —(ji+mi+1)(ji —mi) f(mi+1m2, jm) (3')

(j—m)(j+m+1) f(mim2, 'jm+1) =f(mim. —1; jm) f(m—i 1m—2, jm)

Putting m= j in (5 ), we see that f(mim2, jj) i.s independent of mi and m2 and we inay write

f(mim, ; jj)=A, .
From P) and (3') we get

f(mim2, jj 1) = [(—j2+m, +1)(j2—m, ) —(ji+mi+1)(j, mi)—]A, ;

from (7') and (3') we get

f(mim2; jj 2) = [(j2—+m2+1)(j2+m2+2)(j2 m2)(—j2 m2 1)

(5')

2(j2+—m2+1) (j2 m2) (j—i+mi+ 1)(ji mi) +—(ji+mi+1) (ji+mi+ 2) (ji —mi) (ji—mi —1)]A; (7")

and we see that the general formula will be

(u) (ji+m&+t)!(j& m&)!(—j +2m +2u —t)!(j2—m,)!
f(m, m„jj-~)=A, P, (-1)

~

Et I (jl+ml)!(ji —mi —t)!(j2+m2) ~ (j2 m2 22+i) .

where, as in all formulas of this paper, the summation parameter takes on all integral values con-
sistent with the factorial notation, the factorial of a negative number being meaningless. To demon-
strate (8) it suRices to verify t:hat it satisfies (3'); this verification is very simple and will be omitted
for brevity.

Introducing (8) in (6) and remembering that

m = 5ZJ+fPl2,

we obtain the dependence of (mim2~ jm) on mi, m2, and m:

(ji—mi)!(j,—m2)!(j m)!(j+—m)! &

(m, m.
~
jm) = S(m, +m„m)A; +2 (—1)'~ "~+'

(ji+mi) '(j2+m2)!

(ji+m, +t)!(j+j2 —mi —t)!
X . (10)

t!(j—m —&)!(ji—mi —t) (j2 —j+miyt)!
In order to obtain from (4) the dependence of A; on j, we calculate at first from (10) the expression

of (mim2~ j+1j):owing to the 8 factor and to the expression of (jiJi.j) (TAS 10 2a), we have

(m&m212+iy) =b(mi+m2, g)( —1)&~—"~A +2
(ji+mi)!(j2+m2)!(2j+1)! &

2(j+1)Lmi jU:'~i j)]. (11)—
(ji—mi) l(j2 —m2) l
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The left side of (4) vanishes for m =j; introducing (7) and (11) and eliminating the common factors,
we get

O=A; —2(j+1)(2j+1)(j+1J&'.j)A;+„

and owing to the expression of (j+1',J&'.j) (TAS 10 2b), this becomes

A~= [(i~+im+i+2)(i ~+i~ j)(i—+i ~ j2+—1)(j+j2 —j~+1)(2j+1)/(2j+3)]'A,+&

and 1s sat1sfled by

A;=B[(2j+1)(j,+j, j)!j—/t[(j&+ j,+j+1)!(j+j, j,)—!(j+j, j,)!—jl,
where 8 is also independent of j.

It follows from (2) that
8=1.

and collecting (10), (13), and (14) we have at last

(2j+1)(j~+j~ —j) '(j~ —m~) '(j2 —m2) '(j —m) '0+m) '

(mgmm~ jm) =b(mg+mm, m)
(j +j +-j+1)'(j+j j)l(j+—j j)!(j+— )!(j+m )!-

(12)

(14)

(j&+m&+t)!(j+j2 —m& —t) ~

XP (—I)»-"~+' (15)
t!(j m t)!—(j, —m, t)—!(j, —j+m, +—t)!

This formula is similar to signer's formula (TAS 14 5), and is, also, unsymmetrical and unprac-

tical for the use; it is, however, possible to obtain a more symmetrical and useful form, by transform-

ing it with the methods shown in the appendix of I: using (52) I and (55') I we have

( 1)»—mg f+
(j &+m&+t) l(j+gm —mz —t)!

t!(j—m —t)!(j —m, —t)!(j,—j+m +t)!
(jg+m, +t)! (j~+m2)!(j+j.—ji)!

=Z (—1)" ""'
t,tt t!(j,—j+m, +t)! (j2+mm —u)!(j+j2 —jp —u)!(jp—j2 —m —t+u)!u!

(ji+mi)!(j+ji —jm)!(j~+mm)! (j+j2 —j~)!
( 1)/2+till —l4

(j & jm m+—u)!(j—&
—j—m2+u)! (j+m —u)!(j2+mm —u)!(j+j, j, u)!u!— —

and putting s= j2+m2 —u we get

(jjjgmgmm~ jgjgjm) —( blm+m m2)[(2j+1)(j,+j2 —j)!(j+j,—j&)!(j+j,—j&)!/(j&+j2+j +1)!j&
[(jp+m&)!(j& —mp)! (j2+m2)!(j 2 mm)! (j—+m)!(j m)!j—

Z (—1)* (16)
z'(j~+ j2 —j—z) '(j~ —m~ —s) '(jm+m~ —s) '(j—j~+m~+s) '(j i~ m2+z) '— —

Ke might also transform TAS f4'5 in the same way, and the result would of course be the same.
For further use it is convenient to introduce the abbreviations

s(abc; aPy) =b(a+P+'r, 0) Q, (—1)' &+'

[(~+a)!(&—a)!(b+P)!(b —P)!(c+7)!(c—7) 'j'
X (17)

s!(a+b c s)!(u —a——s—)!(b+p —z)!(c b+a+ z—)!(c—a —p+z)!

and to write

V(abc; aPp) =[(a+b —c)!(it+c—b)!(b+c—a)!/(a+b+c+1)!j&s(abc; aPy)

(j»mm~m2lj~jmjm) = (—1)'+"(2j+1)'I'(j~jsj mtm2 m)

(17')

(16')
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The functions e and V are dehned for integral and half-integral val'ues of the arguments, with
the limitation that a —a, b p,—c—y must be integers; it follows from this limitation and from the
factor h(a+p+y, 0) that all the nine numbers

a+a, a —a, b+p, b p, —c+y, c—y, a+b c, —a+c b, —b+c a— (18)

must be integers.
Since in (17) s takes on only such integral values for which the argument of every factorial is not

negative, the number of terms in this sum is one more than the smallest of the nine numbers (18)
(and not only of four of them, as in (15) or in TAS 14'5); therefore V vanishes if one of the numbers
(18) is negative, and the summation reduces to one term if one of these numbers vanishes.

Assuming the argument of one of the 6ve other factorials instead of s as summation parameter in
(17), we obtain some symmetry properties for s and V:

V(abc nPp) =(—1)'+ 'V(bac; Pay) =(—1)'+~'U(acb apP) =(—1)' '+'V(cba yPn)

= ( —1)"U(cab; yaP) = (—1)"V(bca; Pyn). (19a)

Interchanging in (17) a with b and a with —P, we have

U(abc; aPy) = ( —1)'&V(bac; —P —a —y);

and owing to the first of (19a) and to the fact that 2(c—y) is even, we get also

V(abc nPy) = ( —1) +'+'V(abc; —a —P —y). (19b)

Since the transformation matrix (jij2mimq~ jij~m) is a unitary one, it follows from (16 ) that the
real function V must satisfy the orthogonality relations

P V(abc; aPy) U(abc'; aPy') =8(c, )cb(y, y')/(2c+1) (a+b& c& (a —b!, c& (y~), (20a)

Z (2c+1)U(abc; ~W) U(abc; ~'P'7) =b(~, ~')&(P, P') (a & ~~i, b & (PI); (20b)
c7

if the inequalities in parentheses are not satished, the left side vanishes.
The sum in (17) cannot generally be transformed into a closed form; it is, however, possible to do

so for the particular case a= p= y = 0 (a, b, c integers!): if a+b+c is odd, lt follows from (19b) that
V(abc; 000) vanishes; if

(21)

with g integer, it is shown in Appendix A that

and therefore
(;ooo) = (—)'g'iL(g —a) '(a —b) '(g —c) 'j (22)

(a+ b c)!(a+ c—b)!(b—+c—a)!
V(abc 000) =(—1)'

(a+b+c+1)!
gf

(a+b+c even)
(a —a) '(a —b) '(a —c) ' (22')

(a+b+c odd).

P. THE ALGEBRA OF TENSOR OPERATORS

(1) Definition of Tensor Operator

It is shown in IIS' of TAS that the matrix components of the electrostatic interaction between two
electrons depend on the matrix elements of the spherical harmonics O~(km)4(m); in this case the
spherical harmonics play the role of operators and not of eigenfunctions, and it appears convenient
to consider in a general way the algebra of such operators.
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In Chapter III of TAS the algebra of vector operators was developed from the sole assumption
that their components satisfy the commutation rule 8'2 with respect to J; this assumption is indeed
equivalent to the de6nition of a vector, because the operators J„J„,and J, are proportional to the
rotation operators, ' and therefore the commutation law with respect to J determines completely
the transformation law of each quantity considered for a rotation of the axes; since 8'2 holds for
x, y, and z, each group of three quantities which satis6es 8 2 has the same transformation law as
x, y, and z, and is therefore a vector.

It is shown in the theory of tensors that by means of symmetrizations and contractions each
tensor may be decomposed in parts which transform themselves independently for a rotation of
the axes, the transformation law of each irreducible part being the same as that of the spherical
harmonics of a determinate degree. Ke may therefore de6ne as "irreducible tensor operator of the
degree k" each operator T&"& whose 2k+1 components T,&'& (q= —k, —k+1, , k —1, k) satisfy
the same commutation rule with respect to J as the spherical-harmonic operators O(kq)C(q); this
commutation rule is easily deri~ed from CI)3' and 4' of TAS, and is

[(J.ai I„),T, ]= [(kwq) (kaq+ 1))&T,w„ (23a)

[J„T,]=qT, .

It is easily seen that for k=1 (23) reduce to TAS 8'2, if we put

T& ———(Tg+iT„)/(2) &, To ——T„T g= (T, iT„)/(2—)

In view of TAS 4'18 we shall say that an irreducible tensor operator is Hermitian, if

(23b)

(24)

T, =(—1) T,. (25)

(2) Dependence of the Matrix of T"& on m

The dependence on m of the matrix elements of T, t:~) in the jnz scheme will readily be derived
from (23). The relation (23b) gives us in the usual manner the selection rule: the only non-vanishing
elements of (ajmIT, &'&Ia'j 'm') are those for which

=8$ —g.
I

The two relations (23a), written for a general non-vanishing element, give

(26)

[(j+m) (j —m+ 1)]&(nj m —1
I T,&"&

~ a'j 'm —
q
—1) = [(j'+m —q) (j ' m+ q+—1))& (ajm I T,& "&

I
u'j 'm q)—

(k)+ [(k—q) (k+q+1) j&(ajml T,+ ln'j&'m —
q
—1),

[(j—m) (j+m+1) j~(njm+1I T,~'& la'j 'm —q+1) = [(j' m+q) —(j '+m q+ 1)j—&

X (&jml T~'"'
I
Q''j 'm —q) +L(k+ q) (k —q+ 1)31(~jm

I T.-& I
~'j 'm —q+1)

(27)

We observe now that if we replace (ajmI T,"'Ia'j 'm') by (j 'km'qjl'kjm), (27), we reduce exactly to
(3) and (5); since we saw that these equations were sufficient to determine the dependence of
(j &j 2m&mme�&jmj m) on m&, m2, and m, it follows that

(~j ml T,~'&ta'j 'm') =A (j 'km'qjl'kjm),

where A is independent of m, m', and q.' Owing to (16') and (19), we write

(~jml T.'"'l~'i™)= (—I)'+"(~jll T'll~'i') I'(ii 'k —mm'q). .

(28)

(29)

' P. A. M. Dirac, Quantum Meckcefcs (Oxford, 1935), $29.
This relation was already given by signer, Reference 3, Chapter 21, Eq. (19), with group-theoretical methods.
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This formula is the tensorial extension of TAS 9' ll; in order to avoid mistakes we wrote the
quantities which are independent of rn, tn, and &I with

~~
instead of:, since for k = 1 these quantities

differ from the analogous quantities defined in $9' of TAS; it is easy to see that they are related by
the following relations:

( jllT&»ll 'j) =D(j+1)(2j+1)3'( j::2':: j),
(~jllT'"ll~ j—1)=D(2j—1)(2j+1)j'(~j::2::~j—1),

(~j[(T&»((~ q+1) = —[(j+1)(2j+1)(2j+3)j&(j:T:~ j+1).
(3o)

It must also be observed that for a, Hermitian tensor T'~' the matrix (nj[[ T&i'[( a j') is not Hermitian,
but satishes the relation

( jl7'"'ll 'j') =(—1)' "(~'j'112"'ll j); (31)

the general relation for any tensor is

(~jll T'"'ll~'j') = (—1)' "(~'j'll T&""ll~j) (31')

The reasons which brought us to this choice of phases are similar to those which Axed the phases in
TAS 4»7.

(3) Scalar Product of Tensors

If two irreducible tensors of the same degree are given, we consider the quantity

Q
—g ( 1)a2' &&) P &&) ~

owing to (29), (19), and (20a), the matrix elements of Q are

(32)

(~jirilQI~'j'vi') = 2 (—1)' '"(~jllT"'f~~"j")(~"j"II&'"'ll~'j')&(j j')b(vi vi')l(2j+1) (33)
Qprl jr'

The matrix of Q is then diagonal with respect to j and m, and entirely independent of m; it follows
that Q commutes with J, and is therefore a scalar. Since, owing to (24), Q is for k=1 the scalar
product of the two vectors, we shall in general name Q the scalar product of T&i' and U&i&, and write

Q
—(T&&) . U&&)) —Q ( 1)eT' &ii P &i) (32')

The most important example of such scalar products is given by the spherical-harmonic addition
theorem (TAS 4'22).

The tensorial extension of TAS 12'2 may be obtained by a direct use of (16') and (29). If T&~' and
Ut:~& are of such a character that, when a resolution of the type TAS 6'5 is made of the states in
question, T&" operates only on pi and U&"& only on gi, the matrix elements of Q will be

bjij~j~l (T'"' U"')
I vi 'i'ii '~') = (—1)&(jij2jm~ jij,mimi)(yjimi~ T,& ~~y"j,'vi', )

gm1mgm

X(p"j&m&~ U,&"&~y'g'mvi'&)(p'ip'&m'im'2~g'ip'mg'vi') = (—1)&&+'& ' " "[(2j+1)(2j'+1)j&
XZ' hjillT'"llv"j'i)(v"j~llU"'llv'j'i) 2 (—1)'V(jijij; viivi~ —vi) V(jlj lk iiilrri 1g)

X V(jrj'uk; —vivum'a —g) V(j'ij'2j'; m'im'i m') (—34).
The last sum is very difficult to evaluate for general values of the parameters; but, owing to (33),
it sufFices to calculate it for the particular case j=j'=m=nz'. It is shown in Appendix 8 that

P (—1)1+&v(abe; aP e)v(ecf; any)v(b—df; ——Pb —q)v(cde; 78 —e)
cgyb 1&v

= (—1)'~r+d ~w(abed; ef )/(2e+1), (35)
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where
(a+b+c+d+ 1 —s)!

te(abed; ef ) = Q, (—1)*
(a+ b e —z)!—(c+d e —s)—!(a+c f—z)—!

X(b+d f —z)!—s!(e+f a—d—+z)!(e+f b —c+—s)!
Putting also

(36)

W(abed; ef) =

(a+ b e)!(a—+e b)—!(b+ e a—)!(c+d —e)!(c+e d—)!(d+ e c—)!
~ (a+c f)—!(a+f c)!—(c+f a)!—(b+d —f)!(b+f—d)!(d+f b)!—tc(abed; ef ), (36')

(a+b+e+1)!(c+d+e+1)!(a+c+f+1)!(b+d+f+1)!
we have

Q (—1)I+&V(abe; nP e)—V(acf; —ny z) V(bdf; —Pb —z) V(cde; pb e)—
OPv~v

= ( —1)"+~+~~W(abed ef )/(2e+1) (35')

and owing to (34) and (33) we get

p (—1)~+&V(abe; np —e) V(acf; —nyz) V(bdf; —pb —s) V(cdg; yb «t)—
aPv&v

and

(vj~j»~l(T"' U'"') lv'j'»'»~)

= (—1)~+~+~+" 'W(ab—cd; ef)g(e, g)g(e, «I)/(2e+1) (37)

= (—1)"+'" ' 2 «"(vj~ll7'"'Ilv" j'~) (v"j~ll Lr'"'lie'j'2) W(j~j~j'~j'2 'fb) (38)

which is the tensoria1 extension of TAS 12'2.'

(4) Properties of W

The functions m and 8' are defined for integral and half-integral values of the parameters, with

the limitation that each of the four triads

(a, b, e), (c, d, e), (a, c, f), (b, d, f ) (39)

has an integral sum. Since in (36) z takes on only such integral values for which the argument of

every factorial is not negative, W vanishes unless the elements of each triad (39) satisfy the triangular

inequalities; if one of these triangles reduces to a segment, the summation reduces to one term.
It follows from the symmetry of (36) and (36') that

W(abed; ef) = W(bade; ef ) = W(cdab; ef) = W(acbd; fe);

assuming the argument of one of the two last factorials instead of s as summation parameter in (36),
we obtain other symmetry properties of 8';

W(abed;ef) =(—1)~~ ' 'W(ebcf;ad) =(—1)'+I ~'W(aefd bc). (40b)

combining (40a) and (40b) we obtain 24 different permutations of the parameters of W, which

correspond to all possible permutations between t:he four triads (39).
Since (33) and (34) have a meaning only for integral values of k, our demonstration of (37) holds

only for integral values of f; but it follows from the symmetry properties of V and W that (37) holds

also for half-integral values of f
' For the diagonal elements of this matrix an equivalent formula was given by H. A. Kramers, Proc. Amst. Akad. Sci.

84, 96$ (i93i).
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If we multiply the two sides of (37) by (2g+1) V(cdg; y'b' —») and extend a summation over all

possible values of g and», we obtain, owing to (20b),

p (—1) +«V(abe; np «)—V(acf; —ny'
&&&) V(bdf; p—b' —

q&) = (—1)'+'+I+««W(abed; ef) V(cde; y'b' «),—

or, owing to (19) and (40) and omitting the dashes,

Q (—1)f+«V(abe; nP «—) V(afc; —n«&y) V(fbd; e&P b)—

= (—1)~' '+'+'W(aefd; bc) V(edc —«by). (41)

We rewrite (41) with slightly different parameters,

Q (—1)'+&V(abe; n'P' —«) V(agc; —n'»y) V(gbd; »P' —b)
o'P'y

= (—1)«+~ ~ +~+~W(aegd; bc) V(edc; —«by), (41')

and multiply the two sides by the two sides of (41) and by (2d+1)(2e+1); extending a summation
over all possible values of y, «, and e, and owing to (20), we obtain an orthogonality relation
between the lV:

P, (2e+1)W(aefd; bc) W(aegd; bc) = b(f, g)/(2 f+1). (42)

Interchanging a with b and n' with p' in (41') and operating as before, we obtain another useful
relation between the lV:

P,(—1) +«+'+'+'+I+'(2e+1) W(acbd fe) W(abdc; eg) = W(acdb fg)

(5) Matrix of a Tensor T&"& Which Con&~utes with J«or with J,
From (16'), (29), and (41) we have

(43)

(vi &i i ~l 2.&"'l~'f'&f'«f'~') = 2 (i&i«i~li&i«~&~«)(~i&~&I2'. "&l~'i'&~'&)(i'&i«~'&~«li'&i«i'm')
trbiws 1rrbg

= ( —1) *+"-'+"[(2i+1)(2i'+1)]~(vi, ii
T&& ii~'i', ) W(i ii', i', i k) V(D 'k; —~m'V),

and owing again to (29) we get

(vi&i«illa''"'II&'i'&i i') =(—1)"+' "' '(vi&112 "'II&'i'&) L(2i+1)(2i'+I)]'W(i&ff'&i ';i «k), (44a)

which is the tensorial extension of TAS 11'8. In the same way we obtain also

hi&i«ill I7'"&II~'i&i'«i') = ( —1)"+" " "hi«ll 0'"'ll~'i'«) L(2i+1)(2i'+ I)j'W(i ii' i«';i«&k) (44b)

THE ELECTROSTATIC INTERACTION BETWEEN TYCHO ELECTRONS

It was shown in I that the coefhcients of Slater's integrals F~ and G~ in the two-electron configura-
tions are the matrix elements of P, (cos &«), where a& is the angle between the radii vectors of the two
electrons. It follows from (32') and from the spherical-harmonic addition theorem (TAS 4'22) that

P&,(cos &d) =(C&&«& C«&'&),

where C("' is the tensor operator dehned by

C,&"& = [4w/(2k+1) j&O(kg) C (g);

(45)

(46)

we see from TAS 8'6 that the non-vanishing matrix elements of C, &~) are the c~ of Condon and
Shortley.

Confronting the expressions TAS 9'8 and (29) of (10iiC&&&«&ill'0), we obtain

(—1)'(i|i C&"& ill') V(ll'k; 000) = s[(21+1)(2l'+1) )~C&«&.,
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where (TAS 9'7)
T

C~~~ = P~(cos co)P~(cos co)P~ (cos au) sm codes. (48)

In order to calculate algebraically C~&& we express the Legendre polynomials by means of TAS 4'22
and 4'18,

P~(cos co) =P~(cos co) = [4s/(21+1)] P„(—1)"0(lm) I (m) 0'(l —m) 4'( —m),

Pp(cos a&) = [4s/(2k+1)] P, (—1)'O(kg) C (g) 0'(k —g) C'( —q),

P~ (cos a&) = [4s /(2l'+1)] P ~ ( —1)"'O(l'm') 4 (m') 0'(l' m'—)I '( m—'),

and integrate their product over the spheres (Hp) and (H'y'); we obtain

8s' ~ P~(cos a&)PI, (cos co)P~ (cos &o) sin &adco=64 s[(21+1)(2k+1)(21'+1)] '

I' 2K

0(lm) &$(m) O(kg) 4 (g) 0(l'm') C (m') sin HdHd p
"0 ao

2K

0'(l —m) 4'( —m) 0'(k —q) C'( —q) 0'(l' —m') 4'( —m') sin H'dH'd p'

or, if we use successively (46), (29), (19b), and (20a),

(2l+ 1)(2l'+ 1)C(g (.——2 g (lm! C,&"&(1'm') (1 m! C—,~ ' ~l' m')—
mom~

=2(l~~C'"'~~l')' P V(ll'k; mm'q—) V(ll'k; m —m' —q) =2(—1)'+'+"(l~!C&'&~~l')'. (49)

It follows from the comparison of (47) and (49) that

Cai = 2( —1) + '+ [V(ll k; 000)]"

and owing to (22') we obtain

(50)

iCui =0 (l+1'+ k odd)

2 (I+1' —k)!(l+ k —l')!(l'+ k —l)!g!'
(l+l'+ k = 2g even),

(l+l'+ k+ 1)!(g —l)!'(g —l')!'(g —k)!'
(50')

which agrees with TAS 9'9. The numerical values of Ct&& are tabulated by Shortley and Fried. '
It follows also from (47), (49), and (22') that

(51)
and therefore

k~

c~(lm, l'm') =(lm~C~ „.~l' )m=( —1)'+"[2(2l+1)(2l'+1)Cp~ ]&V(ll'k; —mm'm —m'). (52)

We do not know to what extent this derivation is different from Gaunt's derivation, because we had
no opportunity of consulting his paper in every case (52) has the same advantages in comparison
to Gaunt's formula (TAS 8'1l) as (16) in comparison to signer's formula.

Introducing (45) and (51) in (38) we have a direct demonstration of Eq. (12 ) I, from which we
obtained the coefficients of F" and G~ for two-electron configurations in (I.S) coupling.

' G. H. Shortley and B.Fried, Phys. Rev. 54, 739 (1938), Table III.' J. A. Gaunt, Phil. Trans. Roy. Soe. A228, 195 I'1929}.



THEORY OF CO M PLEX SPECTRA 447

In order to obtain from (45) and (38) the matrix elements of the electrostatic interaction in (jj)
coupling, it su!Fices to calculate the elements (-,'/j~~C&"&~~-,'f'j'); it follows from (44b) and (51) that

(j+j' k)—!(j+k j')—!(j'+k j)—!'
(-,'u~-;~~C&»(~-;I'1'~-, ) = ( —1)& +~- i&

(j+j'+k+ 1) .

(j+j'+k+1)!!
(53a)(j+j'-k-1)!!(j+k-j')&&(j'+k- j) &&'

(a+a' k) '(a—+k j')!(j—'+k j)! '—
(2ll+g~C" ()-',I'l'w-', ) =(—1) '+ —-' '

(j +j '+k+1)!

and then

(k —1) l!'(2ji —k)!!(2j2 —k)!!
fi(hj&4jm&) =

(2j&+k)!!(2j2+k)!!

(j+j'+k)!'X,(53b)
U+ j'-k) "(j+k-j'-1) . .(j'+k- j-1)&&

(ji+jm+~+1+uil (ji+j2—Jy !&I+ji—j2y (J+j2 ji~—
Z-( —1) i j I I I f

(54)
w & « w & ( k-ur & L. k-m

It is remarkable that (54) depends only on the j's and not on the &!'s of the electrons, and therefore
the coefticients of F" for the interaction between two p~~ electrons are the same as between two d~~

or between a pqi and a dpi.
For the coefficients of the G the situation is somewhat di8ferent, because, although g~ does not

depend explicitly on l, in the case that both the electrons have their spins parallel or antiparallel to
their orbital momenta the formula is not the same as in the case that one spin is parallel to its
orbital momentum and the other is antiparallel. In the first case

(ji+jm
—k) l!'(k+ ji —j2 —1)!!'(k+jm

—ji —1)l!'
g„(l,l,a ,'I,lg+2 J) =-(—1)&~+»—

(ji+jm+k)!!'

and in the second case
(ji+jp —k —1)!!'(k+g& —ym)!!'(k+g2 gi)!!'—

gk(lili+-,'lmlm~-',1)= (—1)i~+i~-

(ji+j2+k+1)!!'
(ji+jm+ J+1+«&'& (ji+j2—~l t' ~+ji—jm 'l ( ~+jm —jiZ. (-1)-I (»b)) ! w & «k+ji ja ui& & —k+j—, ji w&——

It must also be noted that in (L,S) coupling gq is preceded by diferent signs, corresponding to the
singlet and triplet states; but in (jj) coupling g& is always preceded by a minus sign, since in (jj)
coupling only antisymmetrical eigenfunctions are possible.

By means of these formulas the results of Inglis' were checked, and the following mistakes were
found: the coefFicient of —G' 225 for the level pidii with J=2 is not 25, but 75; the denominators
of F' and F' in the configuration dd' are not 25 and 49, but 1225 and 441.

' D. R. Inglis, Phys. Rev. 38, 862 (i931), Table II.
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The non-diagonal elements of the electrostatic interaction in (jj) coupling may also easilv be
calculated in this way.

From our results follows also that the coellicients of Ii» in (jl) coupling" are

(k —1)!!'(2j—k)!!(2l —k —1)!!(2l+1)
f»(i«) =

(2j+k)!!(2l+k+1)!!
(j+1+K+2+u&y )j+l K& p—K+j l~ !—K+1—j~

(56)
w jE u i( k-u )E k-w&

The particular expression for k=2 which we gave already for the rare-gas spectra diRers from (56)
in the sign, owing to the fact that in the rare-gas configurations there is an almost closed shell (see $6).

$5. MANY-ELECTRON SPECTRA. GENERAL PART

In t&4 we expressed the coe!I&cients of the I'» in the interaction between two electrons as scalar
products of tensors, each of which operates on a definite electron (type (34)); thus by the general
methods of II3 we may calculate for every configuration that part of the energy matrix which depends
on the F», in a schema in which each state is defined by its "genealogical characterizations" (TAS
k2')

The problem is more complex for the coefFicients of the G~, since the gj, are not scalar products of
tensors of the type (34); in the particular cases considered in III!5 and 6 of I we gave to g» the form
of a polynomial in X, but in more general cases it appears convenient to develop gl, in a sum of scalar
products of tensors of the type (34)." It follows from (6) I and (45) that

g»(lil»L) = (—1) '~+'»-~(lil»LM~ (Ci&»&. C2'"') ~1»l&LM),

and owing to (38), (31), and (43) we obtain

g»(lil»L) = (li(~ C&"&~(1»)' Q, (—1)~+»+"(2r+1) W(lil2lil2, Ir) W(lil&l»l», rk);

(57)

if we define the tensor u(") by
(lieu&'&ill') =h(l, l')

and take into account (38) and the fact that li+lm+k is even, we may also write

g (l 1»L) = (1&~~C"'~~l»)' 2 (—1)"(2r+1)W(lilil»l», rk)(i&1»LM~(ui&"'u»&"&) ~lil»LM). (59)

Following Dirac's vector model we can also substitute the operator (37) I for the double sign
which precedes g~ and assume as coefficient of G' in the exchange interaction between two electrons
the expression —Lp+2(si s») j(li~~ C&»& ~~1»)' Q„(—1)"(2r+1)W(lilil»l», rk) (ui&"& u»&"&). (60)

It will also be convenient to consider the quantities (si s»)(ui u2) as scalar products of "double
tensors";" a double tensor of the degree (», k) is defined as a quantity which behaves as an irreducible
tensor of the degree ~ with respect to 8 and as an irreducible tensor of the degree k with respect to L.
The algebra of these double tensors is a trivial extension of the tensor algebra developed in II3; it
must be noted only that such a double tensor does not satisfy the commutation rule (23) with
respect to J, because with respect to J it is reducible and may be decomposed in a sum of irreducible
tensors, the degrees of which lie between ~k —

»~ and k+». From this point of view the scalar product
(1 s) is the scalar part of the decomposition of the double vector ls.

"G.Racah, Phys. Rev. 51, 537 (1942).
'1 These two diR'erent possibilities correspond to the developments of a fUnction in series of powers or of Legendre

polynomials.
"Reference 3, p. 295.
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If x electrons of a configuration are equivalent, it has no sense to speak of the tensor (or double
tensor) ti, &"') which operates on the electron i (TAS I))I'), but we must be content to consider tensors
of the type

T(xk) —P, t.{ak)

1
(61)

which operate on the whole group of equivalent electrons; it is easily seen that every symmetrical
operator may be built up with such tensors. The matrix elements of a tensor (61) must be calculated
in the scheme of the allowed states of the group: for x&~ 3 this calculation is not very simple, as a
general method of vector coupling for equivalent electrons is not yet known; however, it is possible
at hrst to couple the vectors and then to antisymmetrize the obtained states, but in this paper we
shall not deal with such cases.

)0. CONFIGURATIONS CONTAINING ALMOST CLOSED SHELLS

Let us consider a, shell "8"which is complete except for c missing electrons; if the number of
places in the shell is m, this configuration "%"will contain m —e electrons. We shall in this paragraph
determine a simple relation between the matrix of a tensor of the type (61) which operates on 5
and the matrix of the corresponding tensor for the simpler group "9"of g equivalent electrons.

Let us denote by C p(aSLMgMi, ) the eigenfunctions of the allowed states of 9 and by
4m(bSLMgMz) those of 5, the parameters a and b being introduced in order to distinguish the dif-
ferent multiplets of the same type which may occur in the given conhgurations. Ke consider now a
fictive configuration 9+% in which the exclusion principle does not hold between the electrons of 9
and those of 8:a complete set of eigenfunctions of such configuration is given by the functions

4p(aS'L'M'gM'i) 4g(bS"I."M"gM" i)

or by the functions

4(abS'S"L'L"SLMgMi) = Q A(aS'L'M'gM'i)4g(bS"L"M"gM"i)
M'8M" gM'I, M"J.

X (S'S"M'gM" gii
S'S"SMg) (L'L"M'i M"i, i[L'L"LMi). (62)

If the exclusion principle holds also between the two groups of electrons, only one state will be
allowed, a particular '5 state which we shall denote by '5*; its eigenfunction will be

4('S*)= Q g(abSL)4(abSSLL0000). (63)

In order to estabhsh a, correlation between the states of Ii and those of g and between the phases
of their eigenfunctions, we consider, for 5 and I. given, the Hermitian matrix

~-= Z~ V(ab) C(gb) (64)

and the unitary transformation u, „which diagonalizes it: in view of the special form of (64) it will be

(65)

(66)

P u„u,„A„=Q'(n)b(ay),
ac

where the Q(n) are real numbers, which we may assume are not negative. If we put for each value of
P for which Q(P) does not vanish

it follows from (64) and (65) that
Pi, r)~» h(aP). —— (67)
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(66')Q(P)»s = Z. ~.sV(~b).

If Q(P) vanishes for some values of P, we complete the matrix»s so that it be unitary: owing to (64)
and (65) it will be anyway

We change now the schemes of the states of 9 and %, putting

es(nsLMsMr, ) =P. C p(asLMsMr, )N...(SL),

@g(nsLMsMr) = Z&, C g(bsLMsML)» (SL)
(68)

and shall consider two terms of 9 and 5 as correlated, if they have the same values of n, S, and L.
It follows from (62) that

+(n'n" 5'5"L'L"SLMsMr) = Q 0'(ab 5'5"L'L"SLMsMz) u, .('5'L')», "(5"L"), (68')

and from the unitarity of N, and v&p that

0'(abs'5"L'L" SLMsMr) = P u«(s'L')&7&, (S"L")4(n'n" 5'S"L'L"SLMsMi); (68")
al all

introducing this result in (63) and owing to (66') we obtain

4'('5*) = Q Q(nsL)%'(nnssLL0000).
aSI

(63')

Since 4'('5*) is the only antisymmetrical eigenfunction of the configuration 8+5, the matrix
elements connecting 'S* with every state (68') will vanish for every symmetrical operator, unless
5=I =0. If Tp&'~& and Tsi&"" are two tensors which operate on the groups 9 and 5 according to (61),
Tp&"~'+Tm&'~i is symmetrical in all the electrons, and then

(n'n"S'5"L'L"SLll Ts& ill 5*)+(n'n"S'S"L'L"SI
ll

Tg&"»ll'5*) (69)

vanishes, unless 5=I.=O. Owing to the triangular conditions, each term vanishes alone unless 5= K

and I.= x, we shall therefore consider only the remaining equations

(n'n"5'5"L'L".klllTs&'&ll 5*)+(n'n"5'5"L'L".kll Tsl'"
ll

S*)=O (70)

which hold for every double tensor, excepting the double scalars.
Owing to (63') and to the fact that Ts&'"' is diagonal with respect to n"S"L" and Tm'~' with

respect to e'5'I. ', we get

(n'n" 5'5"L'L"~kll Ts'"'ll n"n"5"5"L"L"oo)Q(n" 5"L")

+ (n'n" 5'5"L'I "zkll T9t'~'ll n'n'5'5'L'L'00) Q(n'5'L') =0,

and introducing (44) and (36') this becomes

( '5'L'liTs'"»ll "5"L")Q( "5"L")/L(25"+1)(2L"+» j'+(—»"' """+"
x( "5"L"llTg"'ll '5'L')Q( '5'L')/[(25'+1)(2L'+1) j'=o (71 )

Also, since Ts&*~&t+Tm&""&t is a symmetrical operator, and since the Q(nsI. ) are real, it follows from
(71a) that

(( s"nL"
lj Ts&"»tll s'Ln') )Q( '5'Ln')/[{25'+ 1)(2L'+ 1)j&+(—1)s"+ "—'— '+"+'

X((n S I. llT&&*»colin"5"L"))Q(n"S L-)/[(2S"+»(2L"+1)ji=O,
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and owing to (31') we get

(~'5'L'll Ts&'»lla" 5"L")Q(~'5'L')/[(2S'+1) (2I.'+ 1)g&+( 1)~'—+' ~" &"+~-&

X(~"5"L")(T'%'»))&z'5'L')Q(~"5"L")/[(25"+1)(2L"+1)]&=0. (7ib)

It follows from the homogeneous equation system (71) that the matrix elements connecting two
terms a'5'L' and n"5"L" vanish for every tensor (61) operating on g or on &Il, unless

Q( ISII I) Q( llslILII)

[(25'+ 1)(2L'+ 1)]& [(25"+1)(2I"+1)]»
(72)

since every symmetrical operator may be expressed as a function of tensors (61), and since there exists
always at least one symmetrical operator connecting two allowed terms, it follows that (72) must
hold for every couple of allowed terms, or that

Q(asL) = C[(25+1)(2L+1)]&.

Since (25+1)(2L+1) is the number of states of the term asL, it follows from the normalization of
4'('5~) that 1/C~ equals the number of states of the configuration P, or that

(73)

It follows from (65) and (72') that the matrix (64) is a multiple of the unit matrix: the unitary
matrix u, ~ is then entirely arbitrary and to every asL scheme of P a scheme of 5 may be correlated.

From (71) and (72) we have also

( 'S'I.
II

Ts&»ll~" S"I.")——(—I)'+'-"-"++~( "5"L"
II

T'm&» ll~ 5'L'),

and owing to (31')

(~"5"L"
II

Tm&» ll~'5'L ) = —(-1)+~((~"5''L"
II
Ts&»'ll~'5'L')), (74)

which is the requested relation between the matrices of Tm(""' and Tv("").
This demonstration, however, does not hold for scalars. In this case (lm~~t&oo&~~lm') is a multiple

of the unit matrix; if its value is c, the matrix of Ts&00~ has the value ea and the matrix of Tm&"&

has the value ma —ez; we may, therefore, say that apart from a constant diagonal term (74) holds
also for scalars, and if only differences of energies are considered we may use (74) even in this case.

The coefficients of Ji~ for the terms of a configuration 1* are, apart from a constant term, the
squares of the tensor P, C,"'; the relative electrostatic energies of correlated terms are then the
same.

Since the expression for the coefhcients of Ii" contains only tensors with ~=0 and k even, we
obtain immediately the known rule that the coefricients of I"' in the interaction between the group
3" ' and an electron /' are the negatives of those for /' and l'.

For the coefficients of G~ the situation is more complex, since in (60) there are tensors of even and
of odd degrees. For two-electron-like conhgurations l 'l' the result is, however, very simple, since
it follows from (60), (74), and (58) that the coefficient of G~ is

[q —2 (s s') ](EJJ C&» [[I')'( —1) +' P, (2r+1)W(ll'll'; Lr) W(ill'l'; rk),

and reduces, owing to (40), (42), and (51), to

1 —4(s s') (21+1)(2l'+1)
C«.&,h(L, k);

4 (2k+1)
(75)
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this formula agrees with the result of Shortley and Fried, ' since the first coe%cient vanishes for
triplets and equals unity for singlets.

Some interesting results may be obtained for the configurations with e =m/2, which may be con-
sidered as "self™corresponding. " Since the electrostatic energies of two corresponding terms are the
same, it follows that in (LS) coupling each term is self-corresponding;" it is therefore

A({)SLMsMJ) =('C'ff((0 SLMsML)

with ~(:j = 1, and since with our choice of phases all transformation coefficients are real,

4e(uSLMsMI. ) = &Cff((aSLM;Mr, ). (76)

According to these two possibilities the terms of a self-corresponding configuration split in two
classes, and a remarkable selection rule follows from (74): the elements of T('i) connecting two terms
of the same class vanish if k+~ is even, the elements connecting two terms of diferent classes
vanish if 0+x is odd. A particular case of it is the vanishing of the diagonal elements of the double
vector P; s,l;, which causes the vanishing of the spin-orbit interaction constants for all terms of l "

This splitting in two classes is also the cause of the unexpected number of rational roots found by
Laporte" in the electrostatic-energy matrix of d'.

f7. THE CONFIGURATIONS d"

The formulas for this con6guration are well known (TAS p. 202); we wish only to point out that
putting

A = Fo—49F4 =F'—F4/9, 8=Fi 5F4 = (9F'—5—F')/441, C=35F4= SF'/63, (77)

they get the simpler form

'S=A+148+7C, 'F =A+78, 'D=A —38+2C, iF=A —88, (G=A+48+2C. (78)

Condon and Shortley calculated the formulas for this configuration, but they could not separate
the energies of the two 'D terms; this separation was performed by UHord and Shortley by calculating
the eigenfunctions of these terms. Ke shall calculate in detail this configuration with the tensor
method, since the same method will be used without greater complication in the cases d4, d', and f'

The term energies of d' are the eigenvalues of that part of

3F0+L(C (2) . C (&))+(C (2) . Q (2))+.(C (a) .C (a))]ps

+L(ci(4) . Cm(4)) +(ci(4) . C3(4))+ (C (4) .c (4))]F4 (79)

which operates in the space of the antisymmetrical states with /~ =l2=l3= 2. Since this operator does
not affect the spins, we shall calculate its matrix in a mgL scheme, and it will be sufhcient to consider
the elements corresponding to ms) ——asm ——$ and ms)( ———s, in this scheme only the two first electrons
are to be considered as equivalent, and we can thus avoid the difhculties arising from the coupling
of three equivalent electrons.

It follows from (51) that

(2 II
C")ll2) = —(10/7) ' (2 II

C'" ll2) = (1o/7) '

"This holds only in (IS}coupling: it is, for instance, evident that in (jj}coupling of the three levels with 7= ) in
the p' conaguration, only the level p1ppy is self-corresponding."O. Laporte, Phys. Rev. 61, 302 (i942).
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and hence and from (44) that
P

F (6/5) & —(48/35)&
(22LIIC '"+C""II22L') =

F —(48/35) & —(12/35) &

(81)

I' 0
(22LIICi"'+C '4'II22L') =

F —(4/7)&

—(4/7)'

—(22/7)&

From (38) we obtain now easily the interaction matrix between the d' group and the third d electron:

7A( 7(-»'—
I

30 E3 —1.)

2A- p6+Lq /5 L~—
1502)(2

~(&', d) = 2Fo+
2A- )6+LE ~5 L~—
15 L. 2 ) ' 2

A' —35K+210

30

9 qf 9

E5 L) &3 L)— —

where

+(—1)' (9i(
(5 L) E3 L)— —

'=L(L+ 1).

A/11
10 &5 —L)

F4, (82)

(83)

It suffices now to add to (S2) the diagonal matrix of the internal energy of d', and to diagonalize this
sum for each possible value of I;with this method we cannot specify to which value of 5 each eigen-
value belongs, but the quartet terms may be recognized, according to (23) I, as those for which
the coefticient of C vanishes. The results are

'P=3A —6B+3C,
'I =3A,

4F=3A —158,

'G =3A —118+3C,

'D=3A+5B+5C+(193B'+SBC+4C')i 'H=3A 6B+3C, —

'F=3A+9B+3C,

and agree with those of the above-mentioned authors (TAS pp. 206 and 233).

(84)

This configuration was calculated by Ostrofsky, "but Laporte and Platt" found some mistakes in
his results.

If we assume mai =ms'='and ms~=ms4= —s, the scheme will be an LiLQ one, where Li ——Ii+12
and L2=1q+14, the interaction matrix W(d', d') between the two d' groups is of the fourth degree
and was calculated in the same way as for d'. Adding to it the diagonal matrix of the internal energies
of the two d' groups, we obtained the complete energy matrix, the eigenvalues of which are the
requested energies of the con6guration d4; the singlet and the triplet terms were distinguished by the

"M. OstIofsky, Phys. Rev. 46, 604 (1934)."0.LapoIte and J. R. PIatt, Phys. Rev. 52, 305 {1942).
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irrationality of the results in the cases of two expected terms of the same kind. The results are

'5=6A+108+1QC&2(1938'+88C+4C') ~,

'F =6A —58+ (11/2) C&-,'(9128' —248 C+9C') &,

'D =6A+98+ (15/2) C& ', (144-8'+88C+ C') '*,

3D =6A —58+4C,
'D =6A —218,

'F=6A+6C,

'F =6A —58+ (11/2) C& 2 (688'+48C+ C') ~,

'G =6A —58+ (15/2) C+-', (7088' —128C+9C') &,

'G = 6A —128+4C,

'II=6A —178+4C,
'1=6A —158+6C,

(85)

and agree with those of Laporte and Platt, with the exception of a misprint for the term F, which
must be 6FO —84J'4.

ds

Catalan and Antunes" and also Bowman" calculated the formulas for this configuration, but they
could not separate the energies of the terms of the same kind.

Assuming ms~ =m8~ =m83= —,
' and ms4 =mst; = ——,', we need at first the elements of

(222I.~~C~&"'+C2&"&+C3"'~~222I-') for the antisymmetrical states; but if we consider only electrons
with ms=-,', d' is the almost closed shell corresponding to d', and according to (74) the needed
matrix elements are the same as (81) with inverted signs; it follows that the interaction between
the d' and the d' group is

W(d', d') = 10F'—W(d', d') (86)

and we can proceed as for d . It must, however, be noted that the irrationality criterion is not suf-
ficient in this case for the distinction between quartets and doublets, since almost all the eigenvalues
are rational; this distinction may be based on the property that the relative positions of the quartets
and of the sextet are exactly opposed to those of the terms of d' with the same L; this property
follows immediately from the possibility of calculating these terms in a scheme in which ms' =ms2
=F83——ms4 ———,

' and m85= —~. The results are

2S= 10A —38+8C,
'S= 10A —358
'F =10A+208+10C,
'F = 10A —288+ 7C,

'F'= 10A —258+10C,
4F= 10A —138+7C,

'G = 10A —138+SC,

'G' = 10A+38+10C,
'D = 10A 38+11C&3(578'+—28C+ C') & 4G = 10A —258+5 C,

'D' = 10A —48+ 10C,

'D = 10A —188+5C,

'F= 10A —98+SC,

and agree with the recent results of Laporte. "
'7 M. A. Catalan and M. T. Antunes, Zeits. f. Physik 102, 432 (1936).
18 D. S. Bowman, Phys. Rev. 59, 386 (1941}.

'H = 10A —228+ 10C,

'I= 10A —248+8C,
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The CoefBcients of C

It is pointed out by Laporte and Platt" that if 8 vanishes all the energies of the d" terms are
rational and show high degree degeneracies; this fact may be explained by general considerations
similar to those of $3 of I.

It follows from (20) I and (77) that if 8 vanishes the interaction between two electrons is

8;;=A+
X;;4+5K; —15K;,'—75K;;

C

owing to the relation

(s,"s,) =— +6)I,;P—13K ' —90K,;—18

72
(89)

which corresponds for equivalent d electrons to Van Vleck's relation for p electrons, "we may also
write

W;;=A+L-', —2(s; s;)+q,,]C,

(X;g—4) X;,(X;g+3) (l%.„+5)
36

(88')

(90)

is an operator which has the eigenvalue 0 in all cases, except if the resultant of the two electrons is a
'5 state. Owing to the relation

S(S+1)= 34n+2 P-(s; s,), (91)

where

W=Q W;;=
i,&j'

n(n —1) n(n+2)
A+ —S(S+1)+Q C,

2 4
(92)

If in the configuration d" a term occurs which does not occur in d" ', it is impossible that in this
state two electrons are connected so as to have a 'S resultant, and therefore Q vanishes in allsuch
terms.

For the terms which occur also in d" ' the calculation of Q may be made as follows. Each m, m~

state of d" ' gives rise in d" to a "family" of states in which the first n —2 electrons have the quantum
numbers of the "parent" state and the last two electrons have the quantum numbers m+ and —m—.
The number of states of each family equals five minus the number of possibilities forbidden by the
exclusion principle: if in the parent state there are no other couples of electrons of the type m'+

and —m' (and this is always the case when the values of Ms and MI. under consideration are not
allowed for d" '), each electron of the parent state excludes a possibility, and the residual number is
then 7 —n.

Since the matrix elements of q;; are

(m;m;~q;;~m, 'm ) =(—1)"* ~'b(m;, —m;)b(m, m), — (94)

and the exchange term compensates the direct term for electrons of like spins, the only non-vanishing

q;; is q„j„and the only non-vanishing elements of q„~„are those connecting states of the same
family, the values of these elements being (—1) "'. The eigenvalues of these submatrices, owing
to this particular expression of their elements, are all 0 except one, which equals the trace of the
submatrix, i.e. , 7 N. We can then say that—each term of d" ' gives rise in d" to a term with Q= 7 n, —
and that the other eigenvalues of Q vanish also in d".

' J. H. Van Vleck, Phys. Rev. 45, 412 (1934},Eq. (33}.
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Ef more than a couple of the type m+ and m—may be simultaneously present in a m, rng state, the
calculation is more complex, but the result is almost the same: each term which occurs in d" ' has
in gl" its Q value increased by 7 —n; each further term has Q=O.

Since Fg~&9Fg (TAS p. 177) and it is therefore impossible that 8 could vanish, we omitted in $3 of
I this application; but the recent paper of Laporte and Platt induced us to put here these considera-
tions. The high degree degeneracies remarked by these authors for this hypothetical case and the
relation between their Table II and an old table of Hund" are really based on the simple form of
(92) and on the properties of the operator Q.

We take this opportunity for pointing out that Eq. (6) of Laporte and Platt is right only for
certain m, since its exact form is

2k+ 1 c'(lmlm') c"(imam'g) 2111
=b(mme)b(m'm'g)+( —1)" ~h(m, —m'g)h(mg, —m'); (95)

2 c'(l0l0)

its demonstration follows almost immediately from (52), (20b), and (19a).
The ratios between the distances of the 'S terms in P and g' from the other singlets and the

distances between these singlets and the triplets are also incorrect by a factor 2.

$8. THE CONFIGURATION f'
For the con6gurations f" it is also convenient to introduce new parameters; if we put

A = Fg —21F4—468Fg, 8 = (5Fg+6F4 91Fg)/5, C= 7(Fg —6Fg)/5, D =462Fg,

the formulas for P assume the simpler form

'5=A+608+105C+9D 'G= A —308+110C+2D,

(96)

'I' =A+458, 3II=A —258,
(97)'D =A+198 72C+2D, — 'I=A+258+2D.

'I' =A —j.08,
The calculation for f' was made exactly in the same way as for d', and gave the following results:

45= 3A —308,
'P =3A —258+35C+3D,
'D =3A —78+ (57/2) C+3Da -', (21768' —180968C+ 74529 C') &,

4D =3A+258,
'F=3A+558+ (75/2) C+6D + gg [97008'—1808(45C+2D)+9(4SC+2D)']l
'F=3A —308,
'G =3A +78+ (113/2) C+3D&p(126768 g —316768C+ 36169C') &,

'G= 3A —108,
gH=3A —238+ (63/2) C+'3D& gg (5056¹—188168C+29169C')&

~1=3A —58+45C+3D,
'I=3A —658,
'E =3A —408+80C+3D,
'I.=3A+3D.

'o F. Hund, Zeits. f. Physik M, 345 (1925), Table IV.
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fO. THE CONFIGURATIONS dP AND dP

The energy matrix of the configuration d'p will be calculated in a scheme in which each term is
characterized by a definite state of the core d'. In this scheme the interaction between the two d
electrons is diagonal and has the values given by (7S); the interaction between each d electron and
the p electron follows from (60) and is

W(d, p) =F0+10(21) (u3~&" u &")Fi—p+2(s, & s„)j{L2+9+5(u~"&u~&")

+5(21)i(u &'& u, &")]G&+[7—21+5(up&".u, '")+5(21)i(us&2& u, '")jGi } (99)
where"

Fo F"(nd n——'p) F2 ——F'(nd n'p)/35 G, =G'(nd, n'p)/15, G3 3G——'(nd, n'p)/245 .(100)

In order to obtain the matrix of

W(d', p) = W(di, p)+ W(dm, p),

we calculate at first, by means of (44), the matrices of the tensors

(101)

and of the double tensors

U(k) g (k) +g (k)

V'"'=8 u (k)+@u "'
(102a)

(102b)

for two equivalent d electrons; the results are

1Q
'5 0

3P 0

(~L II
~'"ll~'I') ='D

3' 0

'G 0

3jP

0
1D

0
3F
0

(14/5)

16
0

(6) **

lg
15 0

3Q

0
lD

(4/5)'
3P
0

16
0

'F 0 —(21/25) i

(~L II
~&"Il~'I') ='D (4/5)'

(24/25)i

—3/7

(144/245) '*

(24/25) i

(6/25) i

(144/245)&

(198/49) '

(103b)

ls
15 0

'F (2/5)i

(2/5)'

(1/5)'

la
0

—(7/10) ~

3P
0

(SI ll
V&"&ll 8'I.') = 'D 0 —(7/10) i

(4/5)'

0

(4/5)'

(14/5)i

—(3/5)'

—(3/5)'

(103c)

"This de6nition of GI differs by a factor 3 from that of TAS, but agrees with (50) I.
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lg
8 0

'P
0

la
0

3F
0

1Q

0

—(21/25) & —(3/10) & (24/25) &

—(3/10) & 0 (32/35) &

(24/25) & (32/35) & (6/25) &

—(9/7)'

—(9/7) &

(103d)

The matrix of (101) follows from (99), (103),and (38); adding to it the energy of the core we obtain
the following results for the terms of d'p"

'~=A+78 —14F2—3G»+ 7G3

48=A+78 —14F,+6G,—14G3

4P =A+78+ 7'-6G» —21G3

'F=A —88—3F2—G» —16G3

4G =A -88+F.—9G» —4Gg

'H =A+48+2 C+4F.—6G» —G3

A+ 7B—{7'+24G»+49G3) j5 (12F.—6G» —6G3) (14/25) ~

(12F:—6G» —6G3}(14/25)& A —88+(12F2+4G» —146Gg)/5

A —88+F.+ (9/2) G»+2G3

(—', G»+G3}(15)'
{—''Gi+Gs) {&5li

A +48+ 2 C—11F2+ ~2G» —6Gg, I

A+148+ 7C—2G» —7G3

(—3G»+ 7G3) (3)&

(4F&—G» —G3) (7)&

(-3G»17G3) (3)&

A+ 7B+7F2+3G»+ (21/2) G

(5/2) G3(21)&

(4F —G —G,) (7) j

(5/2) G3(21)~

A -38+2C—3F2+G» —(23/2) Ga

A+ 78+(-7Fa+12G»+ (49/2) G3) /5

(—6G»+ 9G3}(21/20) &

(12F,+3G,+3G) (14/25}&

(—6G»+ 9G3) (21/20) &

A —38+2C+3F,—2G, —(19/2) G,

{G»+11G3)(6/5) &

(12F2+3G»+3G3) (14/25) &

«+»G )(6/5) ~

A —88+(12'—2G»+ 73G3) /5

{24F—« —6G ) (3/49) ~

(9G»+ 54G3) /(28) &(—10G»+10G3) (3/7) &

(24F,—6G, -6G,) (3/49) ~

A —88—3F2+ )G» 18G3

(9G»+ 54Gg) /(28} & A+48+ 2 C+ (55' —,', G» —124G3) /7

A -38+2C—(6F2+23G»+23G3) /7 {—10G»+10G3) (3/7) &

F'or calculating the terms of d'p it sufFices to take into account the fact that the constant matrix
and the matrices of U&'& and V~"& change their signs at passing from the core d' to d, according to
(74). The results are:

25= 45= A+78+14'
'I' =A+78 —7'
'F=A -88+3F;
4G =A —88—F2

'H =A+48+2 C—4Fg+15Gg

"The parameters have the meaning given in (77) and (100},with the exception of A which contains also 2P'(nd, n'p).
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Th,sLE I. The configuration 3d24p of Ti II. T&M.E I I.The configuration 3d'4p of Ni I I.

('F) 'G
(3P) 4P
(3P) 2P
(3P) 2D
('F} 'D
(3P) 2G

(3P) 'S
{'D) 2D
(1D) 2P
(1D) 2P
('P) 4S
(3P} 4D
(3P) 4P
(1G) 2G

(3P) 2D
('p) 'p
(lG}
(lG) 2P
(1S) 2P

Parameters:
8
C

P2

G3

obs.

29936
31108
31369
31918
32690
34657
37431
39380
39627
40011
40027
40612
42127
43763
44907
45524
45802
47535

29748
31028
31375
32132
32813
33951
37623
40461
40035
39983
40233
40518
42213
43259
44807
45672
44822
47751
64692

669
2563

290
332

18

Calc.

29823
31125
31471
32251
32890
34109
37628
40000
39496
39507
40237
40441
42100
43675
44737
45673
45184
48078

(64465)

0.9484
288
337

20.2

Term

(3F) 4D
('F) 'G
('F) 'F
(3F) 2G

(3P) 2P
(3P) 2D
('P) 'P
(1D}2P
(1D) 2D
(1D) 2P
(3P) 4D
(3P) 2D
('P} 'P
('P) 'S
('P) 'S
('G) 2H
(1G) 2P
('G) 'G
(1S) 2P

Parameters:
8
C
P2

G3

Obs.

52588
53883
55394
55775
57685
57933
66649
67943
68442
68636
70716
72011
73256
74282
74299
75460.
75904
79878

Calc.

52581
53707
55163
55735
57492
57892
66853
68729
68929
69013
70527
72159
73245
74497
74497
74713
75494
79505

109339

1022
4509

364
303
54.4

A+78+ 7P2/5 —12F2(14/25) &

—12F2(14/25) & A —88—12F2/5

A —88 —F2+75G3/2

—5G3(15/4) &

—5G3(15/4) &

A+48+ 2C+11F2+ 5G3/2

A+148+ 7C+2G1+ 7G3

{3G,-7G3)(3}»

(—4F2+G1+G3) (7)&

{3G1—7G3) (3)&

A+78 —7F2+(27/2)G1+21G3

(3G1—2G3) (21/4) &

(—4F2+G1+G3) (7)&

(3G1—2G3) (21/4) &

A —38+2 C+3F2+ (7/2) G1+G3

A+ 78+{7F2+ (27/2) G1+126G3)/5

(3G1—12G3}(21/20) &

(—12F.+9G1+9G3){14/25}&

I A —38+2C+ {6F2+2GI+72G3}/7

(2G1- 18G3)(3/7) &

(—24F2+6G1+6G3) (3/49}&

(3GI —12G3) (21/20) &

A —38+2 C—3F2+ (7/2) G1+6G3

{7G1—3G3) (6/5) &

(—12F2+9G1+9G3) (14/25}&

(7G1—3G3) (6/5) &

A —88+ (—12F2+84GI+9G3) /5

{—24F +6G1+6G3)(3/49) &(2G1—18G3)(3/7) &

A -88+3F2+6G1+ (27/2)G3

(18G —(9/2) G )/(7) '
(18G1—(9/2) G3) /{7)&

A+48+2 C+ (—55F2+54G1+.', G3) /7

Ke fitted the experimental values" of Ti II and Ni II to the theoretical formulas by least squares,
and obtained the results given in Table I (column A) and Table II. The mean deviations are +430
for Ti II and ~347 for Ni II, and confirm the known fact that the agreement is better for the
elements on the right side of the periodic. table.

It must also be observed that these deviations show a certain regularity: in almost all the cases
the difkrences between observed and calculated values are positive for the terms grounded on the

"R.F. Bacher and S. Goudsmit, Atomic Energy States {McGraw-Hi11, 1932).
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SIC and '6 terms of the core, and negative for those grounded on 'I' and 'D. Since the configurations
d', d's, ds, dss of the whole iron group show the same regularities in the deviations, '4 the main part
of these deviations may be attributed to second-order eRects in the coupling of the core electrons.

It seems therefore reasonable to substitute in the formulas of d'p and d'p for the part depending
on the energy of the core (terms with 8 and C) the experimental values of the corresponding ions
d' and d'; these values must, however, be multiplied with a convenient reduction factor e, since with
increasing ionization all coupling parameters increase slightly.

The result of 6tting the terms of Ti II to such semi-theoretical formulas by least squares is shown
in Table I, column 8; the mean deviation reduces to +332, although the number of free parameters
is also reduced (e instead of 8 and C).

For writing down the matrix of the 2I' terms we needed also the value of the term 3d' '5 of Ti III:
since this is still unknown, we calculated it from the other 3d' terms by least squares; this approxi-
mated value suffices for calculating the perturbation of ('S) '8 of Ti II on the other 'P terms, but
cannot be of use for predicting with the same approximation the position of ('S) 'P himself.

Ke could not apply this method of calculation to Ni II, since the terms of Ni III are still unknown,
as far as known to us.

$10. THE INTEGItALS

It is noted in TAS (p. 177) that F» is essentially positive and a decreasing function of k, and it is
stated as an empirical fact that also G~ shares the same properties, although they do not follow
from its de6nition. Since this fact was sometimes questioned, "it seemed worth while to us to seek
for a mathematical demonstration: we found that the first property may be proved, but only
G"/(2k+1) is necessarily a decreasing function of k.

According to its dehnition, G~ has the form

00 ~00

G"= '

(r& /r&"+') f(r~)f(rm)dr~dr»,
Jo 00

where r& is the lesser and r~ the greater of rj and r2', we may also write

(104)

O'= I f(x) y(x)dx (105)

with

(106)

It follows from (106) that

f(x) = —x»+'Lx '"(x'+'s)'j'/(2k+1) .

introducing this expression in (105) and integrating by parts we get

(106')

In the same way, putting

G»=
~

. x '»L(x»+'s)'j'dx/(2k+1) &~0.
0

G"/(2k+1) —G"+'/(2k+3) = I f(x)f(x)dx

(107)

(108)

~ TAB, Figs. 3' and O'; G. Racah, Phys. Rev. 61, 538 t,'1942), Tab1e I.
+ TAS, p. 366.
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4(x) = x " ' r'f(r)dr+x" r '-'f(-r)dr /(2k+1)
aJ p

we have

+ x ' ' r'+'f(r) dr+ x"+' r ' 'f(r)dr /(2k+3), (109)
6p

f(x) =x"+'[x-"(x'+'1b)"]"/(2k+2), (109')

and from (108) we get with a double integration by parts

Gs/(2k+1) —G"+'/(2k+3) = x '"[(xs+'!b)"j'dx/(2k+2) ) 0.
kp

(110)

It is also possible to find particular functions f(x) for which the ratio G"+'/G" tends to the theoretical
limit (2k+3)/(2k+1); an example is given by

f(x) = 8(x—a) —b(x —a —b)
with bc&a.

From the dehnition (17) we have

v(abc; 000) = ' ' '
Z {—1)'+' (a+b —c—s) +"

a+b —c
' s!(a+b-c-s)!(a —s)!(b —s)!{c—a+z)!(c—b+s)!

5,(—1)'+'I t z!(a+b—c—s —1)!(a-s)!{b—s)!{c—a+z)!(c—b+z}!j 'a M!c!
g+b —c

+L(z 1)!(a+b c z) l(g s)!{b s) l(c g+z) 'l(c b+z) !j-1I
and changing the summation parameter in the second term of the brackets,

s{abc;000)= ' ' '
Z, (—1)'+*l[s!(a+b c s 1—)!(a———s)!(b—s)!(c—a+s)!{c b+s)!] '—g!b!c!

a+b-c —[s!(a+b c s 1)!(a——s—-1—)!(b-s—1)!(c—a+s+1)!{c b+s+1)—!] '
l

a+b —c-2s —1

a+b —c ' zt(a+b —c—z —1)!(a—z)!(b—z)!(c—a+z+1)!(c—b+z+1)! '

owing to the identity

a(g+b —c—2s —1) = (a —z)(a+b —c—s—1)-s(c—b+s+1),
we have also

y(abc; 000}= ' ' '
Z, (—1)'+*+1ILz!{a+b-c—s —2}!(a—z-1)!(b—z)!(c-a+z'+1)!'(c-b+s+1)!j 1

(a —1)!b!(c+1)!
a —c —

I (z —1)!(g+b —c-z-1)!{a—z)!(b z)!(c a+z+ 1)!(c—b+z)!j
and changing again the summation parameter in the second term of the brackets,

v(gbc; 000) = ' ' '
Z, (—1)'+'+'

f t z!{a+b—c—z —2)!(a——1)!(b—s)!(c-a+s+1)!(c—b+s+1)!j '(a-1)!b!{c+1)!
a —c

+ t z!(a+b—c—s —2)!(a—s —1)!(b—s —1}'!(c—a+s+2) !'(c-b+z+1)!j 1I

b+c—a+2 (a —1)!b!{c+1)!
a+b —c ' s!(a+b —c—s—2)!(a —z —1)!{b—s)!(c—a+s+2)!(c-b+s+1)!

= I (g-a+1) j(g—c}+{a-1bc+1;000).
From this recursion formula we have

v(abc; 000) = (g —a+x}!(g —c—x)!o(g—xbc+x; 000)/{ {g—a)!(g —c)!Q,
and for x=g —c,

5{abc ' 000) =b!f/{g-bbg ' 000)/t (g-a)!(g—c)!g;
since

we obtain at last {22}.
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APPENDIX 3
Using repeatedly Eqs. (52), and (55') of I, and also the relation

z. (a+s}!(b —s}! (a+b+1)!(a —c)!(b —d}!' (c+s)!(d —s) I (c+d)!{a+b—c—d+1) .''
which follows from (51) I for x and y negative, we obtain from the definition (17):

{—1)~+"v{abe; np —e}v(acf; -0'~)v(bdf; —Pb —q)v(cde;y& —e)

city&V

=~~ (—1}~+~ &v{abe; ~e—~ —e)v(acf; —ay 0f—y)v(bdf; af —e e —y y —n)v(cde; ye —y —e)

{112}

( 1)a c f+t+ts2e!(a+~) l(b+e ~)!{c+y)!(d+e y) l(f+~ y}!(f ~+y}!
aq f (e+a —b}!(e+b —a}!{e+c—d)!(e+d —c)!t!(a+c—f—t)!u!(b+d —f—u)!(a+a —t)!(f—a —y+t}!

~ (d+e —y —u}!(f—d+e —e+u)!(c+y —t)!(f—c—a+t)!(b+e —n —u)!(f—b+ y —e+u)!
{—1)~ ' ~+t+t'2e!(a+~) I(b+e —0t)!{c+y)!(d+e—y)!

aptts {e+a—b)!(e+b—a}~{e+c—d)!(e+d—c)!t!(a+c-f—t)!u!(b+d—f—u)!
~ (f—a+c+t —v)!(c+d+e —u —v)!(a —c—d —e+a —t+u+v)! (v —c—y)!

~ (v —t —m) ~(f—b —c—e+u+v —m)!(b+e- a+t —u —v+zv)! (c+y —v+ m}!
{—1)~ ' ~+'~2e!I(a+b+e+1}!(c+d+e+ 1)!(c+d+e —v)!(v —m)!(u+v- t —m}!(c+d+e+t —u —v)!

t„,„{e+a—b)!{e+b —a)!(e+c—d)!(e+d —c)!m!(a+b —c—d+m)! (c+d+e+1—m)!'(f—b —c—e+u+v —m)!
~ u!(v —t —m)!(a+c—f—t)!(f—a+c+t —v)!t'I(c+d+e —u —v)!(b+d —f—u)!

(—1)' ' ~+t+"2e!{a+b+e+1)!(c+d+e+1)!(c+d+e —v) .'{v—m)!(f—a —c+I+v —m}!(c+e+f—b+t —v}!t, „(e+a—b)!(e+b —a)!(e+c—d)!(e+d —c)!m!(a+b —c—d+m)! (c+d+e+1—m}!'
~ (f—b —c —e+u+v —m)! (u —x)!(a+c—f—t —x)!{f—a —c+v —m+x)!x!

~ (f—a+c+t —v)!(t—z+x)!{b+d—f—u —z+x)!(c+e+f—b —v+z —x)!(z —x) .'

{—1)"+~+" '+'2e!(a+b+e+1)!{c+d+ e+1)!(c+d+e —v)!(v —~}!
, „{e+c—d)!{e+d-c)fm!(a+b-c —d+m) J(c+d+e+1-zo)!2{2c—v —x)!(d—c—e+v —m+x —z)!

~ x!{z—x)!{a+c—f—z)!(b+d —f—z)!(e+f—a- d+z)!(e+f—b —c+z}!
(-1)"+~+"~+'2e~(a+b+e+1}.'(c+d+e+.1)!(d+e —c+x)!(c+e—d+z —x)!

(e+c—d)!(e+d —c)!m!(a+b —c—d+m)! (c+d+e+1—m)!{c+d—e —m —z)!{2e+z+1).'
~ x!(z—x)!(a+c-f—z) ~(b+d —f—z)!(e+f-a —d+z)!(e+f—b —c+z)!

( 1}2e+f+4-0
(—1)*(a+b+c+d+1 —z)!Z,2e+1 {a+b—e—z}!{c+d—e—z)!z!(a+c—f—z)!(b+d —f—z)!(e+f—a —d+z) '. (e+f—b —c+z)!

ERRATA OF PART I
Last line of the summary: read P" for P"; element ('D ~ 2 ~'P) of the 'P matrix on p. 195: read ()Go+2G~) +5 for

(—G0+2G2) +5; second line of $6: read G'+' for G'+'.


