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Contacts Between Metals and Between a Metal and a Semiconductor
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The problem of contacts between metals and between a metal and a semiconductor is treated
classically with the help of the results of wave mechanical theory of electron energy states in
solids. The potential and electron density distributions in the two bodies near the contact are
discussed. The bodies are assumed to be in immediate contact. The problem of a body in
vacuum and the problem of two bodies separated by a gap are discussed qualitatively.

INTRODUCTION

E know that when two bodies are in con-
tact their thermodynamic potentials of

electrons should be the same and that the con-
tact potential diR'erence is equal to the difterence
of work functions at T=o'K. We do not yet
have a detailed picture of how the potential
and electron density distributions near the
surface of each body are aRected by the contact.
Frenkel' using the Thomas-Fermi method has
discussed the situation at the surface of a metal
in vacuum. On account of the approximate
nature of the method he gets zero work function.
Mott' has considered the contact between a
metal and a semiconductor. He is mainly con-
cerned with the situation in the semiconductor
when certain boundary conditions at the con-
tact are assumed. In a previous paper' we have
discussed qualitatively contacts between metals
and between a metal and a semiconductor.
%'e shall now discuss the problem quantitatively
treating it classically with the help of the results
of wave mechanical theory of electron energy
states in solids.

GENERAL CONSIDERATION

The potential energy of an electron in a solid

is periodic with the periodicity of the lattice,
approaching large negative values near the
nuclei at the lattice points. Bloch's treatment
shows that energy levels of the electrons in such
a potential held are divided into separate bands
with gaps of forbidden energy caused by the
periodic nature of the field. Changing the aver-

age potential simply shifts the whole energy

spectrum up or down. If there is a slow variation
of the average potential such that it changes
little over many unit cells, then to the first
approximation the whole energy spectrum with
the top and bottom levels of each band simply
follows the variation and the density distribu-
tion of energy states in each band remains con-
stant. We shall thus assume: (1) The top and
bottom levels of each energy band follow the
variation of the average potential. (2) The varia-
tion of the average potential affects only the
density of electrons in the conduction band,
since the number of energy states and hence the
number of electrons per unit volume in the
completely filled bands remains constant. These
assumptions result in great simplification. They
are, however, rough approximations especially
when the average potential changes very rapidly
as at the surface or the contact with another
body, problems with which we are concerned.

We turn now to the question of electron
density in the conduction band. The wave func-
tion of the electrons is of the form &= e'"'u(r),
the energy being a function of k. The number of
energy states per unit volume in the energy
interval (W& —W2) is given by (-,'s')0, where 0
is the volume in k space between two surfaces
of constant energy corresponding to 8'& and 8'2.
F' is a complicated function of k and can be
determined only by a complete wave mechanical
solution for the given solid. Therefore it is not
easy to determine Q. We shall adopt the cus-
tomary approximation

h2k 2

8'= E+
Sm'nz

' J. Frenkel, Zeits. f. Physik 51, 232 (1928).
' N. F. Mott, Proc. Camb. Phil. Soc. 34, 56S (193S}.
' H. Y. Fan, Phys. Rev. 51, 365 (1942).

where 8 is the energy of the bottom level and m
is the eRective mass of electrons for the band
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under consideration, which can be appreciably
larger than the ordinary mass of an electron.
This expression for energy is of the form for
electrons moving in a space of' constant potential

(—E/e). It must, however, be borne in mind
that we use this expression only for finding
approximately the number of energy states in a
given energy interval. The actual average poten-
tial in the solid is quite diRerent from f E/e)—
and we should not identify the two with each
other when we are concerned with potential.

According to Eq. (1) the distribution of
energy states is

8+'m '/'
f(W)d W = (W—E)"'d W

4x' h'

The number of electrons in the energy states
between I/I/'and E is

n = 2f(W)d W.

Kith constant average potential the average
density of electrons with energy in the interval
8'to E is

1 Sm'&n '&' ~~ (W E)'&'dW—
n-

2s' k' ~ s e&~ r&'"r+1

Ke shall treat our problem classically by extend-
ing the application of Eq. (2) to the case of
variable average potential.

The electrons in the conduction band of
metals are highly degenerate. We have

below the conduction band. If the impurity is
electropositive it can supply electrons to the
conduction band and we have an eScacious
semiconductor. Kith electronegative impurity
atoms electrons from the lower band are ab-
sorbed by them leaving holes in the band and
we have a deficient semiconductor. In general
the impurity atoms may supply electrons to or
absorb electrons from not only the normal
energy bands but also localized energy levels
due to imperfection of the crystal. 4 This may be
of great significance in the theory of semi-
conductors. We shall, however, consider only
efficacious semiconductors and shall use the
simple model: the impurity atoms supply elec-
trons only to the conduction band and in the
normal state all electrons in the conduction band
are supplied by the impurity atoms. Since there
are few electrons in the conduction band we
have exp[(W —i)/kT]&)1. Equation (2) gives

2
n = (2s&nk T—) '&'e« I»""—

h3
= no exp[ —(E ED)/kT j,—(4)

where np is the normal value of n for B=Bp. Let
the density of impurity atoms be N with local-
ized energy levels at hE below the bottom of the
conduction band. The density of electrons in the
impurity levels is

X
~(E—AE—f)/kT+ I

In the normal state with 8=Ep the total density
of electrons in the conduction band and the
impurity levels is ¹ When E is diR'erent from

Bp the density of excess electrons is

S&r(2m) 3&'

(I E)3/2 (3)
—N+ n+

3k»
'

exp[(E AE I )/kTll+—1—
varies with the average potential and n

varies with E according to this equation.
In a semiconductor there are few electrons in

the conduction band. The lower energy bands
are full. According to present theory the few
electrons in the conduction band come mainly
from impurity atoms. In the semiconductors
with normal decrease of resistance with increase
of temperature, the electron energy level of the
impurity atoms is situated in the energy gap

exp[(E —DE —I )/k Tj+1
&& [np exp[(EQ —ZLE I )/kTj-
+n, exp[ —(E Ep)/kT)—
—X exp[(EO DE I )/kT j- —

Xexp[(E —Eo)/kT] (5)
4 B. R. A. Nijiboer, Proc. Phys. Soc. 51, 575 (1939};

A. H. Wilson, "Semiconductors and metals, " Cambridge
physical tract.
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This should be equal to zero when B=BO

~«xp[(E, ~E I.—)/kT]+n, o

=X exp[(E0 —hE —i )/k T]
exp[(E0 —aE —I )/k T]=&0/(& —no)

Since no&&% the first term in the bracket of the
right-hand side of Eq. (5) is small compared with
the other two and can be neglected. The number
of excess electrons is then

exp[(E DE I —)/k T]—+1
& [expL —(E—E,)/kT] —«p[(E —E,)/kT]
—no}exp[ —(E—Eo)/kT]

—exp[(E —E,)/kT] I (6)

provided exp(E —hE —f)/kT((1. It should be
noted that when 8—Eo is too large, then if it is
negative the number of electrons in the conduc-
tion band may become so large that Eq. (4)
based on the approximation of Maxwellian
distribution ceases to hold and if it 'is positive the
condition exp(E AE l )/kT((1—may—no longer
be true.

EXCHANGE AND CORRELATION ENERGIES

The energy expression (1) can be improved
by taking into account the effect of exchange
and correlation energies. When the electrons are
perfectly free and can be considered as a Fermi
gas filling up each energy state with two elec-
trons of opposite spins up to a maximum energy
level, the exchange energy is given by'

e' k' —k ' k —k—2k + ln
2s k„k +k

where k is the wave number of the electron under
consideration and k is that corresponding to
the maximum encl"gy. For the electron of maxi-
mum energy this expression gives e'k /s-.
Strictly this expression applies to electrons in a
field free space. We shall follow the Thomas-
Fermi-Dirac method' and extend its application

' P. A. M. Dirac, Proc. Camb. Phil. Soc. 20, 376 t,'1930);
A. H. Wilson, The Theory of Metals.' J. C. Slater and H. M. Krutter, Phys. Rev. 4V, 559
(1935).

to electrons in a variable potential field. The
correlation energy is more difticult to estimate.
Wigner~ has shown that in the limiting case
when the electrons have no kinetic energy the
correlation energy bears the ratio of 0.292 to
0.458 to the total exchange energy. For the ordi-
nary density of electrons in the conduction
band of a metal the correlation energy is much
smaller. ' We assume it to be equal to 25 percent
of the exchange energy. For the maximum energy
electron the sum of correlation and exchange
energies is 1.25e'k /s.

The above discussion may be applied to the
electrons in the conduction band of a metal,
which can be considered approximately as a
Fermi gas. We do not have to consider the
electrons in the filled bands. Their density being
considered constant, they contribute a constant
amount to the exchange and correlation energies
of an electron. The highest occupied energy level
in the conduction band is now

1.25e' k'
g=E — k + k.2,

8x'm
(7)

where 8 should follow the variation of the aver-
age potential. The volume in k space between
two constant energy surfaces corresponding to
W(k=k ) and W(k=0) is 4wk '/3. The density
of electrons in the conduction band is therefore

n=(8s/3)k '.

With the help of Eq. (7) we get

8x 2.5e'm -6.25e4m'
+ —+2m(l' —E) (8)

In a semiconductor there are few electrons
in the conduction band, which can be considered
as a non-degenerate gas. The exchange and corre-
lation energies are small and we shall not intro-
duce such correction.

7 E. signer, Phys. Rev. 40, 1002 (1934).' E. signer, Phys. Rev. 45, 1002 (1934), curve in Fig. 7.

POTENTIAL EQUATION

We shall smear the positive charge of the
nuclei and the negative charge of the electrons
in the filled bands into a fixed uniform positive
charge, the density of which is equal to the
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normal negative charge density of the conduc-
tion electrons in the case of metals or equal to
the sum of normal negative charge densities of
the conduction electrons and the electrons in the
impurity levels in the case of semiconductors.

Consider first a metal. With the help of Eq. (8)
the Poisson equation can be written as (for one
dimensional problem)

where
h y '3h' 1 3h'

n= —n.
E 2.5e'm) 83r E3' 83r

(14)

Substituting (13) into (12) we get

(dy'&
]
—

)
= 2E,K33[33N»3 33N4—» —N, N—3/3

Edx)
+2NoN'/3+ 'Noo/3 -'No4—/-3]. (15)

d'V Sx
=4'

3h'

2.5e'm
Put N =¹+3N and expand the right-hand
side of (15) in terms of hN

6.25e4m'
+ +2m(i. —E)

gm 2.5e'm

3h' h

6.25e4m' - 1/2 3-

+ — +2m(i —Eo)

= 2E&E3'L3 (No '/ —No 3/3)&N"—-

Edx&
p'~(No —"' 2¹'/—')DN3+ ].

On the other hand we have from (13)
(g3

where V is the average potential inside the metal.
It has been pointed out that 8 follows the varia-
tion of V; i.e. , dE/dx= —ed V/dx. Let

6.25e4m'-
+2m(i- —E).

Equation (9) can be rewritten

d'y 64m&r'eo

dx 3h

-
t/2. 5e'm y

'
( 2.5eom

+y"'
I
-I +y "'

I

73 ) & 73

=E&L(E3+y&/3)3 —(Ko+y i/3)3] (11)

Integrating and using the boundary condition
that d V/dx=0 where E=Eo, we get

where

EjX23
/& y'= Phyo (18)

2N "'—N0 0

(3 E&E3

E2
¹

"'—N0 "']
8.953rme"-( ¹'/'

(»)
I/3 (No"' —1)

Ay=K33p(No "' ¹3/3)A—N

,'(No 4/3——2¹"')—AN3+ ]. (17)

With hN/N(1 both (16) and (17) converge
rapidly. By taking the first term of each series
and substituting (17) into (16) we get

(dy) '-I dAy) '

Edx) I dx )

(dye
~

—
~

=2E,$oy /'+ 3K3y'+2K3'y'-/'
Edx) —(yo"'+3Koyo+3K3'yo"') y

+oyo"'+ 3E3yo'+E3'yo"'] (12)

Equation (18) gives after integration

gy A ~~& lx

or
A'

gU-
2me

(20)

(21)

The right-hand side of this equation can be
expressed in terms of the electron density n.
From Eq. (8) and (10) we have

(3h' y
'i' 2 5e'm

&83r ) 73

For semiconductors with the help of (6) the
Poisson equation is

d'U
= 43renor 3 « »&/» 3—« eo&/3—r] (2—2).

dx'

Here we have assumed that the bottom level
2.5e'm

/3 1] E LN&/3 l ] (13) of the conduction band 8 follows the variation
h of V, i.e. , dE/dx= —ed V/dx. We can therefore
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write

=E(e' e-—*) (23)

Let us consider 6rst two metals in contact.
If we use the approximate Eq. (18) then the
condition (28) gives

s = (E—Eo)/kT (24) 3, Ug/5 Vo ———lo/lg. (30)

E=4ore'no/lo T. (25)

(d VI) (d V2)
}

E dx J. o ( dx &. o

(28)

The condition of continuity of V is

Ui+(&Us) o= Uo+(&Uo). o

or

(5 Ug —6 Vo) o

1
= —-}D'~ —( —e V~) ]—Q'o —(—e Uo) j} (29)

since gj =fp is the condition of equilibrium.

Integrating and using the boundary condition
that d V/dx=0 where E=Zo, we get

dz/dx= a(8E)& sinh(s/2). (26)

Integrating again we have

tanh(s/4) = tanh( —eh V/4kT) =Bo~&'x"*. (27)

CONTACT BETWEEN T%'0 BODIES

Our problem is to determine the charge
density and potential distributions near the
contact surface. We have a second-order diRer-
ential Eq. (9) or (22) for each of the two bodies.
The constants of the 6rst integration are de-
termined by the boundary condition inside
each body: d V/dx=0 where V= Vo. Two more
conditions are required for determining the
constants of second integration, constant A of
Eq. (21) or constant 8 of Eq. (27). These are
supplied by the requirement of continuity of V
and its derivative at the contact. The latter is
the condition for the two bodies being electrically
neutral as a whole. Let body 1 extend from —~
to 0 and body 2 from 0 to ~. We have

pd V&y ~d V&y ~d V, q—4xa =I
& dx i. , k dx ). „(dx ), ,
tdV, q ~dV, q ~dV, ~—4oqo ——

}&dx&. . &dx). o I dx), o

kT
(8E)& sinh

e 2kT

—AU,
=la V„.

If eh V,/2kT (1 we may put sinh(eh V./2kT)
~ehv, /2loT. Then

AU. /hv = —1/(2E)&. (32)

' H. Bethe, Haedbuch der Physik 24/2, p. 420.

The minus sign is due to the fact that we have to
choose the negative sign when taking the square
root of the right-hand side of Eq. (18) for metal
2 and the positive sign for metal 1. From (29)
and (30) the values of A V~ and 6 Vo and hence
the integration constants A for the two metals
can be determined. For the solution of the prob-
lem we need to know [I —(—e V) 7 and the normal
density no and eRective mass of the conduction
electrons. According to the approximate Eq. (21)
at a distance x=1/l from the contact, 6 V falls
to 1/o of its value. Taking oo=o.2 62X1 ~0(the
value for sodium) and the ordinary electron mass
for m, we get 1/l=0. 29X10 cm. Thus the po-
tential and charge density diRer from their
normal values only in the immediate neighbor-
hood of the contact, within one atomic distance.
Bethe' has shown that the Thomas Fermi method
used by Frenkel gives 1/l = 0.74 X 10 ' cm.
Within such short distance from the contact the
electron density can, however, diRer considerably
from the normal value. If [I —(—ev)] of the
two metals diRer by a fraction of an electron
volt, 6 V will be of the order of a few tenths of a
volt. With the numerical data as assumed
above, for AU=0. j. volt, hn is about twenty
percent of no. Owing to the fact that the charge
due to An is concentrated over a short distance
near the surface, a large amount of charge of
opposite signs on the two sides of the contact
is required to form a sufficient double layer for
compensating the di&erence between [I —(—e V) g
of the two metals.

In the case of contact between a metal and a
semiconductor the condition of continuity of
d V/dx gives
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Voc«~
-eV~

I.ectryn )~~-
tlat energy

oyrago~V

FIG. i. Conditions at boundary between a vacuum
and metal surface.

or the smaller no the larger will be 1/(2E) ~ and
[~V,/~V /.

In the above discussion we took account of the
exchange and correlation energies for metals
by Eq. (7) and made them proportional to k
or to the third power of the electron density.
This applies strictly only to electrons in field
free space with constant density. When the
density varies these energies will depend not
only upon the density at the given point but also
upon the density distribution. Hence our ap-
proximation is the better justified the smaller the
density variation or when the difference between
[i —(—e V) j of the two bodies in contact is small.

sinh ~eh V s/2k 7

eh V, f e( —hV„)= ln +ln
(2X)& 2kT

(33)

with the same values for / and E used above.
According to this equation ~hV. /hV

~

—1 at
eD V,/2k T= 10.3 corresponding to 6V, =0.515
volt. Thus for the case of small difference be-
tween [l —(—e V) j of the two bodies most of the
potential drop takes place in the semiconductor,
whereas for a large difference the potential drop
in the two substances may become comparable.

Let us assume that eh V,/4kT & 1;we may put
tanheA V,/4k T eA V./4k T in E—q. (27), whence

6 V, = — 8 exp[ —(2E)&x].
4kT

In a distance of 1/(2X) &, 5 V, drops to 1/e of its
value. Comparing the estimated values of l
and 1/(2K) & we see that the potential variation
and space charge extend over a much wider
region in a semiconductor than in a metal. The
poorer the conductivity of the semiconductor

Putting rio 10" an——d T=300'K we get (2E')&
=1.18X$0'. Kith the value of I estimated above
we have ~AV, /hV

~

=2.96X10'. Thus AV„ is
negligible compared with AV, ; all the diAerence
between [1 —(—e V) j of the two bodies is evened
out by potential variation in the semiconductor.

At T=300'K, ehV, /2kT=19. 36V, where AV,
is in volts. It is possible that this factor is much
larger than one, in which case we may put

—eh V,

CONTACT %ITH VACUUM

For the vacuum space in contact with a body
[l (——e V)] is equal to the negative work
function of the substance, —p.

[l.-(-eV)]-(—~) = [f -(-eV)]+e

is of the order of several electron volts. Within a
very short distance at the surface of the body
the electron density changes from its normal
value inside the substance to a negligible value.
A more accurate method of evaluating the ex-
change and correlation energies is therefore
necessary. In fact it can be easily shown that
unless this is done we should get zero work
function. "

Consider the surface surrounding the body,
outside of which there are no electrons. If the
body is not charged then according to Gauss's law
J'd U/dnds =0. It follows that d V/dn =0 at this
surface. Moreover, outside this surface V'V=0.
Therefore the potential at this surface is equal
to the potential at infinity. Our expression for
electron density, Eq. (8), gives [l —(' —e V)]=0"
for I=0. Hence at this surface f= —e V= —e V„
and the work function is equal to zero.

The actual condition is represented by Fig. f.
At surface A f = —e V but the electron density
has not yet dropped to zero, contrary to Eq. (8).
The potential V continues to drop (—eV con-
tinues to rise). At surface 8 the maximum energy
level is equal to the potential energy which is the
sum of —eV and the exchange and correlation

"Cf. H. Bethe, Handbuck der Phys2k 24/2, p. 417.
» For vacuum B in Eq. {8) is equal to {—e V).
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the amount of charge acquired by each body
will be too small to affect appreciably the elec-
tron density and potential distributions at its
surface. We may then assume the work functions
to remain constant and the potential difference
across the gap is q &

—
ym (Fig. 2b).

With decreasing distance the charges acquired
by the two bodies increase in order to maintain
the same potential difference across the gap.
For parallel plates the surface charge density is

If the charge is concentrated within a layer of
10 '-cm thickness the corresponding electron
density will be of the order

(c)
Ftr. 2. Conditions at gap between two bodies.

energies. Beyond 8 there are no electrons and V
remains constant. The continuity of V and its
derivative serve as boundary condition at the
surface. It is clear from this discussion that for
the treatment of this problem we have to wait
for the development of a better method of taking
care of the exchange and correlation energies.
Bardeen" has given a wave mechanical calcula-
tion of the work function for sodium.

Consider two bodies separated by a gap. If
there is no interchange of electrons the condition
will be shown by Fig. 2a. Except at absolute
zero temperature there will be an electron
atmosphere in the gap, which is in equilibrium
with electrons in the two bodies. This requires
g~=g~. Under the condition shown by Fig. 2a,

more electrons Row from body 2 to 1. As a
result the two bodies become oppositely charged
and a potential difference is set up across the gap
bringing g~ = t ~. If the gap is not too narrow

"J.Bardeen, Phys. Rev. 49', 653 (1936).

pl —
rp2 1

n= —10'.
4xd e

With a difference of one volt between the work
functions and a gap of 10 ' cm the charge ac-
quired due to the contact gives rise to an addi-
tional electron density of the order of 102'.
This approaches the order of magnitude of the
normal density of electrons in metals. Therefore
with such small gaps we can no longer assume
that the potential and electron density distribu-
tions at the surfaces remain unchanged (Fig. 2c).
The treatment of such problem has difhculties
explained above.

The treatment developed in the previous
paragraphs applies to two bodies in immediate
contact. We have to know [i'—(—e V)] for
each of the two bodies or the difference. This
quantity for a substance is given by a wave
mechanical solution of the electron energy
states. It should be related to the work function
and we would be able to determine it from the
experimental data of the latter if we could
derive the relation between the two. Experiments
on contact phenomena such as contact rectifica-
tion should yield useful information.


