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A new technique is described for quickly locating and measuring weak resonance points of a
plate of piezoelectric material. The method involves driving the resonator with a frequency
modulated carrier and demodulating and amplifying a voltage related to the motion of the
resonator. The output of the amplifier is placed on one set of plates of an oscilloscope and the
other plates are charged with the modulating voltage. The resulting pattern on the oscilloscope
screen permits easy location and measurement of resonant frequencies. This arrangement was
employed with a dynamical method to determine all elastic constants of beta-quartz. Edge
effects were eliminated by the use of high harmonics as described by Atanasoff and Hart.
Several hundred frequencies related to six modes of four cuts were measured, this number of
modes being sufficient to permit the simultaneous solution of the resulting secular equations
with an over determination of the five elastic constants. Table III gives the values obtained
for these constants and also contains all the known results of other experimenters.

HE experimental techniques available for

evaluating the elastic properties of aelo-
tropic or isotropic solids can be divided into two
general classes. The static method consists in
observing the deformation of loaded bars or
plates. The constants measured in this way are
termed isothermal since in the process the small
temperature changes caused by flexing the
specimen have ample opportunity to become
equalized. In the dynamic method, on the
other hand, the elastic properties are inferred
from the frequency of standing waves set up in
a given portion of the material. From knowledge
of the frequency, dimensions, density, and mode
of vibration, the elastic constants can be calcu-
lated. In this case small temperature differences
will exist between regions of nodes and loops.
The constants will differ slightly from those
computed by the static method and are termed
adiabatic.

The advantages of utilizing high order har-
monics in calculations of adiabatic elastic
constants from vibrating plates were first pointed
out by Atanasoff and Hart.! They have clearly
demonstrated that as the number of nodal
planes between two opposite surfaces of a
vibrating plate are increased, the perturbing
effect of the edges has a diminishing influence
on the frequency f/n, where f is the observed
frequency and n the order of the frequency.

LJ. V. Atanasoff and P. J. Hart, Phys. Rev. 59, 85-96
(1941).

The limiting frequency f/n then depends only
on the thickness of the plate, the mode of
vibration, and the elastic properties of the
medium.

Beta-quartz, also known as ‘high” quartz,
exists between 573°C and 870°C. Although the
static method of determining elastic constants
becomes increasingly difficult at these tempera-
tures, an experiment in which this technique is
used on beta-quartz is described by Perrier and
de Mandrot.2 They have published data on
Young’s modulus in directions parallel and
perpendicular to the principal axis and also at
an angle of 50° to the principal axis. This
information is not sufficient to permit a calcula-
tion of the five independent constants for this
substance.

The announcement of Osterberg and Cookson3
that elastic vibrations of considerable vigor could
be maintained in high quartz by means of its
piezoelectric effect has been confirmed by a
recent research? conducted in this laboratory.
In this latter investigation, the resonant fre-
quencies of a particularly accessible mode of
vibration were examined. A measurement of
these frequencies made possible a calculation of
the Ci adiabatic elastic constant for this

2 A. Perrier and B. de Mandrot, Memoires de la Societé
Vaudoise des Sciences Naturelles, No. 7 (Imprimeries
Reunies S. A., Lousanne, 1923).

3 H. Osterberg and J. W. Cookson, J. Frank. Inst. 220,
361-371 (1935).

4J. V. Atanasoff and E. W. Kammer, Phys. Rev. 59,
97-99 (1941).
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FiG. 1. Schematic diagram of experimental apparatus used
in measuring crystal resonance frequencies.

material. The success of this measurement
suggested the feasibility of determining the
remaining four constants with this experimental
technique.

The theoretical treatment of the present
subject is the same as that used by Atanasoff
and Hart in their work on alpha-quartz. Proper
modifications must be made, however, for the
different symmetry conditions encountered in
beta-quartz which is classified as Dg while
alpha-quartz is D;.

The method of detecting and comparing the
frequency of crystal resonances in the present
experiment differs considerably from that of
Atanasoff and Hart. In their technique a crystal
was driven by an oscillator of adjustable fre-
quency. The resonance points of the crystal
were observed by using a vacuum-tube voltmeter
and then the frequency of the oscillator was
compared with a standard. The measurement of
harmonic resonant frequencies of the crystal
could thus be carried to a high degree of precision.
However, with beta-quartz the piezoelectric
effect is much weaker and the losses inherent in
the crystal holder circuit components when at
high temperatures made the deflections of the
vacuum-tube voltmeter unreadably small. A
method permitting considerable amplification of
the piezoelectric reaction in the circuit was
essential to the success of a dynamic method in
this application. The necessary amplification, as
well as certain other advantages, was obtained
in the technique to be described next, but with
a reduction in precision of measurement to
about one part in 5000.

The experimental method used in the present
investigation can, perhaps, best be explained by
reference to the schematic block diagram Fig. 1
and the circuit diagram Fig. 2. The output
voltage of a high frequency oscillator is applied
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Fi1G. 2. Apparatus for measuring resonance frequencies.

to the electrodes EE between which the specimen
is placed. The oscillator is frequency modulated
by a 60-c.p.s. tone, causing the carrier frequency
to sweep periodically across a band of con-
trollable deviation (of the modulated frequency
from its mean). If a resonance frequency of the
crystal lies within the range of maximum and
minimum values of frequency attained by this
modulated carrier, it will absorb some energy
from the field. The exact treatment of the
response of a quartz resonator to a frequency
modulated input is rather complicated ; however,
at a low modulation frequency the following
intuitive interpretation is asymptotically correct.

Since the frequency of the applied field is
continually changing, it remains only for an
instant at the resonance frequency of the crystal.
After this impulse, the quartz, having very low
damping, will continue to vibrate at its natural
harmonic frequency for some little time. During
this time, two radiofrequencies are present in the
circuit; the first, a continually changing one of
constant amplitude due to the oscillator; the
second, a fixed one due to the vibrating crystal
whose amplitude is decreasing because of
damping. These two frequencies are applied to
the detector, and the result of the mixing and
demodulation is a single varying-pitch. audiobeat
note. This audiotone is amplified and applied
to the vertical plates of a cathode-ray tube
whose sweep frequency is the same as that of the
tone which modulated the carrier of the oscil-
lator, in this case 60 c.p.s.

A photograph of a typical trace obtained on
the screen is reproduced in Fig. 3. The abscissa
of this figure represents frequency increasing
from left to right, the resonant frequency of the
crystal being at the center of the pattern. The
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fact that the frequency deviation of the modu-
lated signal can be controlled at will is a great
convenience. A compressed pattern (large fre-
quency deviation) for resonant points permits a
rapid survey. A more precise examination of a
single resonance point is achieved by means of
an expanded pattern.

A parallel LC circuit is used between the
crystal holder and detector. The circuit details
are shown in Fig. 2. This unit is adjusted to
resonate at the center of the frequency band
covered by the modulated carrier. The same
network provides a convenient method for
introducing a standard comparison frequency
into the channel, and it also suppresses undesired
harmonics in the standard oscillator output. To
compare the frequency of the crystal resonant
position on the fluorescent screen with a known
standard, the signal from a standard oscillator
is introduced by magnetic coupling and a pattern
obtained somewhat similar to the one shown in
Fig. 3. This trace is superposed on the screen
with the crystal response. When the standard
oscillator is tuned until the two minima of the
patterns coincide, the standard oscillator is
tuned to a resonant point of the crystal.

Since the specimen between the electrodes EE
must be at a temperature above 573°C if
observations are to be made on beta-quartz, a
special holder was devised. Nickel electrodes
were used with iron rods as leads to the exterior
of the furnace. A sheet of mica placed over the
face of each electrode prevents contact with the
specimen and reduces likelihood of breaking the
plate due to non-uniform conduction of heat
from the electrode. Unglazed porcelain plates
and cylinders make up the balance of structural
material. The holder assembly fits snugly in a
resistance furnace heated by direct current to
avoid induction signals being picked up by the
detector. A Chromel-Alumel thermocouple was
used to measure the temperature of the holder
adjacent to the specimen.

With the apparatus described one may easily
measure the frequencies of resonance of a given
specimen which fall in any selected frequency
range. The problem of classifying these raw data
is somewhat similar to the technique which must
be employed in atomic spectra. If the crystal is
examined in the proper frequency range one
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can select from the observed resonances a
succession of frequencies which are nearly
proportional to a number of successive odd
integers. Such a series of frequencies can only
accurately occur under the following conditions:
1. That the crystal resonator must have parallel
faces so placed that plane waves can travel
between them. 2. That the frequency range must
be high so as to make the odd integers large.
It is natural to interpret such a series of fre-
quencies as constituting the odd harmonics of a
single mode of vibration but it is easy to see
that these frequencies are not simply related to
a fundamental frequency of a finite block but
rather that they asymptotically approach the
harmonics of a crystal plate with faces which
are infinite continuations of the above-mentioned
parallel pair. From these data one may easily
estimate! the fundamental frequency of the
infinite plate which yields the elastic constants
according to a rather simple theory. When the
parallel faces of a crystal resonator are separated
by about one-half centimeter several members of
each series (corresponding to these faces) occur
in the octave below 10 mc. If the crystal plate
has lateral dimensions of say two centimeters,
it will be found that these frequencies already
closely exhibit a constant difference and hence
accurately determine the fundamental frequency
of an infinite plate.

Some of the plates used in this experiment
were selected from those prepared by Atanasoff
and Hart for their work on alpha-quartz.
Several additional plates were made up with
orientation not found among their collection.

F1aG. 3. Typical oscillograph of crystal response.
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The material from which these new cuts were
obtained was carefully examined for optical
twinning by the use of polarized light. Moreover,
the surfaces of the final specimens were etched
with hydrofluoric acid in a further effort to
detect twinning and non-uniformity of structure.
The samples surviving these tests are described
in Table I.

Thus far the measurements relating to linear
dimensions and angles of orientations have been

TABLE I. The dimensions of the quartz plates
in centimeters.

Lateral dimen-
sions in

Orientation Thickness x'2 x's
Y 30° 90° 0.4444 2.197 2.178
R 30°,51°47% 0.4500 2.176 2.222
73° 30’, 59° 29’ 0.8081 1.469 2.214
0° 45° 0.4442 2.227 2.200

made on the specimen as alpha-quartz at room
temperature. Since the material is to be heated
to 600°C, expansion will change the dimensions
of the plate as well as the orientation. Quartz
expands at a different rate parallel to the optic
axis as compared to that at any direction
perpendicular to this axis, the latter expansion
being the larger. These coefficients have been
measured by LeChatelier’ and also by Jay.®
The values published by Jay will be used in the
calculations to follow.

To compute the thickness of the plate as
beta-quartz from the thickness d at room
temperature, use is made of the equation:

ds=da(14+v:)NB/A2

The superscripts « and B on the direction
cosines \ signify that they are the cosines of the
angles between the normal of the plate and the
optic or z axis as alpha- and beta-quartz, re-
spectively. The value M\ is not measureable and
must be computed from the expansion factors.
If p is the angle between the normal to the
plate and the optic axis at room temperature,
then the correction in radians to be added to
this angle due to the effect of increased tempera-

5 H. LeChatelier, Comptes rendus 108, 1045-1049 (1889).
(1;31}.) H. Jay, Proc. Roy. Soc. London Al42, 237-247
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ture will be very nearly :

=3(yy—7.) sin 2.

The quantities vy, and v, are the changes in
length per unit length over the temperature
range considered for directions perpendicular or
parallel to the optic axis, respectively. As a
consequence of the change in angle pu, the
direction cosines throughout the determinantal
equations must be adjusted accordingly. Table
IT contains the corrected values for thickness of
the cuts based on Jay's results v,=0.00998,
v,=0.01733.

The manner in which secular equations can
be obtained for each plate of Table I has been
explained in some detail by Atanasoff and Hart!
in their paper on alpha-quartz. These secular
equations contain the elastic constants as
unknowns and for beta-quartz have the general
form:

C'un—K2, 0, C'ust |
0, C’1221—K2, 0 =0 (1)
C,1311, Oy Cllsal—K'z

The simultaneous solution of a set of equations
of the type (1) begins with the evaluation of the
characteristic value K? for the various plates.

TaBLe II. Computed values of K? for the plates, with
p=2.517 g/cc; temperature 600°C.

Plate d(v) K?
Orientation v thickness cm/sec. dynes/cm?
of plate KC/sec. “d"” cm X103 X101
30°, 90° 417.49 4521 188.74 35.85
0°, 44° 48’ 457.63 4502 206.02 42.70
30°, 51° 35’
Mode I 436.60 4565 199.30 39.99
Mode II 723.08 4565 330.08 109.6
73° 307,
59° 18’
Mode I 240.1 .8205 197.0 39.06
Mode 11 407.6 .8205 3344 112.5

To do this it is necessary to know the density
of quartz as well as the thickness of the plate at
the temperature in question and finally, the
frequency v of the mode of vibration being
observed. The value 2.517 g/cm?® used for the
density of quartz at 600°C was taken from the
work of Day, Sosman, and Hostetter.” The
thicknesses of the plates as beta-quartz after

7 Day, Sosman, and Hostetter, Am. J. Sci. 37, 16 (1914).
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making correction for expansion are listed in
Table II. This table also shows the magnitude of
K? as computed from the relation: K2=4pd?(v)?.

In the secular Eq. (1) which applies to the
Y plate, a factor appears, namely, (Csys—K?) =0,
which readily yields the constant Ci equal to
35.85X 10" dynes/cm?. The variation from the
earlier published value,* of 35.75 X 10 dynes/cm?
is due to the use of Jay's result of 0.01733 for
the v, expansion coefficient for beta-quartz
rather than the older value of 0.0161 estimated
from the data given by LeChatelier.

For the 0°, 44° 48’ plate, the constant C’1201
which occurs in the linear term of Eq. (1) is set
equal to 42.70 X 10 dynes/cm?. Thus:

(0.70453)2Ce6+(0.70967)2C14=42.70 X 10,  (2)

When the above value for Ci is substituted,
the elastic constant Cgs becomes:

Cos=(3) (C11— C12) =49.7X 10" dynes/cm?.  (3)

In order to make certain that the value for K?
used to find Cge is the proper one, an examination
of the constant Ci is necessary and also the
direction of the exciting electric field must be
noted. For the 0°, 44° 48’ plate, the Cy4 constant
which appears in C’1291 Will be Csa23. The piezo-
electric constant ejs for beta-quartz is the only
one with strain subscripts ‘“23.” Hence, the
mode belonging to the linear term for this cut
can only be excited by an alternating electric
field with a component in the direction of the
electric axis. Furthermore, the constants Cy
which appear in the quadratic portion of Eq. (1)
when applied to the 0°, 44° 48’ plate are of the
form Csiis. Since ey is the only piezoelectric
constant with the strain subscripts ‘“13” the
modes belonging to the quadratic term require
an alternating electric field with a component
in the direction of the mechanical axis for
excitation.

Both modes predicted for the quadratic
portion of the R secular equation were observed.
Substitution for K? and the direction cosines
together with the known value for Cy yields
the equations:

(0.23700) C11Cs35— (53.825) C11 — (37.008) Cs3
—(16.993) C13— (23700) C215+8099=0; (4)

(0.23700) C11C33— (11.039) C1; — (10.097) Cs3
—(16.993) C15— (0.23700) C2,5+165.6=0. (5)
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When the plate is taken from the crystal in a
manner which prevents the normal from being
perpendicular to any of the crystallographic
axes, as is the case for the 73° 30’, 59° 18’ cut,
it is not obvious which modes belong to the
quadratic factor. In the determinantal equation
both Csi13 and Csees are present in each factor
so that all three modes could appear with the
electric field applied along a lateral dimension.
However, only two modes were observed in

TaBLE III. The adiabatic elastic constants and moduli
for beta-quartz at a temperature 600°C.

Perrier and
Elastic Lawson de Mandrot
constants (adiabatic) (isothermal)
X101 Elastic moduli X10712 cm2?/dyne X10712
dynes/cm? X10712 cm2/dyne cm?/dyne
Cn=118.4 Su= 0.9257 S11=0.9345
Ciz= 19.0 S12=—0.0802
Cis= 32.0 S13=—0.252 S13=—0.226
C33=107.0 Siz= 1.085 S33=1.050
Cu= 35.85*% Su= 2.789
S(45°%) = 1.073 S(45°) = 1.067
S(50°) = 1.057 5(50°) =1.075

* A value of 19.36 X10!° dynes/cm? has been given for this constant by
Osterberg and Cookson (reference 3). We regard this value as untenable
and a similar opinion is held by Lawson (reference 8).

this instance. If we know what Cgs should be
from Eq. (3), a substitution for each K? in the
linear portion of Eq. (1) involving C’129; verifies
that both observed modes belong to the quad-
ratic factor. This yields two more equations
relating Cy1, Ci3, and Cs;, namely :

(0.19267) C11Cs3— (63.621) C11— (26.902) C33
—(13.814) C13—(0.19267) C?13+8634=0; (6)

(0.19267) C11Ca3— (9.2840) C11 — (7.7460) C33
—(13.814)Cy3—(0.19267)C2;3+4+125.5=0. (7)

Equations (4), (5), (6), and (7) are more than
enough to determine the three unknown con-
stants they contain. The solution was achieved
by a trial and error process of successive approxi-
mations. The values for the elastic constants
shown in Table III satisfy the four equations
within 1 percent.

It is of interest to compare these results with
the isothermal measurements made by Perrier
and de Mandrot. Their values for Young's
modulus perpendicular (E,) and parallel (E,)
to the optic axis are expressed in kilograms per
square millimeter, but in Table III these units
are converted to dynes per square centimeter.
After making a linear interpolation to the
temperature 600°C, the reciprocals of E, and
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E,,, namely, S11 and S, become 0.934 and
1.05X 102 cm?/dyne, respectively. The com-
puted modulus for an angle of 50° with respect
to the optic axis is 1.05X 1072 cm?/dyne. This
quantity was also measured directly by Perrier
and de Mandrot. Again interpolating on their
table to 600°C, the estimated value for this
modulus becomes 1.07X10~2 cm?/dyne. The
accuracy of this latter interpolated value in
particular is doubtful since the experimental
points are widely separated in the region of
600°C and the curve is known to take a rather
sharp bend in this same region. Considering
the experimental difficulties inherent in the
static method when used at these temperatures,
it is felt that the agreement between isothermal
and adiabatic moduli is satisfactory, the dis-
crepancies being of the order of a few percent.
Lawson® has made a dynamic measurement of
the modulus in a direction of 45° to the optic
axis. This was accomplished by setting up
longitudinal vibrations in a quartz bar and
computing Young’s modulus from the frequency
of vibration, density, and length of the bar.
Corrections were calculated for the perturbing
effect of the finite dimensions of the practical
bar on the theoretical frequency of a thin bar
having the same length. In this manner Lawson
arrives at the value 1.067 X102 cm?/dyne for
the 45° modulus while the data in Table III
yield 1.073X10~2 cm?/dyne. This agreement
between these two adiabatic measurements taken
in such different ways is gratifying. Using Perrier
and de Mandrot’s measurements of Ss; and Si

8 A. W. Lawson, Phys. Rev. 59, 608 (1941).
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together with the recently published* value for
S44, Lawson proceeds further to estimate the
modulus S5 obtaining —0.225X 1072 cm?/dyne.
A greater discrepancy appears here with the
value listed in Table III. Since Lawson’s
measurement of the 45° modulus agrees so well
with the present set of constants the dependence
of his result for Si; on the work of Perrier and
de Mandrot seems to be the principal source of
error. On the other hand it should be noted that
Lawson has made a slight error in his reduction
of the results of Perrier and de Mandrot to
c.g.s. units.

Each determination of elastic constants by a
dynamical method requires a knowledge of the
mode of vibration. This knowledge can be
obtained by an experimental examination of the
vibrations?® or it can be inferred from theoretical
considerations.® The method of Atanasoff and
Hart throws a greater burden on the frequency
spectrum by making the identification of modes
depend on it. Since the frequency spectrum can
be determined with high accuracy and since
theory enters only in a simple limiting way this
method seems to possess some real advantages.
We feel that the principal source of error in the
present investigation is the difficulty of con-
trolling and measuring the temperature of the
crystal with sufficient accuracy over the con-
siderable period of time necessary to make
readings. The slight discrepancies noted by
Atanasoff and Hart and explained by Lawson®
are less important.

9A. W. Lawson, Phys. Rev. 59, 838 (1941); 62, 71
(1942).
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