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On Discharge Voltage and Return Voltage Curves for Absorptive Capacitors
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Formulas for the initial slope of the discharge voltage and return voltage curves in absorptive
capacitors are given and it is shoun that the discharge voltage curves are limited by two
threshold curves, one of them being directly proportional to the slope of the other one. Some
applications for the determination of the dielectric relaxation function, the dielectric loss,
the time constant, and the electrical charge of absorptive capacitors are given.

BONING' has recently established some
relations connecting the initial slope of the

return voltage curves with the dielectric loss
and other characteristic properties of absorptive
capacitors. A brief account of some of his
deductions and results can be found in a paper
by Whitehead and Eager these authors have
performed an experimental test of one of Boning's
relations. Boning's analysis is based upon Max-
well's theory of the two-layer dielectric. It has
been recognized that this theory yields qualita-
tive results only —the behavior of real dielectrics
is much too complex to be accounted for by so
simple a model. Therefore Boning's formulas
claim an approximate validity only. Yet by
the application of the principle of superposition
there can be obtained a rigorous treatment of
the discharge voltage and return voltage curves
observed in absorptive capacitors and of the
way these curves may find useful applications
in the technique of measurement. The validity
of the principle of superposition for capacitors
with solid dielectrics seems to be sufficiently
established on experimental as well as theoretical
grounds.

I. THE SUDDEN OPEN CIRCUIT

Consider a capacitor forming part of an elec-
trical network. At a reference time 3=0 there
shall be a sudden open circuit in the branch
containing the capacitor so that the terminals
of the capacitor become completely isolated one
from another and from the rest of the network.
After the opening of the branch, the total cur-
rent across the capacitor must be zero. If the

' P. Boning, Zeits. f. tech. Physik 19, 241 (1938).
s J. B. Whitehead and G. S. Eager, J. App. Phys. 13, 43

(1942).

principle of superposition is valid, this current
can be expressed in terms of the geometric
capacitance C, the ohmic resistance R, and the
dielectric relaxation function y(t). Hence'

dU' U
t&0: J(t)=C

dt E.

p(t —r)dr+i(t) =0. (I)
~p d7'

The solution of (I) gives the voltage at the
terminals of the capacitor after the sudden open
circuit.

Kith the introduction of a linear operator
F[Uj this equation can be written in the
shortened form

FL Uj+i(t) =0.

During the period of time previous to the
sudden open circuit, i.e. , for t &0, the capacitor
shall have been energized by a given voltage
U(t). In an anomalous dielectric, every variation
of electric stress produces a current which con-
tinues Rowing even after the stress has ceased.
The term i(t) denotes the sum of the currents
created during the period of energizing and still
continuing after the insulating of the terminals;
i(t) is given as a function of U(t) as follows:

(' dU
i(t) = ~' q(t r)dr-

„dr
It is this term that causes the rise of voltage

at the terminals of a capacitor which has been
short-circuited temporarily. Equation (1) demon-
strates that this voltage must be diferent from

3 B.Gross, Phys. Rev. 57, 57 (1940).
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It may be stated that this equation is not
valid for a circuit mhere an inductor is put in

series with the capacitor; in this case there
mould be a voltage jurnp at t=o.

It is easily seen that (1) can also be written in

the form

(dQ/dt)+ U/R=o,

mhere

~t dU' t—r

Q= CU+ I y(g)der.
dr 0

(6)

With the introduction of the quantity Q,
the equation of the absorptive capacitor has
the same form as that of the non-absorptive
capacitor.

In the case of a leakfree capacitor (R = ~), no
loss of electricity could occur after the open
circuit because there would be no ohmic con-
duction. The quantity of electricity held by the
capacitor at the moment of the open circuit
would remain constant so long as the terminals
remain insulated. If in (5) we put U/R=O, we

have Q=const. =Q(0). In the case of a leakfree
capacitor, Q would obey a law of conservation.
We therefore identify Q(t) with the total amount
of electricity stored at any moment by the
capacitor. CU is the quantity of electricity
contained by the geometric capacitance and
J' ' the quantity of electricity absorbed by the
dielectric.

Consideration should be given to the dis-
continuous variations of the applied voltage.
At the moment of a voltage jump, dU/dt be-
comes infinite. In consequence, the integrals (1),

zero so long as t'(t) is different from zero. U(t) can
remain zero only if the short circuit has lasted
so long that at its end i(t) can be neglected.

The term Jo' in Eq. (1) represents the absorp-
tion current which surges in the dielectric in

consequence of the voltage variations which

occur after the sudden open circuit.
Immediately before and after the sudden

open circuit the voltage at the terminals must be
the same, for it can never jump spontaneously.
So for t =0 one obtains the condition of con-

tinuity

lim U(0 —e) =lim U(0+&).
@~0 s~o

(3), and (6) apparently become indeterminate.
But it is easy to see what values are to be at-
tributed to the integrals in these cases. Every
voltage jump DU(r;) is followed by an absorp-
tion current AUrp(t r,)—. In the present case,
for every discontinuous variation of U(t), the
value of an integral of the type fd U/dr y (t r)dr-,
as calculated by ordinary methods, must be
increased by a term hU;rp(t —r;). It is in this
sense we are using the symbol J'. lt is easily seen
that the definition of the integral to which we are
led by empirical considerations coincides mith
the definition of Stieltjes' integral. Indeed, as it
has been pointed out to us by F. M. de Oliveira
Castro, the treatment can be made rigorous
from a mathematical point of view if one writes
the principle of superposition in the form of
Stieltjes' integral

y(t r)d U. —

II. THE INITIAL SLOPE OF THE DISCHARGE
VOLTAGE AND RETURN VOLTAGE CURVES

AND THE MEASUREMENT OF THE
RELAXATION FUNCTION

For the limit I, =O, i.e. , just at the moment
when the sudden open circuit occurs and the
terminals become insulated, the integral in (1)
disappears. U has still the value it possessed at
the end of the energizing period according to (3).
Thus

pd U~ U(0) t'(0)

&dt~, RC C

Now consider the curve of return voltage. The
capacitor has been charged during a very long
time under a constant voltage E and then
short-circuited during an interval T. The voltage

jump of magnitude —F, occurring at the begin-

ning of the short circuit„ is followed by an ab-
sorption current which at an instant t is given

by i(t) = —Bp(t+'1). U(0) is zero. After the
insulating of the terminals, the voltage rises

again. The initial slope of this return voltage

curve is therefore



VOLTAGE CURVES FOR ABSORPTIVE CAPACITORS

One can just as easily obtain the initial slope
of the discharge voltage curve. In this case,
before the terminals have become insulated the
capacitor has been charged under a constant
voltage 8 for a period T. The voltage jump
at the beginning of the energizing period, of
magnitude +B, produces an absorption current
given by i(t) =By(1+T) Furt.hermore, U(0) =B.
After the terminals have been insulated, the
voltage begins to drop steadily. The initial slope
of this discharge voltage curve is given by the
equation

with large values of t, q (/) becomes so small that
only an electrometric method can give satis-
factory results.

The dielectric loss, characterized by the
tangent of the loss angle b, can be split up into
two parts, one due to the ohmic conductivity
and another one due to the absorption current.
The first part is given by 1/c0RC. According to
Schweidler' the second one can be calculated if
the relaxation function is known. It is

fdUy B B——
v (2).

I dt)0 RC C
(9)

tan 6=

C+)" y(u) cos a)udu

The initial slope of the discharge curve ob-
tained after a complete charge (T= ~; y(T) =0)
is expressed by B/RC. —Its determination
enables one therefore to obtain the characteristic
time constant RC of the capacitor. The time it
takes to charge completely an absorptive capaci-
tor is generally of the order of many hours, even
for low loss materials like mica and sulfur.

The initial slope of the discharge voltage curve
observed after the capacitor has been charged
during an extremely short time (T~O) gives a
measure of the initial value of the relaxation
function.

It is interesting to note that at the beginning
of the discharge the voltage at the terminals of
an absorptive capacitor decreases more rapidly
than does the voltage of that non-absorptive
capacitor which has the same ohmic resistance
and geometric capacitance as the first one.
Afterwards the discharge of the first one becomes
slower. The initial slopes of the discharge voltage
and return voltage curves are related one to
another in a very simple way. Their sum is con-
stant and given by B/RC. —

Once the value of the geometric capacitance is
known, the measurement of the initial slopes of
the return voltage or discharge voltage curves
permits the calculation of the relaxation func-
tion by the formulas (8) and (9). In many cases
for the direct determination of this function
obtained by recording the discharge current of a
short-circuited capacitor, this method may be
substituted advantageously. When concerned

The relations (8) and (9) give the connection
between the dielectric relaxation function and the
initial slopes of the return voltage or discharge
voltage curves. We are therefore able to corre-
late the dielectric loss with these functions,
substituting in (10) for q(u) its values obtained,
respectively, from (8) or (9). The formulas so
obtained do not depend on any model circuit
but suppose only the validity of the principle
of superposition.

For very high frequencies, the peak value of
the component of the current in phase with the
applied voltage is given by A p(0) +A/R, and the
peak value of the component in quadrature with
the applied voltage is given by cod C where A is
the peak value of the applied voltage. Then we
have Boning's formula

v (o)+-
tan n

where tan n denotes the initial slope of the re-
turn voltage curve observed after a short circuit
of extremely small duration. The critical value
of co, for which this relation becomes valid, can be
inferred from the condition

f2@i'
cp(0).E~)

4 E. v. hweidler, Ann. d. Physik 24, 71i (1907).
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III. THE THRESHOLD VALUES FOR THE DIS-
CHARGE VOLTAGE AND RETURN VOLTAGE

CURVES AND THE MEASUREMENT OF
THE TIME CONSTANT

The application of the relations {8) and (9)
requires the knowledge of the time constant RC
and the geometric capacitance C. There are
many other cases where one needs to know RC,
which is perhaps the most important quantity
for characterizing the behavior of a capacitor.

circuit and the rise of the return voltage, which
increases with decreasing duration of the short
circuit. In both cases there exist threshold
values.

The sloshiest of all discharge voltage curves Uo(t)
is observed after the capacitor has been charged
under a continuous voltage 8 during a time T
so long that any further charging mould no
more increase the quantity of electricity held

by this capacitor. There

and
F[U ]=0,

U (0) =E.

(11a)

(11b)

1111
Fro. 1.

A conventional laboratory method for measur-

ing RC consists in observing the discharge volt-

age curve of the capacitor. If the voltage during
the time t drops from Vj. to V2, RC is calculated
by the well-known formula t/1 (nV~/ V2). In
absorptive capacitors this formula cannot be
applied because there the simple exponential law,

upon mhich it is based, is no longer valid. One
of the 6rst tasks of all theories concerning the
general behavior of absorptive capacitors has to
be the deduction of a suSciently precise method
for determining RC. The method referred to
above does not fu1611 this requirement about
precision because it implies the derivation of an
experimentally given curve. In the following,
there are developed some simple and general
laws which provide a method of the kind needed,
and help at the same time to come to a closer
understanding of the behavior of absorptive
capacitors.

The discharge voltage curve of an absorptive
capacitor depends to a great extent on the dura-
tion of the previous charging period, decreasing
rapidly if this period has been short and de-
creasing slowly if it has been long. A similar
relation exists between the duration of the short

The fastest of all discharge voltage curves Ub(t)
is observed if the voltage 8 has been applied
during a time 1so short that there has not yet
been any absorption of electricity in the dielec-
tric. The quantity of electricity held by the
capacitor is still equal to BC. There

T
I y(t)dt =0; i(t) =Ey(t)

F[Ubj+Ey(t) =0,

Ub(0) =E

(12a)

(12b)

and

FL U, j—Ey(t) =0,

U.(0) =0.

{13a)

(13b)

To obtain a direct relationship between these

The fastest of all return voltage curves U, (t) is
observed if the capacitor, after having been
charged under the continuous voltage E during
an extremely long time, is short-circuited during
a time T so short that it has lost only the quan-
tity of electricity CB contained by the geometric
capacitance, whereas the quantity of electricity
stored in the dielectric remains unchanged.
There
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d 'dU,
q (t r)—dr

dt ~o dv.
I' Ug,
0

RC=
U.(0) —U.(t)

~t d2U ~d U.y

e(t —)d +~ ~
v(t) (14)

&dt)0 (20)

voltage curves, diHerentiate (11a). Noting that which is obtained as a particular case for
U. = U& and, consequently, U, =O.

Integrating (16), we have

and taking into account (9), we obtain

+Zq(t) =0,
dt . (15a)

d U.q

i
RC

I
=E

E dt)
(15b)

Comparing Eqs. (12) and (15) one arrives at
the relationship between U and U~

This relationship seems to be very suitable for
an experimental determination of RC and of
R and C alone if the measurements are repeated
with a loss-free capacitor of known capacity
connected in parallel to the test capacitor.

Closely related to the measurement of the
geometric capacitance is the determination of the
quantity of electricity held by the capacitor.
For this purpose, Eq. (15) suggests a simple
method. By integrating (15) from 0 to ~ we
obtain

dU
Ug = —RC (16)

QO

Q(0) =— Udt
R~o

(21)

Comparing (11), (12), and (13) one observes'

and therefore

A/l discharf, e voyage curves are limited by two

threshold curves, one of thent being directly propor-
tional to the slope of the other one The diff.erence

of these curves gives the threshold for all the return
voltage curves. (See Fig. 1.)

The relations (16) and (18) are generalizations
of the differential equation of the non-absorptive
capacitor

1/R times the integral over the whole dis-
charge voltage (or return voltage) curve gives
directly the quantity of electricity the capacitor
held at the beginning of these curves. On the
other hand, Q could be calculated if one per-
forms an integration over the absorption cur-
rent. Because it is simpler to determine

)f Udt
0

than it is to determine '

U = RC(d U/dt), —

'B. Gross„reference 3, Eq. (1Z).

(19) the first method seems to be more suitable.
I am greatly indebted to Professor E. L. da

Fonseca Costa who made this study possible.


