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Theory of the Magnetron

II. Oscilletions in a Split-Anode Magnetron

Liow BRD.x.oUIN*

University of Wisconsin, Madison, Wisconsin
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A theoretical study is made of the possible oscillations in split-anode magnetrons. It is
found that large oscillations can occur in certain frequency ranges, these ranges depending
upon the number of segments. In Fig. 6 these frequency ranges are indicated with y = 21310/XH
as a function of the number of segments {2n). The large oscillations occur in the first and
fourth region as tabulated at the top of the hgure.

i. SPLIT-ANODE MAGÃETRON-
GENERAL REMARKS

HE behavior of a magnetron operated
under steady conditions was studied in a

previous paper' where the conditions of oscilla-
tion were also discussed for the ease of a magne-
tron with one anode of cylindrical shape. This
first paper will be referred to under the title
"Magnetron I," and a numeral I will be added
to its equation numbers to avoid confusion with
the present paper.

The aim of the present work is a study of
oscillation conditions in a split-anode magnetron.
Such magnetrons are built with an anodic
structure consisting of an even number of
shells equally spaced so as to form an almost
complete cylinder about the filament. The most
popular type has two half-cylindrical anodes,
but other models with as many as twelve or
more anodes have also been successfully used.
The oscillating circuit is connected by one of its
terminals to the odd-numberedwhells, the second
terminal being connected to the even-numbered
shells, as shown schematically in Fig. j..

The exact field distribution in such magnetrons
would be very dificult to compute, but a
reasonable theoretical attempt is possible under
the assumption of very small sinusoidal oscilla-
tions. This is illustrated in Fig. 2. Let us call b

the radius of the anodic structure and 2e the
number of anodes. The position of the anodes as
a function of 8 is indicated along the 8 axis.
Let V, be the average constant potential of the

anodes and + U,e' ' the additional alternating
potential, the + sign corresponding to the odd
anodes and the —sign to the even ones. The
potential distribution on the anode circle is
represented by the curve in Fig. 2. Such a
broken curve can easily be expanded in a
Fourier series. Let o. be the angle subtended by
one anode while P is the angle between two
successive anodes. Then a+P=w/n. The po-
tential on the radius r =b is given by the series

U(b) = U, (b) + U s'"'
snP

XP —sin (2'pnp) sin (pe8). p odd (1)' p'

The first term p= 1 is the most important and
the next term p=3 can be made zero by taking

sin (3/2)nP=0, P=2s/3n, a=~/3n, ,

which means that the distance between the
anodes is twice the width of the anodes.
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FK'. 1. Connections of terminals to oscillator.
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It is mell knomn that the introduction of Max-
well's displacement terms secures the following

(2) relation:V(b) = V, (b)+eV. (b)e 'sin (n8),
e V, (b) = U, (8/ernP) sin (-', nP). 18 18

div J=— (rJ„)+——(Je) =—0.
r Br r88This is the assumed distribution of potential on

the circle r =b, but one should keep in mind the
fact that a magnetron built with 2n anodes may
eventually work on one of the higher modes
corresponding to 2e' anodes mith e'= 3n, 5n, .
It is easily seen that these higher modes of
oscillation will increase in probability if the
interval 48 between the anodes is very small.
At the limit P=0, u=er/n, the amplitude of the
pth term becomes

Vc+4-

Vc-g ..
I e

I

I
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Vlr8 1 4
lim —sin (-,'pnp) =—.
~ 'ernp p' erp FIG. 2. Potential distribution on the anode circle.

ahe calculations will be made under the z. The total radial current per unit of length of
assumption that the alternating term U is z is
very small with an e coe%cient the highest
power of mhich will be neglected. Furthermore, ~ 0
we shall keep only the 6rst term of the Fourier
expansion.

2. FUNDAMENTAL EQUATIONS

The fundamental equations are Maxwell's
relations which mill be written in cylindrical
coordinates r, 8, z, where z is the axis taken
along the filament. It mill be assumed that all
quantities are independent of z. The current
density components J„, Jfl, including Maxwell's
displacement current, are

&o ~+r
J,=pv, +

4m 8$

eo ~~&
&e = teee+

4x Bt

v„and vs are the components of the velocities of
the electrons, p the space charge density, E„and
Ey the components of the electric 6eld, and
E,=0. The coef6cients eo, p, o represent the
dielectric power and the magnetic permeability
in vacuum. Electrostatic c.g.s. units will be
consistently used, making

This may easily be veri6ed, with the conservation
equation for electric charge

18 18
Bp/Bt = —div (pv) = —— (rps, )————(pre), (8)

r Br r88

together with one of Maxmell's equations:

1 8
div E= (rE,)+ Ee =-4e—rp/ee. —-

rier

r88

Let us call H„He, H, the components of the
oscillating magnetic 6eld. The symmetry of the
problem shows that II„and Hy are zero. Conse-
quently

div H= BH,/Be=0, (10)

which proves that H, is independen t of z.
Maxmell's equations yield

BH./rB8 = 4erJ„,
rot II=4m J —BH./Br =4s Je.,
rot E= teoBH/Bt, —

(5) (12)
B(rEe)/rBr BE,/rB8 = poBH, /Bt——

co= 1, pp=c —2

J„rd8 is the radial current Rowing through rd8,
per unit of length s, while Jeitr is the angular This system reduces to three relations: (11.1),
component of the current through dr, per unit (11.2), and (12). Equation (7) shows that the
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relations (11.1) and (11.2) are compatible as it BrE—,/Br, which yields
gives ~a a

8'H, /Br 88 =8'H, /888r 6(rE'„)=— r r—E'—„
r Bf Br

Hence we can write

f
H, =4gr) r5+8= —4pr) Jgdr,

8(rEg) BE,

r8r r88
= —4grtgp —,rJ&8,

8t ~

and we are left with one relation

(14)

|O'E'„
+ - =4grtg pB(rJ„)/Bt (2.0)

r 88'

This equation will be used later in the discussion
of the order of magnitude of E'„and the condi-
tions for its negligibility.

The preceding equations must be combined
with the equations of motion for the electrons
[Eqs. I.1) to (I.8)].

which is to be used together with (9) to define

the electric held. It is we11 known that any held

E can be represented as the sum of an irrota-
tional field (grad V) and a field E' with no
diver gence.

8
d'r/dtg = Eyr8—' 2r~H8, —

m

e
d (r'8) /dt = rEg+ 2pgH—rr,

(21)

BU
Ep +JE f

Br

18V
~8 ++ 8v

r 88

8(rE',) BE'g
div E'= + =0.

r8r rett

BV 1 O'V
hV= — r+-

r Br 8r r' 88' &o

Substituting in Eqs. (9) and (14) we obtain

(16)

in which

ppgg =
p tg p(e/grg) —H

Larmor's angular velocity. (22)

The second equation in (21) may also be written

e
[r'(8 —coH) ]=—rEg. —

dt m
(23)

According to the assumption about the held,
only grad V will be used in these equations.

The derivative of a function f(r, 8, t) is often
to be taken following the motion of one electron.
The symbol d/dt will be used on such occasions:

8(rE'g) BE'„

r8r r88

8
= —4grggp —I r7+8.

Bt ~
(18)

The assumption will now be made that the
second 6eld 8' is very small compared to grad U

and can be consistently neglected. This will be
proved later on to be a reasonable hypothesis in
most cases, provided the dimensions of the
magnetron are small compared with the wave-
length X in vacuum.

d/dt = 8/Bt+v, B/Br+vgB/r88 (24)

Applying this definition, using Eqs. (4) and (17)
and neglecting E', one obtains, since pp = 1 (e.s.u. ),

(rB V/Br) = rB' V/BrB—t
dt

t9

+v, (rB V/Br)+vgB'V/—Br88
Br

4prr J, v,B'V—/r88'+—vgB'V/Br88. (25)

(19) In a similar way

+v„B'V/888r+vgB' V/r88'

8
4grr Jg+v, B'V/888—r vg (rB V/Br) (2—6).

Br

Some special cases where this assumption would
lead to error will be discussed. Most of them

~

i=8'V/888t
dt 488)

lie outside the actual operation conditions of
the magnetron. Equation (18) may be reduced

by the use of (16). One differentiates (18) with
respect to 8 and replaces BE'g/88 by its value
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These two important formulae are the general-
ization of Eq. (I.41). They are very useful

because they no longer contain the space charge
density p. Our fundamental equations thus
reduce to Eqs. (7), (21), (23), (25), and (26).

V(r, 8, t) = V,(r)+ «V, (r, 8, t),
J„(r, 8, t) = I,/2»r+. J.,(r, 8, t), ~

J«(r, 8, t) =p,r8,+«J.«(r, 8, t).
(27)

The potential V, and the current I, are those
defined in "Magnetron I" for the magnetron
operated under steady conditions.

8,(r) = (os(1 —a'/r').

In the new field of force electron trajectories
are slightly modified. Let us follow one particular
electron leaving the filament at a time to., its
position at time f is

r„8, in the unperturbed motion.
r=r. +«r, (r., 8., t), 8=8,+«8,(r„8„t) (29)

in the perturbed motion.

In the unperturbed motion the electron describes
the static trajectory calculated in "Magnetron
I," while in the perturbed motion its position
at time t is at a distance er„e8 from the unper-
turbed location. It is necessary to calculate the
value of quantities such as t/' at the point where
the electron is actually located. Let f be such a
quantity. Then Eq. (27) would read

f(r, 8, t) =f,(r, 8)+«f.(r, 8, t). (30)

If this quantity be measured at the point
r,+~r, 8,+ e8 where the electron is located,
we must write

f(r, +«r„8,+«8„ t) =f,(r„8,)
+«fr.Bf,/Br+ 8.Bf,/88+f.j, (31)

terms in e', e', being consistently neglected.
The fundamental equations can now be

written with the expansions (27) to (31).

3. SMALL OSCILLATIONS IN A SPLIT-ANODE
NAG NETRON

As in "Magnetron I" (Section 6) it is assumed
that very small oscillations are superimposed on
the static potential and current distributions.
The smallness of these oscillations is secured by
a parameter e, the higher powers of which will

be consistently neglected. We thus assume

Equation (7) first yields a very simple relation

B(rJ.„)/Br = B—J.«/88

Equation (21) gives

d«r /dt«+«d«r, /dt«

(32)

t e
d r,/dt +r,

~

B«U, /Br«+~—s« —~s«a4/r4
~)Em

e
= ——B Vo/Br 2(uHa'—8,/r, (34).

m

Equation (23) is treated in the same way.
Writing only e terms one finds

(r '8 +2r,r.(8,—a)s))—
dt

a') e
=—

~
r, '8o —2~sr )= ——B Vo/B8 —(35).

dt ( r) m

Turning to Eq. (25) and applying (31), we get
from the e terms

[r,B U,/Br+r. r,B'U—./Br'+r, B V,/Br j
~C

4»r,J,— B'V,—/B—8'+r, 8,B'V,/BrB8 (36).
~c

Equation (26) yields

8
«=(B V./88) = —4» p,r, '8,+«r. (p,r, '8,)
dt Br,

+«r,J,e +«.B'V,/BrB8

8
(r.8,+.(r.8.+r.8,)j (—r.+.r.)—

Bf ~

X (BV./Br+«r. B'V,/Br'+«B V./Br) . (37)

[8—V—,/Br+«r, B'V,/Br'+«B U,/Br j
m

2a)H—[r,8,+«(r,8.+r.8,)j
+r,8,'+«[r,8.'+ 2r, 8,8,j. (33)

Terms independent of e correspond to the static
formula (I.19). In « terms we use (28) for 8, and
get finally
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Terms independent on e just cancel due to (I.21)

8
4s p,r,+ (r—,B V./Br) = 0,

and e terms result in

8—(8 V,/88) = 4wr —(p,r—'8 ) 4rr, J.—e
dt 0r,

8
+r,B'V /Br88 r,B, [—r,B V—,/Br

Bf

+r„r.B' V./Br'. +r.B V./Br ]

(38)

co&0, e positive or negative.

One must remember, however, that a simultane-
ous change of the signs on or and n does not
affect the exponential in formula (40). Hence

co, R and —eu, —s
should yield the same results;

cv, —n and —co, n should also be equivalent.
Every elementary solution must satisfy the
boundary conditions on the 61ament

V (a) =0, BV/Br=0, for r=a. (42)

8—t r,d.+r.d.j (r„BU./—Br),.
Br

(39)
From Eq. (40) one readily gets

8/Bt =is, 8/BB = in. — (43)

where the last term according to (38) is equal to

+4s p,r, (r.B +r,B,).

4. TYPE OF ELEMENTARY SOLUTIONS

The new system of Eqs. (32) to (39) is linear
with respect to all of the alternating quantities,
a condition which enables us to superimpose
elementary solutions and to make use of imagi-

nary exponentials. Each alternating quantity is

supposed to depend on tY and t in the following

way
f (r 8 )) —f (r) s i{at—e8)

fo(r) is an imaginary expression including the
phase angle factor.

A solution of type (40) represents one ele-

mentary solution, and the general solution of any
particular problem may involve superposition
of such elementary solutions in order to satisfy
boundary conditions. One elementary solution

corresponds to a sort of wave rotating about
the filament with angular velocity i0/n. In the
example shown in Fig. 2, the potential distribu-
tion on the anodic cylinder should be represented

by Eq. (2). This result will be obtained by the
superposition of two solutions +n and —n of
type (40), provided these two solutions have
the same amplitude factor f for r=b. These
two &e solutions will, however, depend on r in

different ways so that the superposition will

yield a potential (2) only on the cylinder r=b.
This will be discussed later on.

An elementary solution (40) must be studied

Our equation system contains derivatives d/dt
taken along the path of one electron, as expressed
in Eq. (24). On the other hand, making use of
Eq. (31), we have reduced any quantity f,
observed at the point where an electron is
located in the unperturbed motion, to a function
of the coordinates r„8, defining the position of
the same electron in the unperturbed motion. '
The result is that in order to follow the motion
of the perturbed electron, we only need r,8, to
describe an unperturbed trajectory; this yields

d/dt = 8/8t+ r',8/Br, +B.B/8 8

=i ((o nB,)+ r', 8/Br,—. (44)

Calculations appear to be very complicated in

the general case, so we make some simplifying
assumptions:

A. very small filament a=0,
B. magnetron in the critical state I,=O.

Conditions A and 8 were discussed in "Magne-
tron I," Section 3, in which we found that the

' Referring to Eqs. (29) and (31), one should notice that
they correspond to the use of Lagrange's dehnitions in
hydrodynamics. The same problem could be discussed on
a different. basis with Euler's dehnitions. In (29) we
compare the position of one particular electron in the
unperturbed motion with the position of the same electron
in the perturbed motion. Euler's method consists in
comparing a certain electron located at r, 8 (velocities
e„ey) in the unperturbed motion with a digerent electron
which, in the perturbed motion happens to come to the
same position r, tt, but with different velocities v, +au„
pp+e~. Euler's method seems to be the one chosen by
Blewett and Ramo I Phys. Rev. 5'l, 635 {1940)j. VA'th

such de6nitions Eq. (31) must be cancelled, while Eq. (44)
should be completed with additional terms because
following the motion of one unperturbed electron means
comparing different perturbed electrons.



By using (49) and (36) the following relation is
obtained:

m
2 a(a—H'r. r, (ur—,8 V./8r= i4irr, J.—„ (52)

e

while Eq. (32) results in

8
(rJ—.„)=in J.g

Br
(S3)

FIt . 3. The roots of Eq. (56).

electrons build a cloud with constant space
charge density po and rotating about the hlament
with a constant angular velocity ~0.

Equations (50) and (52) give

J.,= (i/4cr) 8 V./8r(2con'/a cd) — . (54)

Equation (39) may now be greatly simplified by
using (47) and (53):

8
na V.= 4nr—. (mrs''r. '/2se)

~rc

po mes~'/2ir——e, 8.= cdH, r', =0.

Hence Eq. (44) reduces to

(46)
+(4~/n)r. (r.J., )

~rc

8 2Spy—y„.(g„— (gH'r„r. +r,8 V /8r
Br, e

d/dt =i a, a= ra ncacr— (4&)

8 t/",

+CV, =O,

1
A =—(2c0H'/a —cd)+(vH(1 —2a) '/ H),a(56)

n

B= 2(aci'/a',
e e—a"+(o +H—8'V„./8r' r. = ——8 V /8r (48).
m m

C=n(a 2cd H'/a—)

Let us introduce a variable y =~/~H, a =~0(y —n)
and new coefhcientsV. is given by Eq. (I.23)

These simple relations must be introduced into
the general equations of Section 3. The problem
to be discussed here is very similar to the one +2 ~cc r.(r,8.+r.a&H)—. (5S)2

treated in "Magnetron I," Section 6. There we
had to discuss the role which some damping Referring now to (50), (5&), and (54), one finds
terms should play in a more complete theory, a homogeneous differential equation for V, :
and the same remarks apply here. The use of
Eqs. (43) and (47) is equivalent to taking account

Ar—r +Bronly of forced vibrations and neglecting proper
vibrations of the electronic system, as such
proper vibrations must be damped and practi-
cally disappear after a short time.

Equation (34) yields

m
~.= ~0 = ——a]~'r'.

2e
Hence

r = (e/ma')8 V,/8r.

Turning now to Eq. (35), one finds

8 =enV /mr 2a.

(49)

(50)

(51)

A'= (y )'—An/co =H—2 —l/n,
B' = (y — )n' /B(u =H2,
C' = (y n)'C/cuH —n t', ——

& = (y —n)' —2(y —n).

A solution may be found by taking

V, =Xr,
A 'x'-'+ J3'x+ C' =0.
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We thus obtain two solutions.

xg)

xm)
iB" 4A '—C') &.

2A' 2A'

4-

tA' 8'mediately noticed that A, 8,
d C' are functions of y

to be zem oo on the filament. is

(61)

~/„~ for1 t d as functions omust be ca c
t ns correspondingof n. The so utionsdiHerent values o . t ns

and ~co accor ing
h of x as a functiona t ical grap o xg yp

Fi ure 3 is se -expexceptional. 'g
'or of the roo s ashows the behavio

re ions, yiy2 an y3y4,g

'n x a „; een drawn separate y.
olutions x=x,+zx;.

1.'n x and x„x; have een rsenti g
The limits of these regions

,'3" A'C—'=—1+f (1+2') = 0,
f = —na(n' —1)i.

e ions of imaginary so u
'

utions we
are in eret rested in defining the poin
X r 1 ~

x,= B'/2A'= —1/(2+g/n) =1, 1-= —n.

where A'=0f interest are yo,p

o . All th o1 tio
the oints l = y=

where the x rooots are 1 and 0.
f Fig. 4 relatingined by the use o

1
'

hcase n=1 is excep i

and y3y4 both isappea
fth b 1froots are alway s real, one o e

any y value (Fig. 5 .
results in relationto discuss t ese resuWe now wis o

cases are to be(59). The following cato condition
distinguished:

1 Xone of thesets less thanI. Two real roots
. This occurssed for our problem. iroots can be use o

I
y-n

2

FK'. 4. g as a function of y —n.

ot with a real partf choosing the mot winecessity 0 c
greater than one.

Re(x) ~& 1.

For each elementa yr solution
shall obtain the correspres onding
from Eqs. (53) and (54).

&y&n

t and the otherII. Two real roots, o g t anone reater an

(59) for

(n+v2. (62)—2 n &y &y3, y4&y &n+(57) in V, we
current densities

V =Xr,
J,= ~x V./4xr[2(uii'/(a n(oH) —a), —

Qf' zX

z 8J.g = ———(rJ.,)
n Bt"

= x'V./4wnr) $2(a~'/(co n(ori —co . —

(6O)

HE RESULTS5. MSCUSSION OF THE

the practical results must beA discussion of t e pr
merical calculation o e""'d'".'."u ', "'".-'" '-, -d.,x and xg of Eq. (56). T ese rooxi and x2 0 FK'. 5. Roots of Eq. 56 for n =1.
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less than I. The first root can be used. This
occurs for

y &yp, n —&2&y &n, n+V2 &y.

I II. Two real roots greater than 1, both
yielding possible solutions. This occurs for

IV. Two imaginary roots with x, & 1. No
useful root. This occurs for

one of the roots, we obtain an infinite oscillating
electric field —8V/Br on the filament (r=0)
Instead of a magnetron working far from
saturation and showing small oscillations around
its steady conditions, we obtain large oscillations
where the current emitted by the filament is
zero (half of the time) or the saturation current
for the other half periods. This shows that cases
I and IV should represent the conditions under
which a magnetron is able to oscillate and to

V. Two imaginary roots with x„&1, yielding
two possible solutions. This occurs for

Q 2recil roots&1

These results are summarized on Fig. 6, which
shows the distribution of the different regions
corresponding to cases I, II, III, IV, and V in
the y, n plane. Curves have been drawn con-
sidering n as a continuous variable but the
results have physical meaning only for integral
values of n. In addition to the previously
defined curves, the curve corresponding to
x =n —2 is also plotted. This is interesting in
view of the approximation introduced in Section
2, neglecting the additional field 8'. (See
Section 7.)

In case II we obtain one possible solution (57)
and there will be no difhculty in solving com-
pletely our problem. Ke shall prove that the
magnetron operated under such conditions
behaves like a pure imaginary impedance and
should be unable to sustain oscillations.

In cases III and V we obtain two distinct
solutions, yielding a potential

V, =Kir*'+K2r*'.

This leaves an arbitrary constant, Ki/K2 for
instance, which we are unable to determine.
It is thus impossible to draw any precise con-
clusions in these cases. This difFiculty seems to
be connected with the simplifying assumption
made in Section 4 [Eq. (45.A) j about the
61ament having a radius zero. A special discus-
sion of a magnetron with 6nite 6lament radius
should be made to answer the question,

In cases I or IV no solution is obtained. Both
roots are smaller than 1, which means that
condition (59) cannot be fulfilled. If we try any

3

---0 K looge

FK'. 6. Summary of results.

sustain high frequency oscillations in an outer
circuit. The frequency is given by the corre-
sponding y values:

yg&y &e—V2,

n&y&n+v2. (64)

Ke must now see how to buiM up the complete
solution for the potential distribution inside a
magnetron with 2n anodes, operated at the
frequency co=y~II. According to the remarks at
the beginning of Section 4 this complete solution
will result from the superposition of elementary
solutions corresponding to n and —n. Let us
6rst suppose the corresponding roots x+ and x
both to be real and greater than 1 (case II).

V (r, t&, $) =K+r*+s'&~' "~&+K r*-p''t~'+"e& (65)
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where the E+ and X constants must be adjusted which gives
so as to reproduce, for r=b, the assumed po-
tential distribution (2) on the anodes

V, (b, 8, t) = V (b)e™sin re8.

This gives

1.

E+= V,—(b—)b *., E =—V, (b)b '-,2$2$
I

V (r, 8, t) = V(b)—e
2j

Now

2/»ee'
X x—+(r/b)*

I

—e» Ie '"'
E(o —eau~ )

2&v~2

+x (r/b)*
I

-—~ Ie*"' . (7o)
E/»+ne»H )

~v/n
e~'"ed8 = &2e/ee.

0

Making r=b, and using (69) to (71), we obtain

( (r) *' (r) * e t 2»eel

XI -I —
I

e-'"+I —
I

e-'
I (67) '-=- '(»e ' x+I

Eb) Eb) i 4g E Q) —+$7~ )

which gives the complete potential distribution
inside the magnetron.

2»»H

+ -I /» I (72)
((»+re/»0 )

And according to Eq. (2), the potential of the
6. INTERNAL RESISTANCE OF THE MAGNETRON

Having obtained the distribution of potential
in the magnetron, we are now in a position to
compute the current densities and to calculate
the current reaching the anodes. This might
involve some diAiculties when the anodes are
narrow and far apart from each other, but if the
magnetron is built with wide anodes and small
intervals between them (u)) p), we may assume
that each anode collects all the current Rowing

radially throughout an angle er/ee. Thus the
total current Rowing to the first anode will be

creep
U.e'"'= e V.(b) 'Hd t

8 sin (eeP/2)

= e V.(b)e—' P('(n. . (73)
4

In addition to radial currents, we have found
that there are also angular components of the
current density inside the magnetron. Thus we

may have to add a correction term representing
the current Aowing to the edges of the anode;
this would be something like

lie = e
J 0

J„rd8, r=b, (68)
I e=ere[J e(8=0) Je(8=er/re) jbr,—

for r = b, (74)

)w/a
I„=eeeJ J „rd8. (69)

J, will consist of two terms corresponding to
~1,each of which is related to the corresponding
voltage term by Eq. (60). Let us first consider
the case of two real roots x+ and x with a
potential (67). The relation (60) has to be
applied separately on the two terms of (67)

but there are ee anodes (numbers 1, 3 2ee 1)—
connected in parallel and the total current is n
times greater

br representing the apparent thickness of the
electrode and the e factor taking care of the
fact that there are n anodes connected in parallel.
The edges of the first anode correspond to 8=0
and ee/re. J'.e is known from Eq. (60) which
must be applied separately to each elementary
V solution, yielding for each solution an equation
of the form

i 8 xe ( 2&»e/e

J,e
———— (rI„)= I

— —e»
I
V,(r, 8, t).

ee ar
"

4~mr &~—N~s

Hence, for the superposition of the +n solutions,
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potential keeps a real amplitude (73). This
means that magnetrons operated under such
conditions are equivalent to pure impedances
without any (either positive or negative) resist-
ance and seem to be unable to sustain oscillations
in an outer circuit.

It should be noticed that in the present paper
the currents have been written with a sign con-
vention opposite to the usual one in circuit
theory. Hence the internal impedance Z of the
split anode magnetron shouM be defined as

FI(". 7. Static characteristics of a two-segment magnetron.

tt'2c»H'
+x ]

Ec»+n
(77)

as given by (67)

P' (b) e ttt t

J.ti
=

from Eqs. (72) and (73). This impedance is
observed in the devices shown on Fig. 1 or
Flg. 7.

x+2( 2c»s2 ) (r)*"
X —

(

—~ f]
—

f

e-'"'
n L.~ nomic -) Eb)

x 2
tt 2t»

"-p (r) '-
(7~)

n Ec»+nt»ii ) Eb)

Exponentials are 1 for tt=0 and —1 for e=s/n
so that the two terms in (74) are equal and
one obtains

2c»0
V.(b)e ' x+'~ —c» (

4vrb Ec» —nc»H )

V. VALIDITY OF THE ASSUMPTION MADE IN
SECTION 2, NEGLECTING THE

ADDITIONAL FIELD E'

As noticed in Section 2, just after Eq. (18),
the assumption has been made that the addi-
tional electric field E', induced by the alternating
magnetic fields, could be neglected. It is now
possible to compute the order of magnitude of
this 8' field, which is determined by Eq. (20).
Because the t,"&"'—"') factor appears in this field,
as in all alternating quantities, Eq. (20) reads

+x '( —c»
)

br. (76)
L c»+nc»ii )

18 8 n'
r+r +r =4% POZ(JL)r Jr )

r Bf Br r
(78)

x+ and x are of the order of magnitude of n, so
that the additional contribution is of the order

6rI f)=I „e—,
h'

where j„is the sum of terms (60) corresponding
to each elementary term r' in V, as may be
seen from Eqs. (67) and (70). We may, for
instance, write (70) this way

J.„=J.,(+n) +J'.,(—n),

( r) z(&tt) 2
X ]

—
~

x(an)~rc~ —y [.
&b) Ey~n )

and will probably be small if the apparent
thickness of the anodes is small. The important J,„(~n)=~
fact is that it comes out with the same phase
angle as I„when both roots x+ and x are real
(case II). In such cases the currents I„and I.tt

retain pure imaginary amplitudes, while the

(79)
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And our Eq. (78) will read

E,' =E,'(+n) +E,'( n),—

8 8
——r—rE„'(+n) E—,—'(+n)
r Br Bf r

small except for the cases

x &n 20

An order of magnitude can be obtained, if one
(80) remembers that the x values are of the order of n.

This gives
=4wpoi(or J.,(+n).

The solution is obvious since J,„depends upon
rbyr —'.

4sipo(ar' J.„(+n)
E,'(+n) =

(x(+n) +2) ' —n'

rJ„(+n)8x'i r
(81)

c X (x(+n)+2)' —n'

V'(+n) = —
~

E,'(+n)dr
0

8w'i O'J.,(+n)

c&(x++2)L(x++2) ' —n'1

This must be calculated for the middle of the
first anode, i.e. , for r=b, 8=x/2n Formu. la (72)
may be written

I.„=e2bLJ.„(+n)+J.„(—n) j, (83)

for r=b, 8=m/2n, while

J,(+n)8m'i
cV

cX (x++2)L(x++2) ' —n'j

J.,(—n)+,r=b, 8=+/2n. (84)
(x +2)L(x +2)'—n'j

This shows that the additional voltage U' is out
of phase with the current (i factor) and very

as iio ——c-' and a&/c=2s. /X. This shows that the
additional 6eld B' is very small because of the
fa.ctor (1/c)(r/X), so long as the dimensions of
the magnetron are small compared with the
wave-length, which corresponds to statement
(19). The only case for trouble would be when

one of the roots x should come near to &n —2,
a condition to be discussed in a moment.

The additional potential V' on the anode r = b

corresponding to 8,' can be computed. It should
be reminded that r'J, „depends on r as r +'.
This gives

V'= V'(+n)+ V'( —n),

e V'=—
ix'b'

cX(n+2) (n+1)
(86)

The addition of a voltage eV' to the voltage
e V, (b) already assumed on the anodes is equiva-
lent to adding a series impedance Z' = —c V'/I„,
the order of magnitude of which would thus be

z'=i
cX(n+2) (n+ 1)

(87)

Let us take, for instance, b= yak and ) =1 cm
which will be a very unfavorable situation.

0.3x'
z'=i

(n+2) (n+1)

8. CONCLUSIONS

The results of this study are summarized in
Fig. 6 which shows the type of solutions obtained
in different regions of the y, n plane. These
results will perhaps be easier to understand for
practical applications if we notice that Larmor's
angular velocity co~ is proportional to the

which is of the order of magnitude of a fraction
of an ohm, a very small quantity when compared
to the thousands of ohms which electron tubes
yield as internal resistance.

Let us now discuss the conditions (85) for
which the additional electric field takes a really
important part. A glance at Fig. 3 shows that
this condition can be fulfilled only for x(+n),
between y=n —v2 and n (where x+ is slightly
above 1) or above y=n+v2. The first case is
for n=3, x=1, y=3 —v2, 3, 3+42; then n=4,
etc. These points are plotted on Fig. 6. They
all lie in the region where magnetrons have
been proved to yield pure imaginary internal
impedance and to be unfit for sustaining
oscillations.

It thus appears legitimate to neglect the role
played by the additional held B' induced by
alternating internal magnetic 6elds.
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magnetic field, which means

co~=0.884 10'H, H in Gauss

y = a&/~d Jr = 2~c/bus = 21310/liH. X in cm (88)

This enables a comparison with experimental
results, which are usually given in terms of XH
corresponding to different types of oscillations.

On the map drawn in Fig. 6, the diRerent
regions corresponding to the cases I to U defined
in Section 6 LEq. (62)] have been represented.
The physical meaning of the various cases
seems to be:

I and IV. Large oscillations.

yi&y&n v2—, n&y&e+K2 . (64)

II. No oscillations, the magnetron being
equivalent to a pure imaginary impedance.

III and V. The solution still contains an
arbitrary constant; probably no oscillations.
The diRerent regions corresponding to these
cases I to V are neatly divided for magnetrons
corresponding to n = 2, 3, 4 . (number of
anodes 2N=4, 6, 8 . ); one always finds two
different regions, defined by conditions (64),
where oscillations could possibly take place.

For the usual split-anode magnetron (n=1;
2 anodes) it is hard to foresee the conditions of
oscillations, as the whole diagram changes just
on the line @=1. These very typical circum-
stances should make this magnetron very
sensitive to all sorts of perturbations such as
increase in the diameter of the filament, effect of
large oscillations, etc. Experimental values on
the usual split-anode magnetron are found in a
paper by G. R. Kilgore, ' with an attempt at
theoretical explanation, which unfortunately
does not take account of space charge effects,

3 G. R. Kilgore, Proc. I. R. E. {August, 1936}.Reprinted
by RCA in Radio at Ultra-High Frequemies {1940},p. 360.

and therefore remains far away from actual
conditions in magnetrons. Figure 7 is a repro-
duction of Kilgore's Fig. 3, showing the static
characteristic for a split-anode magnetron. This
means ~=0, y=0. The magnetic field applied
was 1.5 times the critical field. The average
anode potential was 500 volts, and variations as
large as &400 volts (giving Fz 8& —800 ——volts)
were applied. This means very large perturba-
tions, for which our theory would certainly be
only a rough first approximation. It appears
from the curves that the negative resistance is
zero for small hV and reaches a maximum of
about —1500 ohms for AU=400 volts. Effi-
ciencies of magnetrons operated under diR'erent

conditions are given by Kilgore on page 372 and
can be summarized as follows (H=1.5H. , H,
critical field):

E+c&ency 10% 20% 30'Fo 40%
)H10 4 5.45 6.7 8.1 9.8 12 (82)
y =cu/~~. 0.39 0.32 0.265 0.218 0.178.

If these y values are taken with a negative sign,
they lie just between the horizontal n axis and
the line y=n —N. Another type of oscillation
has been found on split-anode magnetrons with
XH values around 12,000, which gives

y = 1.8.

This value of y seems to correspond to the
upper band of our diagram, as it lies between 1
and 1+v2.

A further prediction of the theory concerns
the possibility for a magnetron of type n to
work as magnetrons of types 3n, 5n, . but
with lower efficiency.

Magnetrons n=3 (6 anodes) should behave
differently, as the perturbation by the oscillating
magnetic field is especially large in that case.


