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The refractive index of a medium may be p(r, s) =po(r)+p, i(r, s) the vector r denoting the
coordinates of a point and the unit vector s the direction of the light ray, while p& may be any
function of s. The deflection of a ray pencil s=s(r) by the anisotropy p& is defined by the
"curvature vector k of the deflected rays relative to the rays in the isotropic medium po.

"We
find k=s&(curl A(r, s), s being s(r) and A= pis+grad, pi —s(s grad, pi), grad, which implies
differentiation with respect to the components of s. The simplest case, notwithstanding the
anisotropy of crystals, is p, &=sg(r), g being an arbitrary function of r. This case covers, for
example, the deflection of light rays by the motion of the medium. We have only to put

g = —{1jc')@0~AD(r). Here po is the refractive index and w the velocity distribution in the medium.
A second example is the de8ection of electron rays in an electromagnetic field. We have to put
g= (e/c)a(r). Here a is the vector potential of the field.

' 'F the refractive index of a medium is dependent
~ ~ upon the direction of the light ray we speak
of an "anisotropy" of the medium. The refractive
index p, at a certain point may be an arbitrary
function of the rectangular coordinates x, y, ~

and of the direction of the light ray

i =p(r, s).

The vector r has the components x, y, s and
the vector s the components cos a, cos P, cos y,
cx, P, y being the angles between the light ray
and the axes. If

p(r, —s) =p(r, s) (2)

the anisotropy may be called an "even" one. All

crystals have an even anisotropy. If for a certain
medium Eq. (2) does not hold we speak of an
"uneven" anisotropy.

Examples of "uneven" anisotropy are provided
by the path of light rays through moving bodies
or the path of electrons through an electromag-
netic 6eld. The formulae we are going to develop
will embrace in one mathematical pattern all
these problems.

According to Fermat's principle the path of a

differential equations of the variation problem
of Eq. (3).

If the medium were isotropic, p would only
depend on r and the Lagrange equations could
be expressed by the simple vector equation

dp/ds =grad ii(r),

p=i (r)s.

(4)

If p is dependent also on s, the differential
equation of the light rays keeps its simple form

(4). However, the connection between p and ii

is no longer given by the simple Eq. (5) but by'

p = ii(r, s)s+ Q (r, s). (6)

To express Q in a simple way we introduce the
vector grad, p. Its components are the partial
derivatives of p, with respect to the three com-
ponents of s. It has to be distinguished from

grad JM, , the components of which are the deriva-
tives with respect to x, y, s. Then'

Q=grad, p —s(s grad, p),

Qs=0,

Q is perpendicular to s.

T= p(r, s)ds

light ray gives to the integral s =a(r) may be a "bundle" of rays; through
every point r passes just one ray of this bundle.

(3) s=s(r) is called an "orthotomic bundle" if by
J substituting s=s(r) into (6) we obtain a vector

field p(r) that is met normally by the ~ ' "wave
a minimum value. In this formula ds is the length surfaces" of the bundle s(rj. There is a simple
of a curve element. The din'erential equations of
the light rays are then evidently the Lagrange ' P. Frank, Zeits. f. Physik 80, 4 (1933).
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condition which a bundle of curves s has to meet
in order to be an "orthotomic bundle" of light
rays in a medium with the refractive index
~(r, s).

s(r) has to satisfy the equation

curl p(r) Xs(r) =0 (9)

if we denote by a)&b the vector product of the
vectors a and 'b.

The length of p is, by the way, the ratio c/w,
c meaning the vacuum speed of light and m the
speed of the normal displacement of the wave
surface.

The formulae (6), (7), (9) enable us to solve
the problem of the deflection of light rays by an
uneven anisotropy of the medium.

We start considering the path of light rays in

an isotropic medium with the refractive index
yo(r). We call this path the "undisturbed" path.
Then we alter the medium in such a way that an
anisotropy is produced. The refractive index is
now

p(r, s) =po(r)+alii(r, s). (10)

We obtain a new path of the rays: the "dis-
turbed" path. If we substitute p from (10) into
(6) and (7), we obtain:

p= p, (r)s+A(r, s),

curl p~sXs+curl Axs=0
and therefore from (15) and (16)

ko(r) = s)&curl A.

(16)

If we replace in (12) s by a specific bundle s(r),
A(r, s) becomes a function of merely r.

We are now going to discuss a simple case of
"uneven" anisotropy which is of particular im-
portance in the application of our formulae to
problems of physics.

We assume a medium with a particular re-
fractive index ii(x, s) of the form (10), for which
s cancels in the right-hand term of (12). Then A

becomes a function of r only.

ones, or in other words for the deAection of the
light rays produced by the anisotropy. We take
as a measure of this departure the relative cur-
vature kp of the light rays in the medium with
t:he refractive index p(r, s) with respect to the
light rays in the medium with the refractive
index po(r).

If s(r) is a bundle of light rays in the aniso-
tropic medium with the refractive index ii(r, s)
we conclude from (14) and (13)

ko ——curl iio(r) s Xs(r).

Then we conclude from (9) and (11)

A=p, (r, s)s+grad, iii —s(s grad., p&). (12)

If the medium is isotropic we have

A(r, s) =g(r).

Multiplying (12) by s we obtain

(12a)

k = curl p(r) Xs(r) (14)

the vector k may be called the "relative curva-
ture of the bundle of curves s with respect to the
light rays in the medium with the refractive
index p,". This is a generalization of what is
called in the elementary mathematics the "cur-
vature of a curve. '

Starting from these remarks it will be easy to
give a concise formu1a for the departure of the
"disturbed" light rays from the "undisturbed"

p= po(r), p=i o(r)s. (13)

If s(r) is an arbitrary bundle of curves the Ieft-
hand term of (9) is not necessarily equal to zero.
However, it is a measure for the departure of the
bundle of curves s from the light rays in the
medium with the refractive index p(r, s). If we

put

ko(r) = s(r) )(curl g(r).

APPLICATIONS

(19)

We examine as a first example the anisotropy
produced by stationary motion in an isotropic
medium. The distribution of velocity in the
medium may be given by the vector field w(r).
We denote the speed of light in vacuum by c and
in our medium, when at rest, by vo(r), the

p, (r s) =g(r)s p= p, (r)+g(r)s (18)

Then the refractive index p, becomes a linear
function of s. This is the simplest case of "un-
even" anisotropy. p can be expressed by means
of one vector field g(r) which describes the
characteristic optical properties of our nzedium.
The deHection produced by this anisotropy is
then after (17), (18);
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velocity by the vector vo. The velocity of light
in the medium, when at motion, may be v.
'lA'e assume that the velocity w of the medium
is such that we have

v= vo+m', v= vs. (20)

If we denote by tio(r) the refractive index of
the medium, when at rest, and by p, when at
motion, we obtain:

tio(r) = c/&o, ti = c/& (21)

t, (r, s) = —(1/c )t,'(r)sw(r),
g= —(1/c)t, (r)w(r). (23)

If we assume that the velocities of the medium
are small relative to the velocity of light we get
as the first approximation

t (r, s) = tip(r) —(1/c) tio'sw (22)

This is a special case of the uneven anisotropy
clescribed by (18).

In this equation voto is the "curvature" in the
ordinary sense of this word. It is obvious that
the straight path remains the best to pursue if
there are no whirls in the wind distribution.

As a third example we examine the "electron
rays,

" the path of an electron with the charge e

through an electromagnetic field which is given
by the scalar potential @(r) and the vector
potential a(r). We denote by m the mass of the
electron, by c the speed of light in the vacuum,
and by 8 the initial energy of the electron. Ac-
cordi, ng to K. Schwarzschild's 3XIinimum I'r~n-
ciple of Electrodyrtamics the electron rays are
geometrically light rays in a medium with the
refractive index. '

ti(r, s) = [2m(E —p4 (r) j&+(p/c)as. (26)

This is obviously a special case of (18) with

t p(r) = [2m(E —p4) )1, g(r) = (p/c)a. (27)

By substituting g from (27) into (19) we obtain:
Then we obtain by substituting g from (23)

into (19): kp ——(p/c)s Xcurl a. (28)

kp ——(1/c') curl (tio'w) Xs. (24)

kp ——(1/vpo) curl wXs. (25)

This formula gives us the deflection of light rays
8 which is produced by a velocity distribution
w(r) in an isotropic medium with the refractive
index tip. Equation (24) gives us immediately the
classical results of Stokes and Fresnel concerning
the optical phenomena in moving bodies.

A second example is the influence of wind

upon the quickest path of an airplane. If there is
no wind the quickest path is, of course, the
straight line. If there is a distribution w(r) of
wind velocity in the region the plane has to pass
there is a deviation from the rectilinear path.
The straight line is no longer the "shortest. " As
for the mathematical formulation this problem
is identical with the problem of the path of light
rays in a moving medium. If we assume that the
wind speed m' is small relative to the speed vo

impressed on the plane by the power of its motor
we can apply directly (24). If we take into
account (21) and the constancy of vp we conclude
from (24):

If we denote the intensity of the magnetic field

by h, we have

and therefore
curl a=h

k~ ——(p/c)s Xh.

(29)

(30)

' Frank-Mises, Digereltialgleichuegen der Mechanik used
I'hysik (1935),Vol. 2, Chap. 1, p. 3 (61);%'. G1aser, Zeits. f.
Physik 80, 451 8' (1933).

We see from (27) that the rays traverse the
electric field like an isotropic medium. The
influence of the magnetic field is the influence of
an anisotropy characterized by the vector (p/c)a.
The vector kp in (30) means therefore the de-
flection of the electron rays produced by the
magnetic force. ko is the "relative curvature" of
the electron rays in the electromagnetic field with
respect to the path of the rays in the purely
electric field. Equation (30) is, of course, a form
of the law of Biot-Savart or of the "Lorentz
force. " The speed of the electron does not occur
in this form of the law. It gives exactly the
"relative curvature" produced by the magnetic
field.


