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In Part I of this paper, the spatial geometry of the surface of a rotating disk is examined
from the standpoint of general relativity theory. Eddington's argument for a homaloidal
surface is shown to be in error, and Einstein's "relative" geometry is correlated with the
"intrinsic" geometry of the disk (i.e., the geometry as determined by an observer at rest on
the rotating disk). The Gaussian measure of hypercurvature of the surface, at any point on

oP aPr
the disk at radius r is found to be —3—1——. In Part II, the temporal aspects of the

ci

rotating disk are examined and a new test of general relativity, by use of the cyclotron, is
proposed: an arti6cially radioactive element of low atomic weight is revolved, as ions, within
the cyclotron. Upon being brought to rest, the element should be found more radioactive than
an equivalent sample of that element remaining at rest.

PART I. GEOMETRY

~HE problem of the rotating disk, in rela-
tivity theory, is associated with the names

of Ehrenfest, Einstein, Lorentz, and Eddington.

Einstein's Geometry

Einstein and Infeld have argued that a rigid
disk under uniform angular velocity co relative
to a galilean frame, will exhibit a non-euclidean
geometry in the de6nite sense that the circum-
ference of the disk will no longer equal 2~r,
where r is the radius of the disk, More precisely,
we 6x small rigid rods along the entire disk's
periphery at right angles to the radii of the disk.
Ke also surround the edge of the disk with
similar, small, rigid rods at rest, in galilean
space, with respect to the disk's center. Let us
measure such a rod P 6xed on the disk at r as it
passes any rod I" 6xed in galilean space. Then
relative to the G (galilean) observer, who uses
the rod I", the measured length of the adjacent
rod on the disk is

where @=~r.Hence P &I".This is in accordance
with the special theory, and appears to be
correct, even though, as we shall see, the com-
plete analysis of the problem requires the
formulae of the general theory and superimposes
an additional eA'ect upon the measurement of P.
Rods at right angles to P (i.e., rods directed

2

along the radius) will not contract, by the special
theory, since r is at right angles to the line of
motion (s). Hence the measured radius is not
affected by the rotation. Each G observer 6nds
the adjacent rod on the disk to have the length P.
If we now add up the measuremental results of
the G observers all around the disk, we 6nd

where
p I"=c'=2wr

which is the circumference of the disk when it
is at rest in the G frame; and C is the circum-
ference of the rotating disk relative to the G

observers. Then

s2) $

c')
so that the geometry of the rotating disk is
apparently non-euclidean. '

Opposed to this point of view are A. S.
Eddington, H. A. Lorentz, and H. Levy who
contend that the geometry of the rotating disk
remains euclidean. '

The 6rst part of this paper will attempt to
demonstrate the error in Eddington's argument,
as well as to distinguish between the "relative"

~ Cf. A. Einstein and L. Infeld, Evolution of Physics, pp.
240-42; also Infeld's review, in Sc~erIce and Society 4, 236
(1940), of H. Levy's Modern Sc~ce (p. 595).' A. Eddington, Mathematic/ Theory of Relativity (1923),
P and p. 36; Space, Time and Gravitation, p. 75. H. Lorentz,
Nature 100, 795; Collected I'aPers, Vol. 7 {1934),pp. 171—72.
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geometry of Einstein and an "intrinsic" geometry
obtained by an observer at rest on the rotating
disk. It is shown that the intrinsic geometry of
the disk is one whose Gaussian measure of
surface hypercurvature is negative and variable.
Superimposed on the intrinsic geometry there
is, for a galilean observer, the relative geometry
such that

s2
t =co[ &

——I,c'J

where Co is the circumference of the rotating
disk as measured by an observer at rest on the
disk.

event anywhere on the disk, then we identify
the coordinate time t with the time t' of the
event's observation as measured by the G clock
at O. Hence the above equation t'=t. It follows
from these equations that

x~2+y&2 —x2+y'2

so that the radial cartesian coordinate vector r
equals the galilean measured value r'.

We now employ the rule that G space and
time readings satisfy the relation

ds' =dt" ——Ldx" +dy" +dz"j,
g2

Transformation Equations

To deal with the problem systematically, we

may proceed as follows: Allow a G observer to
assign cartesian or polar coordinates fixed on the
rotating disk, with the center 0 of the disk as
the origin of the coordinates. To make this
assignment, we have to consider the relation of
our galilean measures x', y' to the rotating
coordinates x, y. The constant angular velocity
of the disk is &o =d8'/dt'. Now d8' is the measured
angle element swept out by a radial coordinate
on the disk, as measured from some base line
fixed in G space and originating at O. The time
dt' is the time required for sweeping out d8', and
is measured at O. We then take

x =x cos MI —p sin M$

y'=x sin art+y cos ~t t'=t,

to which we may add s'= s, since the rotation is
around the z axis at O. These equations define
the cartesian coordinates on the disk. They are
the equations of motion of a point fixed on the
disk rotating in G space.

We must brieAy consider the time coordinate.
We may place a clock at 0 in G space. In
assigning a coordinate time to events fixed on
the disk, we do not correct for the time light
requires to pass from the event to the clock at O.
We simply assign time coordinate values to
events on the disk as observed at 0, using the
G clock. If we call t the coordinate time of an

where ~ds~ is an invariant with the dimensions
of seconds. From our transformation equations
we obtain:

dx'=cos set dx —sin ~t dy co(x sin—art+y cos &ot)dt

dy'=sin a&t dx+cos cot dy+&a(x cosset ysin &ot)d—t
ds' —ds" dt' —dt

Substituting these values in the space-time
equation we find that

i
ds~= &

——(x2+y') «' ——
L
—2~ydx«

c2 f2

+2(oxdydt+dx'+dy'+dz' j. (2)

This may also be written in centimeters as
82 = C2dS

Eddington's Geometry

I shall now present Eddington's argument
apparently demonstrating that both the radius
and the circumference of a rotating disk contract
by the same amount; we therewith obtain, or
assume, homaloidal space. The following argu-
ment appears legitimate up to a certain point
where objections will be raised.

Consider a disk having absolute rigidity, i.e.,
it is incompressible under duress of force, or, its
moduli of elasticity are infinitely great. Thus,
such a disk, resting in a G frame, if subjected to
any external forces upon its rim, would undergo
no contraction, extension, or torsion.

We now apply an equation obtained from a
theorem of Jacobi, showing that between fixed
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limits of integration we have From (A) we then obtain

( —g') & dx', dx'mdx'gdx'4
J

dxodyodho=
~

1 — —
I dxdyds.

c' )

where x4= cI and g is negative and is the determi-
nant of gq„in the line element of four dimensions

It is now convenient to transform to polar
coordinates. The element of area is

dxdy = rd8dr.

ds =g ~pdx ~dxp.

In inhnitesimal regions this gives

d T= ( g) &dx~d—x2dxgx4,

where d T is an invariant four-dimensional
volume element that can be written in proper
measures as

d T=dx+yodsod80,

where the proper time, in centimeters, is

Since there is no motion along the s axis, @=2'0.

Hence

( ~2r2) —$

c' )
It is at this point that our objection to

Eddington's argument begins. Eddington sets

We then obtain

d80 ——(g44)& dx4.
eu2r2't

rodro )1— ——
~

rdr.
c' )

dxodyodso ——(—g/g 4)4&dxgdxmdx3. (A) rodr0 =
~2r2

j. — rdr

CO 2M/
d8'= 1 ——(x'+y') dx4' — —— -dxdx4

C C or 6nally

Now in the expression (from which d80 is ob- or
tained): c2 ( ~2r2) f

E c2)

2cox
+ dpdx4+dx +dp +d2'

C

(Cfl)

This gives, to a hrst approximation

0 0

0 0

from which g = —1 and

1 ——(x'+y')

which is the result obtained by Eddington and
Lorentz.

Up to and including Eq. (C), there seems to
be no valid objection to the argument, but in
stating (C'), Eddington is assuming that deo ——d8.
This, however, is the whole point at issue, since
the latter assumption is equivalent to the
postulate that angular measures are unaffected
by rotation, i.e., that the geometry remains
euclidean. In fact, Eddington and Lorentz show
that circumference and radius both contract in
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the same ratio relative to a G observer. Thus, improper inference that, to obtain the proper
anelementof therelativecircumferencewouldbe spatial geometry, it is sufficient to take t as

constant in the equationdC= rd8.

Likewise, an element of the proper circum-
ference would be $2

dCO= rod&0.

But from the Eddington argument I5I = 80 and
thereby obtaining

+2idxdydt+dx'+dy'+ds' j,

dsii = —[dx'+dy'+ds'j.

( (g2r02) 't pi%'
t (fair 2)

4c' J &g ( 4c')

Now it is true that the necessary and sufhcient
condition f'or "Hat" or homaloidal space-time is
the vanishing of the Riemann-Christo6'el tensor,
that is

E„„,=O where p, , v, o, 7=1, 2, 3, 4.

And this condition is satisfied when one can
transform away the entire gravitational field.
This is implicit in the integral transformation
Eqs. (I) for x, y, z, t

However, this argument is valid only for the
geometry of space-tim-- -it is not necessarily
valid for a sub-space such as the surface of the
rotating disk. In general, the condition f'or
homaloidality in n space, namely,

EItytr=Q where p) p) 0) T= 1) 2) ' ' n

is not always applicable to a space of n —es
dimensions, where m~n —1. Of course, the
conditions

Atty Ettyer 0

are also satisfied for the space-time (n =4) of the
disk, but not necessarily for the surface space
(n=2) of the disk.

Intrinsic Geometry

Another confusion that appears to arise, in
arguing for homaloidal space on the disk, is the

Defining the proper spatial interval as

dI =M8g)

we have

dl = (dx'+dy'+dz') &,

therewith apparently indicating euclidean geom-

etry once more.
The error in this argument was pointed out by

M. von Laue. 4 In order to obtain the purely
spatial geometry of the disk, one must select a
vector at right angles to the world lines of points
fixed on the disk. It is not sufIIicient, for this
purpose, to set x4 equal to a constant and
therefore dx4 ——Q. The latter is permissible only
when g.4=0 for a=i, 2, 3—that is, if the time

axis is everywhere at right angles to the spatial
extension. Parenthetically, it should be remarked
that while it is a quite natural geometrical
requirement to obtain the three-dimensional
sub-space from space-time through this orthogo-
nality condition, it does not follow logically
from this, that we may identify rigid metric
rod readings on the disk with spatial dimensions
and geometry derived from such orthogonality.
The identification is a matter of assumption —a
convenient one no doubt. This assumption
appears related to a fundamental arbitrary
feature in the dehnition of a rigid body that I
have dealt with more fully elsewhere. '

To return to the basic argument, let us
transform our line element d8 through the
equations

x=r cos 8 and y=r sin 8.

'See R. Tolman, Relet'city, TMmodyncmics and Cos-
mology, pp. 185-86; R. Lindsay and H. Margenau, Eozcm4-
tioes of Pkys~cs, pp. 360-63.

' M. von Laue, Die Relativitatstkeorie, Vol. 2, pp. 142—43.' Carlton B.VAinbqrg, Phil. Sci. 8, No. 4, pp. 5Q6-532;
618-623.
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Then we may write

f"40—d8' =dr'+ r'd8'+de'+ d'Hdct

C

or

f co 4o'r3)
+ CcPde

~

1 — (dc3~3
c c' j

—d8 =dx +f dx +dx 2

2f co ~3r3)
+

c E c')
glldx1 +g33dx3 +g33dx3

+2g34dx3dx4+g44dx4 .

Now the angles between the various coordinates
are given by the direction cosines

coordinate path of a point along its world line.
Using the same coordinates, we define dx„as
the vector standing at right angles to the world
lines of any two points fixed on the disk, so that
hx„is an infinitesimal difkrence in the coordi-
nates between two points at rest on the rotating
disk. In other words, this is the vector of the
spatial extension. Then, by our assumption,
we have

gcb~Xa~Xb+ gg4~Xr3dX4+ g4rp~X4dXrp+ g44~X4dX4 =0
a, b=1, 2, 3.

But, for any points fixed on the disk

de de =0
d8 d8

(g 4» +g44»4)dX4= 0

gu
cos (p, 1)=

(g, g-)'
b,x4= ——g,4b,x .

g44

where (34, 1) is the angle between the x„and x, The invariant (proper) sp4363lihterval between
coordinates. e We can readily see that the angles two points at rest on the disk is therefore
(p, 4) equal 90' except for p4=2. Thus we have obtained from the scalar product

or

r34o/c
cos (2, 4) =

(g» g44)' (
c' )

dl =g p», exp, n, P=1, , 4 (4)

where dl is the proper length of the spatial
element between points whose coordinates are
separated by the coordinate vector hx„.Then

roo ( &o3r3) -&

icos (2, 4)=—
(

1—
c& c')

dP =g~»»3+g 4»»4+g4»4»o+g44»4

(=g~X»3+g 4»
~

——
g 4»

g44 )

+g,4»,
~

——g,4»,
~g„)

1 q3
+g44 )

——
) (g.4».)'

g44&

(3) d13 =g,3bx, bx3 (g,4bx, )'——
g44

g pdxp», =0.
1 j.

(g.4hx. )'+ (g—,4—bx.)'—
g44 g44

=g,341X bx3 (g,4hx )'. ——
g44

The vector g.exp is the vector in the world line
element (—ds') where dx„def1nes the infinitesimal

6 Cf. T. Levi-Civitas, The Absolltg Differential Calculus
(&929), p. t28.

which gives an imaginary angle between x2 and
x4 that is a function of r and is equivalent to 90'
only when f=0.

Hence we find that in d8' the time axis is not
everywhere at right angles to the spatial dimen-
sions. We must therefore choose a (four-compo-
nent) vector which does satisfy this condition.

We take a contravariant vector hx„and the
covariant vector g„pdxp at right angles to each Now write», =bx, . Then
other, so that their scalar product is zero:
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But we may write

(gp4tlppp) g34tt33agb4633b

dl =—Ig44g~ —gp4gb4} 5ÃpSXb, 43, 5 = 1, 2, 3.
g44

It will be noted that when g 4=0,

dl2 =g,box, 8xb, r2co2't '
so rd8 &dl„

If we identify dl with actuai measures (with a
rigid rod element) by an observer D at rest on
the rotating disk, then the proper (measured)
length along the radial coordinate element, de-
termined by a D observer, is dl„=dr.The proper
length along the disk at right angles to r is

re)
gll +1 i g88 +1 s g24 g42 + ~2r2) 2

c' )
( cu2r ) &~Q

c' )
Q

4p
2r 2)

g, 2
——+r; g4

———
}

1—
c' ) where 2mr= C is the coordinate circumference.

Then
g12 g13 g14 g23 g24 pp2r2 q

—2

C.=C} 1-
c' )

or CQ) 2mr.Kith these values, we have

which is, of course, the ordinary expression for
the spatial line element. where dr and rd8 are the coordinate lengths of

Now in the rotating disk, we obtain from the elements. The proper circumference is
polar coordinate expression for —d82:

I (gllg44 g14gl4) ~+1 + (g22g44 g24g24) 6+2
g44 + (g83g44 g34g34) 6+8 }~

&2r2y —1

dl2=dr2+} 1 —
}

r 2gd+2ds2
c2)

which is the spatial line element for the rotating
disk.

Ke may note in passing that

Ax4= ~ rd8=
442r2 )
c')

21/C

rd8
Q2

j. ——
c2

or approximately
V

hx4=-. rd8,
c

which gives us a measure of the fourth component
of the spatial vector hx„.

Manifestly, the element dl exhibits a non-
euclidean geometry on the surface of the disk.
Setting s as a constant, we have

r24ppq
—1

dtp=dr2+} 1-
}

rpde2.
c2

Correlation of the Geometries

Returning to the original Einstein argument,
and noting that r is the same radius of the rotat-
ing disk as in the above equations, we can relate
the measures of a G observer directly to those
of a D observer. We have C=C'=2~r, then

( o2) 2 ( 212)
—$

C'=C} 1 ——
} =C} 1 ——

}c') L. c')
whence

C=C
c')

where C is the circumference of the rotating disk
measured by a G observer and Co is its circum-
ference as measured by a D observer. We should
note that if it mere not for the change in the

intrinsic geometry of the disk, as given by the
relation

Cp ——CI 1 }c2)

the Einstein relation

C=C} 1—}c'



CARLTON %'. BERENDA

wouM, be a purely relative one, in that an ob- where dx1=dr; dx2=d8 and
server Don the disk wouM find a disk (of radius r)
at rest in galilean space (and therefore moving
relative to the D observer) to have a non- jg„„~=
euclidean geometry satisfying the equivalent re- g12 g22

lation

~2r2) —I

+r2) & ———
)c'

where C~ wouM be the circumference of the
galilean disk relative to the D observer and
C'~ = 2mr would be its circumference when at rest
in D's space (we assume the galilean disk to have
the same axis of relative rotation as the D disk).
BNt actuality we would have

from which we must conclude that

or the geometry of the galilean disk, relative to
a D observer, would remain euclidean.

In connection with Eddington's argument we
should note that, in our notation dro= dI„=dr and

@)2r2)
r&82=dl, ~

~

1 —
( rd8,

c' )
from which we obtain

( ~2r2) —$

d82 ——
i

1 —
)

d8
c' )

rather than Eddington's d80=d8. Our equation
merely shows that, in measuring angles origi-
nating from the disk's center 0, the measured
ratio of an element of arc length to the radius
changes as one proceeds outward along the radii.

Hyyercurvature of the Surface

Ke may now inquire into the values of the

Riemann-ChristoRel tensor Rg„„,the contracted
Cr

symmetrical form R~„=R~„,and the scalar in-
variant R=g &8 p, for the rotating disk where
we confine our attention to two dimensions
(x, il, v, 2=1, 2). Taking

~2r2) -1
d1,2=dr2+I 1 —

(
r'd8'

c' )
gild&1 +2g12d&ld&2+g22d&2

3co'-' ( (o'-'r2)R„= (1—
c'- ( c'-)

812=A21 ——0,

3(g2r2 ( (g2r2) —2

R„=
c2 ( c2 )

KVe also find that
6(d f (d r

R =gllR»+g»R» ——

c' & c' )

then
g1 lg22 gl2gl2 g

—1

g
+1212

2

For the rotating disk, we find that

3(o2r' (' (v r )2—2'

R1212=-
c2 )

Now Gauss shows R1212/g to be the measure of
curvature of the surface at any point x1, x2, so
that R1212/g= 1 /rlr2= R/2 where rl—and r2 are
the principal radii of curvature at that point.
Then

r1P 2

3~2
f

~2r2) —2

C' ( C2 )

The tensor Rq„„„=g„pR~„,has certain com-
ponents and relations of interest to us. We find

+2121 +1221 ~2112 and all others
vanish for two dimensions. Now R =g ~R,s (con-
versely, we have R„„=~~g„„R)and R„„=g&'R»„2
whence

g g ~yaPh g g +1212

+g g R2121+g g R1221+g g R2112p

g g R1212+g g R1212 g g R1212

gllg22R1212 —2(gl2g12 gllg22)R1212.

But we can show that



PROBLEM OF THE ROTATI NG D ISK

Hence, the surface hypercurvature of the rotating
disk is negative and variable.

PART II. TIME

This brings us to the last part of our paper:
the behavior of clocks at rest on the rotating
disk. It seems that in this connection, a new
experimental test is now theoretically possible
for Einstein's general theory —a test which I
shall now discuss.

Events in a Gravitational Field,

It has been shown that the periods of clocks
or events are, in general, related as follows

dXss dXy
g~P

8t2 dt2 - d+4 d+4 (&1)2(&2}2(&3)2(&4}2

8t1 dtj dX~ dXP
g~u

dX4 dX4 (x1)1(s2) 1(x3}1(x4)1

where x4 ——t =coordinate time, where

dx~ t&p
Q1 =dt1 g~P

~+4 d+4- (&1)1(&2)1(&3)1(&4)1

is the proper period of a light emitting source
measured by an observer at rest with respect to
that source which has a coordinate velocity
(dxl/dx4q dx2/dx4q dx3/dx4)1 at the polllt (xl) Iy

(x2)1, (x2)1 at the time (x4) I, and ~he~e

dse dxp
St20=dt2 g P

d&4 d&4 (&1)2(~2)2(~3)2(*4)2

is the proper period of the light from the source
as observed by an observer located at the point
(xl) 2 (x2) 2, (x2) 2 at tile tlllle (x4) 2, all(1 IIlovlllg
wltil a coofdlllate velocity (dxl/dx4, dx2/dx4,

dx2/dx4)2. Also dtl is the coordinate period of
light emitting source, while dt2 is that period for
the observer at (xl)2, (x2)2, (x2)2. Since we have
for light, ds=0, we can easily show that t2=f(/I)
which gives the coordinate time t2 of the ob-
server's reception of the light signal from the
source in terms of the coordinate time t1 of the
signal's emission. Whence

dt, df(tl)

'R. To)man, RelativiIy, Tkermodynanw'cs and Cosm, ology,
pp. 288-290.

Since f(tl) is a function of the g„,values, then
where g„„is not a function of t, we will have
dt2=dt1 or the coordinate periods of emission and
observation of successive signals are equal'in
their intervals.

We should note that while this deduction
(used for the generalized Doppler eA'ect) is made
in terms of light frequency from radiating atoms,
it can be applied to proper times of periodic
processes other than radiating atoms. Light will
still be the means of observation, but the periods
will be those of "clocks" in various parts of the
gravitational f)e1d, and the time (/2 —tl) will be
the coordinate interval required for a light signal
to pass over the distance to the observer, while
dt1 will be the coordinate interval between clock
beats at the source and dt2 will be such an interval
for the observer. Q1' and Q2' will be the corre-
sponding proper values.

Clocks on the Disk

but, in polar coordinates, this is

bl'2' [g44] 2, 22

@I [g44]"I 21

and since
CO2r2

g44= 1—
g2

then

( 2r2),

C2 J
g 0 Q10.

( (a2r 2) &

I
1-

If the observer is at r2 ——0, and the clock at r1,
then

Id2r12 $
@,2.

C2 j
Ke note that Q1' corresponds to the proper time
d$0 in our notation.

The point r2=0 is a singular point in the

In the case of two clocks at rest at diferent
places on the rotating disk, our equation re-
duces to

~~2 [g44]F4:I)2(&2) 2

@I [g44](4'I)1(&2)1
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Q7 2r2

ds = 1—
c2

1
dt' [(or'd—8d—t

c2

+our'dtd 8+dr'+ r'd 8'],

which gives us the g„,values. But d8jdt= —~,
then

6)921—
C

Qg' rg' a)r j' Mfy——(u' — (—(o) — (—co) +1 —.
C C c2

(the G clock is assumed at rest relative to the s

gravitational 6eld of the rotating disk and is at
rest in some galilean space. If a clock is placed
anywhere in galilean space and the observer is
anywhere on the disk, the G clock will appear
to have an angular velocity equal but opposite
to that of the disk relative to the observer. Ke
then have

bt20 Lg44]~r2

Qio d8'
g22 + ' ' '+g44

dt'
where

axis of rotation), hence

N f2
go 1 QO

From all of this we may infer that clocks on the
disk will run slow relative to clocks in G space
at rest with respect to the rotational axis of the
disk. Such slowing down is absolute, not in the
sense that the principle of relativity of motion
is not followed, for it can be shown that it is,
but we see that the presence of the gravitational
field on the disk introduces a gravitational
potential for clocks on the disk—a potential not
existing for the G clocks. This is another form
of the well-known "clock paradox" dealt with so
carefully by Richard Tolman as well as by
Kop8'. '

Our conclusion is that a clock, after being
isochronized with a galilean clock and then set
in rotation with respect to the latter clock, will,
after rotating for some time and then being
brought to rest again, no longer be isochronous,
but will indicate earlier time than the 0 clock.
It is assumed that the time required to bring
the clock up to the curvilinear speed ~r is short
compared with the time during which it remains
at that speed. Similarly, the deceleration period
should be short.

In the case of a disk of uniform angular
acceleration d&u/dt=k, the line element (for a
system initially at rest) would be

k'P(x'+y') 1
ds'= 1— de [ 2ktydxdt- ——

C

+2ktxdydt+ dx'+dy']

c2

$2t2g 2.
~ 1

1 — dP [2ktr'd8dt+d—r—'+r'd8']
c2

and where t is small, the g„„valuesobviously
assume approximately their galilean values.

FIa. i. The relationship between the radioactivities of
two identical samples of an element of initial activity Io,
one sample remaining at rest in our space for the time t
and the other being revolved in the cyclotron at constant
curvilinear speed for the same time t, where t' is the
corresponding relative time of the revolving sample.
Then I& is the activity of the resting sample and I& is that
of the revolving sample.

Experimental Test through the Cyclotron

Now it is clear that the highest curvilinear
velocities to be obtained on a solid rotating disk
must be limited by the elastic constants and

' R. Tolman, reference 7, pp. 194—197; A. Kopff,
Mathematic/ Theory of Relativity (1921), pp. 125—27.
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breaking strengths of the materials of such disks.
It can be shown that the limiting speed, under
these conditions, is about 10' cm/sec. Obviously
this is too small when we realize that we are
dealing with a factor of v'/c'. There remains,
however, the use of the cyclotron with (artificial)
radioactive ions utilized as our moving clocks.
The degree of radioactivity would be a measure
of proper time. We know, of course, that the
radioactivity of an element is not modified by
mechanical, electric, or magnetic forces, or ther-
mal effects. The force holding these ions fixed at
a particular radius from the center of the cyclo-
tron would be simply the magnetic field force,
once the ions were accelerated out to that radius
by the electric field forces (which would then be
removed while the ions continued to revolve at
fixed radii). The ions at the limiting radius of the
cyclotron would eventually (after a period of
constant revolution) be brought to rest once
more and tested for their activity per unit mass.
If our deductions are correct, these ions will be
more radioactive than a sample of such atoms
which remained at rest—the atoms remaining at
rest would have less radioactivity per unit mass.

In a cyclotron, the force exerted by the mag-
netic field on a charged particle revolving with
a speed of v cm/sec. is

F=BQv=nm'/r,

where Ii is in dynes, B is the magnetic field Aux

density (gauss), Q is the charge (e.m.u.) on the
particle of mass m (grams), and r is the radius
of path curvature (cm). Whence BQr =mv Where.
v approaches light speed c, we should introduce
the relativistic mass change

where mo is the proper mass of the particIe. Then

whence

or approximately

We see, therefore, that to obtain speeds ap-
proaching that of light we need ions of highest

FrG. 2. The relationship between the fractional difference
AI in activity of a resting and revolving sample of a
radioactive element and the duration of revolution t
determined by a resting clock:.

charge and lowest mass possible in a cyclotron
of large radius and high magnetic Aux density.
The duration of acceleration out to cur and the
corresponding deceleration of the ions of low
atomic weight radioactive elements must be as
brief as possible, while the duration of constant
v =cur for the ions should approximate their
half-life.

Taking two samples of the same radioactive
element having the same initial activity Io, we
may write for the sample at rest

mo If' e') &

c'&

and for the sample at radius r revolving in the
cyclotron
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where, approximately,

and t is the duration of the experiment in our
time. See Fig. 1. This result may be written

(1 v

&2c' )

See Fig. 2. To obtain velocities approaching c
with the large cyclotron now under construction
in California appears possible even for radio-
active ions of atomic weights as high as ten.
But the actual testing of our deductions must
await further investigations.

In conclusion, it is worthwhile noting that
such an experiment, aside from being a new test

of the general theory of relativity, would provide
an application of that theory to nuclear physics
of the atom. '

I am grateful to Professor H. P. Robertson of
Princeton University for his suggestions, and to
Professors H. Seroat, J. D. Shea, H. C. Wolfe,
and M. W. Zemansky of New York City College
for their helpful discussions. To my colleague, Dr.
A. Wundheiler, I am deeply indebted for his care-
ful criticisms, especially on difFerential geometry.

'Of course, as Professor Einstein has kindly pointed out
to me, the mesotron decomposition rate, at high s~ds,
gives results equivalent to those that would be obtained in
the cyclotron for radioactive ions while they are ill, mogiorI, .
One obviously can use the special theory to obtain the
relation between t and t', but this formula is here shown to
be a, logical consequence of the general theory in the non-
trivial sense that it makes unequivocal what the special
theory alone would leave equivocal. Tolman's argument
for the efI'ect of the gravitational potential difference
d% =Br 'dr is here operative.


