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A theoretical study is made of the possible oscillations in split-anode magnetrons. It is
found that large oscillations can occur in certain frequency ranges, these ranges depending
upon the number of segments. In Fig. 6 these frequency ranges are indicated with y=21310/AH
as a function of the number of segments (27). The large oscillations occur in the first and
fourth region as tabulated at the top of the figure.

1. SPLIT-ANODE MAGNETRON—
GENERAL REMARKS

HE behavior of a magnetron operated
under steady conditions was studied in a
previous paper! where the conditions of oscilla-
tion were also discussed for the case of a magne-
tron with one anode of cylindrical shape. This
first paper will be referred to under the title
““Magnetron I,” and a numeral I will be added
to its equation numbers to avoid confusion with
the present paper.

The aim of the present work is a study of
oscillation conditions in a split-anode magnetron.
Such magnetrons are built with an anodic
structure consisting of an even number of
shells equally spaced so as to form an almost
complete cylinder about the filament. The most
popular type has two half-cylindrical anodes,
but other models with as many as twelve or
more anodes have also been successfully used.
The oscillating circuit is connected by one of its
terminals to the odd-numbered shells, the second
terminal being connected to the even-numbered
shells, as shown schematically in Fig. 1.

The exact field distribution in such magnetrons
would be very difficult to compute, but a
reasonable theoretical attempt is possible under
the assumption of very small sinusoidal oscilla-
tions. This is illustrated in Fig. 2. Let us call
the radius of the anodic structure and 2n the
number of anodes. The position of the anodes as
a function of 6 is indicated along the 8 axis.
Let V. be the average constant potential of the

* Now at Brown University, Providence, Rhode Island.
tL. Brillouin, Phys. Rev. 60, 385 (1941); also Elec.
Communication 20, 112 (1941).

anodes and =+ U,e! the additional alternating
potential, the 4 sign corresponding to the odd
anodes and the — sign to the even ones. The
potential distribution on the anode circle is
represented by the curve in Fig. 2. Such a
broken curve can easily be expanded in a
Fourier series. Let o be the angle subtended by
one anode while 8 is the angle between two
successive anodes. Then a+B==/n. The po-
tential on the radius =25 is given by the series

8
V(b) = V(b) + Useiot—

™nf

1
Xg, ; sin (3pnp) sin (pnd). podd (1)

The first term p=1 is the most important and

the next term p=3 can be made zero by taking
sin (3/2)n=0, B=2r/3n, a=mw/3n,

which means that the distance between the
anodes is twice the width of the anodes.

FiG. 1. Connections of terminals to oscillator.
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THEORY OF THE MAGNETRON

The calculations will be made under the
assumption that the alternating term U, is
very small with an e coefficient the highest
power of which will be neglected. Furthermore,
we shall keep only the first term of the Fourier
expansion.

V(b) = V.(b)+eVa(b)ei sin (n6), 2
eVa(b) = U.(8/nnp) sin (3nB).

This is the assumed distribution of potential on
the circle » =2, but one should keep in mind the
fact that a magnetron built with 2z anodes may
eventually work on one of the higher modes
corresponding to 2#n’ anodes with n’=3n, 5z, - - -.
It is easily seen that these higher modes of
oscillation will increase in probability if the
interval 8 between the anodes is very small.
At the limit 8=0, a=m/n, the amplitude of the
pth term becomes

8 1 4
lim — — sin (3pnB) =—. 3)

=0 anB p° mp

2. FUNDAMENTAL EQUATIONS

The fundamental equations are Maxwell’s
relations which will be written in cylindrical
coordinates 7, 6, 2z, where z is the axis taken
along the filament. It will be assumed that all
quantities are independent of z. The current
density components J,, Jg, including Maxwell’s
displacement current, are

€0 aE,
Jr = p0r +— s
4r ot
4)
€0 an
Jo=pvp+——.
4r Ot

v, and v, are the components of the velocities of
the electrons, p the space charge density, E, and
Ey the components of the electric field, and
E.,=0. The coefficients e, uo represent the
dielectric power and the magnetic permeability
in vacuum. Electrostatic c.g.s. units will be
consistently used, making

/Jo=C_2. (5)

J,rd@ is the radial current flowing through rdé,
per unit of length z, while Jodr is the angular
component of the current through dr, per unit

60=1,
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2. The total radial current per unit of length of
zis

2r
I.= f J.rdo. (6)
0

It is well known that the introduction of Max-
well’s displacement terms secures the following
relation:
19 19
div J=——(rJ,)+—-—(Js) =0.
r Or r 06

™

' 1 '
¥ ¥ K

F1G. 2. Potential distribution on the anode circle.

This may easily be verified, with the conservation
equation for electric charge

. 19 19
0p/0t=—div (pv) = —— —(rpv,) —— —(pvg), (8)
r ar r 86

together with one of Maxwell’s equations:

190 14
div E=—~—(rE,)+— —Es=4mp/e. 9)
r ar r 30

Let us call H,, Hy, H, the components of the
oscillating magnetic field. The symmetry of the
problem shows that H, and Hj are zero. Conse-
quently

div H=0H,/dz=0, (10)

which proves that H, is independent of sz.
Maxwell’s equations yield

0H ,/rd0=4xJ,,
rot H=41r]{ (11)
—0H,/dr=4xJy;
rot E= —pu,dH/at,
(12)

(rEy) /rdr—OE./rd0 = — ugdH,/dt.

This system reduces to three relations: (11.1),
(11.2), and (12). Equation (7) shows that the
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relations (11.1) and (11.2) are compatible as it
gives
8°H,/drd8=0H ,/60r.

Hence we can write

H,=47rfr],d0= —41rf]0dr, (13)

and we are left with one relation

a(TEo) BE,

i}
- = —4muy— frJ,dO, (14)
el at

ror

which is to be used together with (9) to define
the electric field. It is well known that any field
E can be represented as the sum of an irrota-
tional field (grad V) and a field E’ with no
divergence.

2%
Er= __+E,Ty
ar (15)
19V
9=———+E,
r 40
A(rE',) OE's
div E'= +——-=0. (16)
rar rad

Substituting in Egs. (9) and (14) we obtain

190V 102V 4mp
AV=-—p—*F——=——; an
rdr dr r? 96?2 €0
d(rE’s) OE’, a
- = —4mwu;— fr],«dﬂ. (18)
ror rd0 at

The assumption will now be made that the
second field E’ is very small compared to grad V
and can be consistently neglected. This will be
proved later on to be a reasonable hypothesis in
most cases, provided the dimensions of the
magnetron are small compared with the wave-
length X\ in vacuum.

2N (19)

Some special cases where this assumption would
lead to error will be discussed. Most of them
lie outside the actual operation conditions of
the magnetron. Equation (18) may be reduced
by the use of (16). One differentiates (18) with
respect to 6 and replaces dE’y/30 by its value
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—9drE’./dr, which yields

19 9
A(rE',))=——r—rF/,
r or ar
1 92F’,
- =47ued(rJ,)/0t. (20)
r 06?

This equation will be used later in the discussion
of the order of magnitude of E’, and the condi-
tions for its negligibility.

The preceding equations must be combined
with the equations of motion for the electrons

[Egs. I.1) to (1.8)].

e
% /dt=—E.+r6%— 2rwyb,
m

(21)
d(r20)/dt= f—rEg—!— 2wy,
in which "
wr = —3uo(e/m)H
Larmor’s angular velocity. (22)

The second equation in (21) may also be written

d e
—[1’2(0—40}1)]:—7’Ea. (23)
dt m

According to the assumption about the field,
only grad V will be used in these equations.
The derivative of a function f(7, 6, ) is often
to be taken following the motion of one electron.
The symbol d/dt will be used on such occasions:

d/dt=09/dt+v,d/dr+ved/rd8. (24)

Applying this definition, using Egs. (4) and (17)
and neglecting E’, one obtains, since ¢, =1 (e.s.u.),

d
(—i—(ra V/3r)=rd*V/ardt
¢

d
+v,a—(r6 V/or) 4002V /0rd8
7

= —4xrJ,—v,02V/rd02+v,02V/3rd0. (25)
In a similar way
d oV
—(—) =92V /360t
dt\ a6
+2,02V /06007 +v40%V /rd6*
a
= —4xrJs+v,0* V/a@ar—'uaa—(ra V/or). (26)
r
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These two important formulae are the general-
ization of Eq. (I.41). They are very useful
because they no longer contain the space charge
density p. Our fundamental equations thus
reduce to Egs. (7), (21), (23), (25), and (26).

3. SMALL OSCILLATIONS IN A SPLIT-ANODE
MAGNETRON

As in “Magnetron I’ (Section 6) it is assumed
that very small oscillations are superimposed on
the static potential and current distributions.
The smallness of these oscillations is secured by
a parameter ¢, the higher powers of which will
be consistently neglected. We thus assume

Vir, 6, )=V.(r)+eV.(r, 6, t),
Jor, 0,0)=1,/2nr+e€Js. (7, 0,1),
To(r, 0, ) = perboteJus(r, 6, 1). |

The potential V, and the current I, are those
defined in ‘““Magnetron I"" for the magnetron
operated under steady conditions.

6.(r) =wu(1—a?/r?). (28)

In the new field of force electron trajectories
are slightly modified. Let us follow one particular
electron leaving the filament at a time #o; its
position at time ¢ is

(27)

7e, 8. in the unperturbed motion.
r=rctero(re, 0o, t), 0=0,+¢€b(7c, 0., 1)
in the perturbed motion.

(29)

In the unperturbed motion the electron describes
the static trajectory calculated in ‘‘Magnetron
I,” while in the perturbed motion its position
at time ¢ is at a distance e7,, €f, from the unper-
turbed location. It is necessary to calculate the
value of quantities such as V at the point where
the electron is actually located. Let f be such a
quantity. Then Eq. (27) would read

fr, 0, ) =f(r, 0)+efu(r, 6, 1). (30)

If this quantity be measured at the point
7.+ er., 6.+ €d. where the electron is located,
we must write

f(rc+ € q, oc+ eoa; t) =fc(rcy 00)
+ €e[7.9fo/dr+0.0f./00+f.], (31)
terms in €, €, - - being consistently neglected.

The fundamental equations can now be
written with the expansions (27) to (31).
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Equation (7) first yields a very simple relation

A(rTar)/0r=—0J4e/99. (32)
Equation (21) gives
d?r./di2+ed?r,/dt?
e
= ——[aV./or+er,d*V,/dr*+edV,/or]
m
- ZwH[rcéc+€(rco.a+raoc):|
+ 7024 €[ 7.60.2+2r.6.6,]. (33)

Terms independent of e correspond to the static
formula (I.19). In e terms we use (28) for 6, and
get finally

e
d?r./dt 7, —62Vc/6r2+wy2—-wy2a4/r4)
m

e
=——09V,/0r—2wna./r.. (34)
m

Equation (23) is treated in the same way.
Writing only € terms one finds

d
— (7200427 c70(6.— wn))
dt

d ) a? e
=—(rc29,,—2wgr,,——) =——9V,/86. (35)
dt e m

Turning to Eq. (25) and applying (31), we get
from the e terms

d
d—[raa Ve/or+rr.d2V,/ort+r.0V,/or]
t

Te .
= —4xr.Jor——0%V,/86%+7.0.02V,/0r86. (36)
rc

Equation (26) yields
i}

d
el—i—(a Va./06) = — 41r|:pcrc29¢+er., (perc26.)
t

7e
+er.J. aa] +er,02V,/0r00

a
- [rcéc + E(n:oa + 7a 00) ]a_[ (rc + fra)
7

X(V.e/dr+ersd?V./ori+4ed Va/ar)]. 37)



170

Terms independent on € just cancel due to (1.21)

d
41rpcrc+5—(fca V./dr)=0, (38)
r

and e terms result in

d i)
——(8V,/30) = —4drra—por2bc) — Ao us
dt a7,

i}
+7.82V./3rd8 — rcéca—[raa V./or
r
+7:a02 Vo /072 +7.0Va/07]

a
- [rcéa+raoc];(rca Vﬂ/ar)v (39)
r

where the last term according to (38) is equal to
+4mp (7 ba+740.).

4. TYPE OF ELEMENTARY SOLUTIONS

The new system of Egs. (32) to (39) is linear
with respect to all of the alternating quantities,
a condition which enables us to superimpose
elementary solutions and to make use of imagi-
nary exponentials. Each alternating quantity is
supposed to depend on 6 and ¢ in the following

way
fa(r, 8, t) = fa(r)eiti=—m0,

fa(r) is an imaginary expression including the
phase angle factor.

A solution of type (40) represents one ele-
mentary solution, and the general solution of any
particular problem may involve superposition
of such elementary solutions in order to satisfy
boundary conditions. One elementary solution
corresponds to a sort of wave rotating about
the filament with angular velocity w/z. In the
example shown in Fig. 2, the potential distribu-
tion on the anodic cylinder should be represented
by Eq. (2). This result will be obtained by the
superposition of two solutions +» and —n of
type (40), provided these two solutions have
the same amplitude factor f, for r=5b. These
two =7 solutions will, however, depend on 7 in
different ways so that the superposition will
yield a potential (2) only on the cylinder »=b.
This will be discussed later on.

An elementary solution (40) must be studied

(40)
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for

w>0, = positive or negative. (41)

One must remember, however, that a simultane-
ous change of the signs on w and # does not
affect the exponential in formula (40). Hence

w,m and —w, —n

should yield the same results;
w, —n and —w,n should also be equivalent.

Every elementary solution must satisfy the
boundary conditions on the filament

Vul@)=0, dV/dr=0, for r=a. (42)
From Eq. (40) one readily gets
3/dt=iw, 9/00=—in. (43)

Our equation system contains derivatives d/d¢
taken along the path of one electron, as expressed
in Eq. (24). On the other hand, making use of
Eq. (31), we have reduced any quantity f,
observed at the point where an electron is
located in the unperturbed motion, to a function
of the coordinates 7., 8, defining the position of
the same electron in the unperturbed motion.?
The result is that in order to follow the motion
of the perturbed electron, we only need 7.8, to
describe an unperturbed trajectory ; this yields

d/dt=0/dt+7.0/0r.+6.9/96
=i(w—nb,)+7.9/0r.. (44)
Calculations appear to be very complicated in

the general case, so we make some simplifying
assumptions:

A. very small filament
B. magnetron in the critical state

a=0,

I.=0 49

Conditions A and B were discussed in ‘“Magne-
tron I,” Section 3, in which we found that the

2 Referring to Egs. (29) and (31), one should notice that
they correspond to the use of Lagrange’s definitions in
hydrodynamics. The same problem could be discussed on
a different basis with Euler's definitions. In (29) we
compare the position of one particular electron in the
unperturbed motion with the position of the same electron
in the perturbed motion. Euler's method consists in
comparing a certain electron located at 7, 8 (velocities
v,, 19) in the unperturbed motion with a different electron
which, in the perturbed motion happens to come to the
same position 7, 8, but with different velocities v,+eu,
v9+eug. Euler’s method seems to be the one chosen by
Blewett and Ramo [Phys. Rev. 57, 635 (1940)]. With
such definitions Eq. (31) must be cancelled, while Eq. (44)
should be completed with additional terms because
following the motion of one unperturbed electron means
comparing different perturbed electrons.
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F16G. 3. The roots of Eq. (56).

electrons build a cloud with constant space
charge density po and rotating about the filament
with a constant angular velocity wg.

po=mwyz/21re, 0c=wy, f'c=0. (46)
Hence Eq. (44) reduces to
d/dt=1a, a=w—nwy. (47)

These simple relations must be introduced into
the general equations of Section 3. The problem
to be discussed here is very similar to the one
treated in ‘“Magnetron I,” Section 6. There we
had to discuss the role which some damping
terms should play in a more complete theory,
and the same remarks apply here. The use of
Egs. (43) and (47) is equivalent to taking account
only of forced vibrations and neglecting proper
vibrations of the electronic system, as such
proper vibrations must be damped and practi-
cally disappear after a short time.
Equation (34) yields

€ e
[ - a2+w,,2+~azvc/ar2]ra =——0V,/dor. (48)
m m

V. is given by Eq. (1.23)

m
Ve=Vo= ——wn? (49)
2e
Hence
ro=(e/ma2)dV,/or. (50)

Turning now to Eq. (35), one finds

) =enVa/mrla. (51)

THE MAGNETRON
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By using (49) and (36) the following relation is
obtained:

m
2—awp et —wrdV,/or=—1drr. e, (52)
e
while Eq. (32) results in
a
'—‘(fJar) ='in]a9. (53)
ar
Equations (50) and (52) give
Jor=(2/4m)0V,/0r Quyt/a—w). (54)

Equation (39) may now be greatly simplified by
using (47) and (53):

a
naV,= —4rri—(mwy’r.2/2ne)
7e
a
+ (4Wi/n)rc—(rcjal~)

re

J 2m
— )’va—[ ——wp et rOVa/0r
ar, e

m
+ 2—wy2f0(700a+fawy) . (55)

e

Referring now to (50), (51), and (54), one finds
a homogeneous differential equation for V,:

a al, aV,
Ar—r—+Br—+CV,=0,
dr or ar

1
A=-Quwy*/a—w)+twu(l—2wx?/a?), (56)
n

B=2wy3/a?
C=n(a—2wy?*/a).
Let us introduce a variable y=w/wy, a =wy(y—n)
and new coefficients
A'=(y—n)?A/wg=—2—¢/n,
B'=(y—n)B/wg=2,
C'=(y—n)*C/wp=n¢,
c=@—n)*=2(y—n).
A solution may be found by taking
V.=Kr=,

A'x*4B'x+C'=0. (57)
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We thus obtain two solutions:

X1 B’ 1
) =———3+—(B?—44'C)}.  (58)
X2 2A/ 2AI

It should be immediately noticed that 4’, B’,
and C’ are functions of ¥ and #, so that the
solutions x;, x, will depend only upon these two
variables. Furthermore we should remember the
conditions (42) stating that V, and dV,/dr have
to be zero on the filament. This results in the

 y-n
2

F1G. 4. { as a function of y—n.

necessity of choosing the root with a real part
greater than one.

Re(x) 2> 1. (59)

For each elementary solution (57) in V, we

shall obtain the corresponding current densities
from Egs. (53) and (54).

Ve=Kr®,

Jaor=1xVa/4wr[20n*/ (w0 —nwn) —w ], (60)

K]
Ju8= _ '—(f-]ar)
n dr

= (x2V,./4wnr) 2052/ (0w —nwy) —w .
5. DISCUSSION OF THE RESULTS

A discussion of the practical results must be
based on a numerical calculation of the two roots
x; and x; of Eq. (56). These roots, x; and x,

LEON BRILLOUIN

must be calculated as functions of y=w/wy for
different values of #. The solutions corresponding
to +w and 4% may also be obtained with +#
and +w according to a remark on Eq. (41).
Figure 3 shows a typical graph of x as a function
of v as found for n=2, 3, ---. The case n=1is
exceptional. Figure 3 is self-explanatory and
shows the behavior of the roots as functions of y.
There are two regions, y1y, and ysys, which give
imaginary solutions x=x,%+1ix;. Curves repre-
senting x and x,x; have been drawn separately.
The limits of these regions are given by

1B"?—A'C'=14¢ (¢ +2n) =0,

¢{=—nt(m—1)4 (61)

Inside these regions of imaginary solutions we
are interested in defining the point v for which
x,=1:

x,=—B'/24"=1/24{/n)=1,

Other points of interest are y,, where 4’'=0
(¢=—2mn) and the points {=0 (y=# or n+V2)
where the x roots are 1 and 0. All these solutions
are easily obtained by the use of Fig. 4 relating
¢ to y—n. The case n=1 is exceptional since the
regions y1ys and y;y; both disappear and the x
roots are always real, one of them being 1 for
any y value (Fig. 5).

We now wish to discuss these results in relation
to condition (59). The following cases are to be
distinguished :

I. Two real roots less than 1. None of these
roots can be used for our problem. This occurs
for

{=—mn.

Y. <y<n—v2, n<y<y; w<y<n+v2. (62)

II. Two real roots, one greater and the other

4rx

3

n=|

F1G. 5. Roots of Eq. 56 for n=1.
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less than 1. The first root can be used. This
occurs for

y<yo, n—V2I<y<m, n+V2Z<y.

III. Two real roots greater than 1, both
yielding possible solutions. This occurs for

Yo <y <Y1

IV. Two imaginary roots with x,<1.
useful root. This occurs for

Ve<y<ya Y3<y<ya.

V. Two imaginary roots with x,>1, yielding
two possible solutions. This occurs for

Y1<y<Ys.

These results are summarized on Fig. 6, which
shows the distribution of the different regions
corresponding to cases I, II, III, IV, and V in
the vy, n plane. Curves have been drawn con-
sidering # as a continuous variable but the
results have physical meaning only for integral
values of #. In addition to the previously
defined curves, the curve corresponding to
x=n—2 is also plotted. This is interesting in
view of the approximation introduced in Section
2, neglecting the additional field E’. (See
Section 7.)

In case II we obtain one possible solution (57)
and there will be no difficulty in solving com-
pletely our problem. We shall prove that the
magnetron operated under such conditions
behaves like a pure imaginary impedance and
should be unable to sustain oscillations.

In cases III and V we obtain two distinct
solutions, yielding a potential

Vo=Kyoi+ Koo, (63)

This leaves an arbitrary constant, K,/K, for
instance, which we are unable to determine.
It is thus impossible to draw any precise con-
clusions in these cases. This difficulty seems to
be connected with the simplifying assumption
made in Section 4 [Eq. (45.A)] about the
filament having a radius zero. A special discus-
sion of a magnetron with finite filament radius
should be made to answer the question.

In cases I or IV no solution is obtained. Both
roots are smaller than 1, which means that
condition (59) cannot be fulfilled. If we try any
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one of the roots, we obtain an infinite oscillating
clectric field —adV/dr on the filament (r=0).
Instead of a magnetron working far from
saturation and showing small oscillations around
its steady conditions, we obtain large oscillations
where the current emitted by the filament is
zero (half of the time) or the saturation current
for the other half periods. This shows that cases
I and IV should represent the conditions under
which a magnetron is able to oscillate and to

y 2real roots<l !
] 2real roots x,(l)gl¢'

7 .
2realroots 21/
6 Eimag. roots<t

1
] imag. roots 4 !

E' lage

---o0

F1G. 6. Summary of results.

sustain high frequency oscillations in an outer
circuit. The frequency is given by the corre-
sponding y values:

Ys<y<n—v2,

n<y<n+v2. (64)

We must now see how to build up the complete
solution for the potential distribution inside a
magnetron with 2z anodes, operated at the
frequency w=7ywy. According to the remarks at
the beginning of Section 4 this complete solution
will result from the superposition of elementary
solutions corresponding to #» and —n. Let us
first suppose the corresponding roots x; and x_
both to be real and greater than 1 (case II).

Va(r, 8, ) = K roveit=nO + K_pz-gitettnd  (65)
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where the K, and K_ constants must be adjusted
so as to reproduce, for r=5, the assumed po-
tential distribution (2) on the anodes

Va(b, 0, t) = V,(b)e! sin nb. (66)

This gives

1 1
K,=——V,(b)b—=, K_=—V.(b)b—*,
21 21
and

1
Va(r, 0, £) =—V,(b)e'
27

() ) o

which gives the complete potential distribution
inside the magnetron.

6. INTERNAL RESISTANCE OF THE MAGNETRON

Having obtained the distribution of potential
in the magnetron, we are now in a position to
compute the current densities and to calculate
the current reaching the anodes. This might
involve some difficulties when the anodes are
narrow and far apart from each other, but if the
magnetron is built with wide anodes and small
intervals between them (a>>8), we may assume
that each anode collects all the current flowing
radially throughout an angle x/n. Thus the
total current flowing to the first anode will be

x/n
A=J‘LM&r=h (68)
0

but there are #» anodes (numbers 1, 3, - - -, 2n—1)
connected in parallel and the total current is n
times greater

xin
Ia,=enf Jarrdb. (69)
0

Jar will consist of two terms corresponding to
+n, each of which is related to the corresponding
voltage term by Eq. (60). Let us first consider
the case of two real roots x, and x_ with a
potential (67). The relation (60) has to be
applied separately on the two terms of (67)
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which gives

Jar=(Va(b)/87r)eit

2wgy?
X[—x+(r/b)‘+( —w)e"'""
wWw—NwH

2wg?
+x_(r/b)’-( —w)e"""]. (70)
w+nwu

Tin
f et "= +2i/n.
0

Now

(71)

Making =5, and using (69) to (71), we obtain

7 2wg?
I,,,-=eZ—Va(b)e"“"|:x+( —w)

™ w—Nnwy

2wy?
-I—x_( —w)]. (72)
w+nwy

And according to Eq. (2), the potential of the
odd anodes is

Use@t=eV,(d)

eiwt

8 sin (nf/2)
z%m@WKﬁ«m(B)

In addition to radial currents, we have found
that there are also angular components of the
current density inside the magnetron. Thus we
may have to add a correction term representing
the current flowing to the edges of the anode;
this would be something like

Lo=en[J,0(0=0)— J,0(6=1m/n)]or,

for r=b,

(74)

dr representing the apparent thickness of the
electrode and the » factor taking care of the
fact that there are #» anodes connected in parallel.
The edges of the first anode correspond to 6=0
and w/n. J.s is known from Eq. (60) which
must be applied separately to each elementary
Vasolution, yielding for each solution an equation
of the form

19
Jaﬂ= - —‘(rJar) =
n or

.‘X:2 2(0112
( —w) Va(r, 8, t).
4rnr\w—nwy

Hence, for the superposition of the 4# solutions,
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F16. 7. Static characteristics of a two-segment magnetron.

as given by (67)
Va(b)eit
g =——""
8mwir

2wy?

xy? n*
| () )
n \w—nwy b
2 2 7\ *-
_Mh_w)<_) einﬂ]. (75)
n w+nwn b

Exponentials are 1 for §=0 and —1 for §=x/n

so that the two terms in (74) are equal and
one obtains

€l 2wg?

I,,,,=——V,,(b)ei‘"‘<x+2( —w)
47b w—nwy

2wy?
+x-2( —w)>6r. (76)
wWTNWH

x4 and x_ are of the order of magnitude of %, so
that the additional contribution is of the order

or

IaBzIarn“b—r (763‘)

and will probably be small if the apparent
thickness of the anodes is small. The important
fact is that it comes out with the same phase
angle as I,, when both roots x, and x_ are real
(case II). In such cases the currents I,, and I,
retain pure imaginary amplitudes, while the
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potential keeps a real amplitude (73). This
means that magnetrons operated under such
conditions are equivalent to pure impedances
without any (either positive or negative) resist-
ance and seem to be unable to sustain oscillations
in an outer circuit.

It should be noticed that in the present paper
the currents have been written with a sign con-
vention opposite to the usual one in circuit
theory. Hence the internal impedance Z, of the
split anode magnetron should be defined as

— Ugeivt 2wp?

=2 —_
Iar . [x+(w—nwy “’)
2wH2 —1
+x_( —w)] 77
w+n

from Eqs. (72) and (73). This impedance is
observed in the devices shown on Fig. 1 or
Fig. 7.

Z,=

7. VALIDITY OF THE ASSUMPTION MADE IN
SECTION 2, NEGLECTING THE
ADDITIONAL FIELD E’

As noticed in Section 2, just after Eq. (18),
the assumption has been made that the addi-
tional electric field E’, induced by the alternating
magnetic fields, could be neglected. It is now
possible to compute the order of magnitude of
this E’ field, which is determined by Eq. (20).
Because the ei@*—"9 factor appears in this field,
as in all alternating quantities, Eq. (20) reads

199 nt )
- —r—rE,)——E, =4rugiwrJ,,
r or dr r

(78)

where J, is the sum of terms (60) corresponding
to each elementary term 7® in V,, as may be
seen from Egs. (67) and (70). We may, for
instance, write (70) this way

]arzjar(+n)+Jar(_n)v
Va(b)

gi@tFnb)

Jar(En)=F
8xrr

7 z(%n) 2
X(—) x(:tn)wy(——————y).
b yFn

(79)
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And our Eq. (78) will read

Er, =Er,( +n) +Er’( - n) ’

10 9 n?
- —r—rE/(+n)——E, (+n)
r

(80)
r or dr

=4rugiwr .. (+n).

The solution is obvious since J,, depends upon
r by r=1,

dmipowr®Jo(+n
Er'(+n)= oW ( )

(x(+n)+2)2—n?

8r% r rJor(+n)
= - , (81)
¢ X(@x(+n)+2)2—n?

as po=c"? and w/c=2m/\. This shows that the
additional field E’ is very small because of the
factor (1/c¢)(r/\), so long as the dimensions of
the magnetron are small compared with the
wave-length, which corresponds to statement
(19). The only case for trouble would be when
one of the roots x should come near to +n—2,
a condition to be discussed in a moment.

The additional potential ¥’ on the anode =25
corresponding to E,” can be computed. It should
be reminded that 72J,, depends on 7 as r**l.
This gives

V=V (+n)+V'(-n),

Vi(n) = — f E/(+n)dr
’ 87%b% T or (1)
Ay +2)[(w+2)2—n2]

This must be calculated for the middle of the
first anode, i.e., for r=5, 6==/2n. Formula (72)
may be written

Iar=52b[jar(+n)+]ar(_n)]y
for r=5, 6=x/2n, while
8% Jor(+n)
GV’= —€ b3[
2 (x4 +2)[(x4+2)2—n?]
Jar(—n)
_]L_
(x—+2)[(x-+2)*—n?]

This shows that the additional voltage 7’ is out
of phase with the current (¢ factor) and very

(82)

(83)

], r=>b, §=7/2n. (84)
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small except for the cases

x=4n—2. (85)

An order of magnitude can be obtained, if one
remembers that the x values are of the order of .
This gives

1w2bh?

—— I,
AA(n+2)(n+1)

’

€ =

(86)

The addition of a voltage eV’ to the voltage
eV,(b) already assumed on the anodes is equiva-
lent to adding a series impedance Z'= —¢eV’/I,,,
the order of magnitude of which would thus be

w2h?

zc)\(n+2)(n+1).

I —

(87)

Let us take, for instance, b=\ and A=1 cm
which will be a very unfavorable situation.

) 0.372
=
(n+2)(n+1)

’

which is of the order of magnitude of a fraction
of an ohm, a very small quantity when compared
to the thousands of ohms which electron tubes
yield as internal resistance.

Let us now discuss the conditions (85) for
which the additional electric field takes a really
important part. A glance at Fig. 3 shows that
this condition can be fulfilled only for x(+n),
between y=n—V2 and # (where x, is slightly
above 1) or above y=n+Vv2. The first case is
for n=3, x=1, y=3—+2, 3, 34+V2; then n=4,
etc. These points are plotted on Fig. 6. They
all lie in the region where magnetrons have
been proved to yield pure imaginary internal
impedance and to be unfit for sustaining
oscillations.

It thus appears legitimate to neglect the role
played by the additional field E’ induced by
alternating internal magnetic fields.

8. CONCLUSIONS

The results of this study are summarized in
Fig. 6 which shows the type of solutions obtained
in different regions of the y,n plane. These
results will perhaps be easier to understand for
practical applications if we notice that Larmor’s
angular velocity wy is proportional to the
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magnetic field, which means

wy=0.884 10’H, H in Gauss
y=w/wg=2mc/Aog=21310/AH. \in cm (88)

This enables a comparison with experimental
results, which are usually given in terms of NH
corresponding to different types of oscillations.

On the map drawn in Fig. 6, the different
regions corresponding to the cases I to V defined
in Section 6 [Eq. (62)] have been represented.
The physical meaning of the various cases
seems to be:

I and IV. Large oscillations.

ye<y<n—v2, n<y<n+v2. (64)

II. No oscillations, the magnetron being
equivalent to a pure imaginary impedance.

IIl and V. The solution still contains an
arbitrary constant; probably no oscillations.
The different regions corresponding to these
cases I to V are neatly divided for magnetrons
corresponding to n=2, 3, 4 --- (number of
anodes 2n=4, 6, 8 ---); one always finds two
different regions, defined by conditions (64),
where oscillations could possibly take place.

For the usual split-anode magnetron (n=1;
2 anodes) it is hard to foresee the conditions of
oscillations, as the whole diagram changes just
on the line n=1. These very typical circum-
stances should make this magnetron very
sensitive to all sorts of perturbations such as
increase in the diameter of the filament, effect of
large oscillations, etc. Experimental values on
the usual split-anode magnetron are found in a
paper by G. R. Kilgore,? with an attempt at
theoretical explanation, which unfortunately
does not take account of space charge effects,

3 G. R. Kilgore, Proc. I. R. E. (August, 1936). Reprinted
by RCA in Radio at Ultra-High Frequencies (1940), p. 360.
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and therefore remains far away from actual
conditions in magnetrons. Figure 7 is a repro-
duction of Kilgore's Fig. 3, showing the static
characteristic for a split-anode magnetron. This
means w=0, y=0. The magnetic field applied
was 1.5 times the critical field. The average
anode potential was 500 volts, and variations as
large as +400 volts (giving E4— Ep=3800 volts)
were applied. This means very large perturba-
tions, for which our theory would certainly be
only a rough first approximation. It appears
from the curves that the negative resistance is
zero for small AV and reaches a maximum of
about —1500 ohms for AV=400 volts. Effi-
ciencies of magnetrons operated under different
conditions are given by Kilgore on page 372 and
can be summarized as follows (H=1.5H,, H,
critical field):

Efficiency 109, 209 309, 409 50%
AH10~ 545 6.7 8.1 9.8 12 (82)
y=w/og. 039 032 0265 0218 0.178.

If these y values are taken with a negative sign,
they lie just between the horizontal » axis and
the line y=n—v2. Another type of oscillation
has been found on split-anode magnetrons with
\H values around 12,000, which gives

y=1.8.

This value of y seems to correspond to the
upper band of our diagram, as it lies between 1
and 1+4V2.

A further prediction of the theory concerns
the possibility for a magnetron of type =z to
work as magnetrons of types 3», 5#, --- but
with lower efficiency.

Magnetrons #=3 (6 anodes) should behave
differently, as the perturbation by the oscillating
magnetic field is especially large in that case.



