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The result is antisymmetric in the spins of the two nuclear particles. A deuteron in any stationary
state has therefore no extra non-additive magnetic moment due to meson exchange in the pseudo-
scalar theory as mell as the vector theory.

In contrast to the result in the vector theory, in the pseudoscalar theory a proton-neutron pair
has no exchange electric dipole moment that reacts with an electrostatic 6eld. There is also no
electric quadripole moment that reacts with an electrostatic held.

In conclusion the writers would like to thank Professor W. Heitler for a comment at the early
stage of this work.
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It has been suggested that the interaction between a pair of nuclear particles contains, in
addition to a central force term, a tensor term, and quantitative estimates of the relative
magnitudes of these two terms have been given. In this paper a rough quantitative estimate
of the relative contributions of these two terms to the binding energy of a nucleus is made on
the basis of a highly simplified nuclear model. It is found that a tensor interaction between two
nuclear particles of the fdrm suggested by the neutral meson 6eld theory of nuclear forces with
constants determined to fit the experimental data on the two-particle neutron-proton system
would lead to the existence of moderately light nuclei having binding energies, spins, and
deviations from spherical shape much greater than those observed.

1. INTRODUCTION

HE discovery of the electric quadrupole
moment of the deuteron' suggests the

existence of a term lacking spherical symmetry
in the interaction between a proton and a
neutron. The current assumption of equality of
forces between all pairs of nuclear particles then
implies the existence of a similar term in the
interaction between two like particles. General
considerations of invariance' indicate that such
a term should contain the operator

sg2 ——3(eg rcpt r/r') —eg e2. (1)

Field theories of nuclear forces have been
proposed' which lend support to this view. They

~ The greater part of this work was completed during
the spring term of 1940 while the author was in the
Department of Physics at Princeton University, Princeton,
New Jersey, on a Research Fellowship granted by the
Royal Society of Canada.

' J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and
J. R. Zacharias, Phys. Rev. 55, 318 (1939) and SV, 677
{1940).' E. %igner, Phys. Rev. 51, 106 (1937).

3 H. A. Bethe, Phys. Rev. 5"I, 260 (1940) (gives a list
of references); R. E. Marshak, Phys. Rev. SV, 1101 (1940).

predict the existence of terms containing Si2 as
a factor, but little reliance can be placed on the
detailed form of the interaction given by these
theories because of divergence diSculties from
which they suffer.

The influence of the Si2 tensor term on the
two-particle proton-neutron system has been
investigated by Rarita and Schwinger and by
Bethe. ' The former develop a purely phenomeno-
logical theory adopting simpli6ed rectangular
mell potentials with constants chosen to fit the
binding energy and quadrupole moment of the
deuteron, and the scattering of slow neutrons
in hydrogen. The range of the forces is taken
equal to that deduced from proton-proton
scattering. Bethe employs the form of the
interaction predicted by the single-meson theory
of nuclear forces cutting off at small distances to
avoid divergence. The value of the "cut-off"
distance and the strength of the interaction is
determined to fit the deuteron binding energy

4%. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941)
and Phys. Rev. 59, 556 (1941).' H. A. Bethe, Phys. Rev. SV', 390 {1940).
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and the scattering cross section of slow neutrons
in hydrogen. A discussion of H' and He4 based
on the use of tensor forces is given by Gerjuoy
and Schwinger. 6

It seems of interest to investigate the effect of
the tensor interaction on the binding energy,
spin, and shape of heavy nuclei. %igner and
Eisenbud' pointed out that forces of the general
type of those used by Rgrita and Schwinger and

by Bethe will not have the property of saturation.
Bethe' also mentioned the possibility of the
tensor part of the interaction becoming pre-
dominant in heavy nuclei with the consequences
not only of non-saturation, but also of large
nuclear spin and markedly non-spherical shape
of the nucleus. The object of the present paper
is twofold: (a) On the basis of a highly simplified
nuclear model, we obtain a rough estimate of
the relative contributions of the spherically
symmetrical and of the tensor interaction to the
nuclear binding energy. (b) The application of
these results to the "neutral" theory type
interactions using the numerical constants as
determined by Bethe' shows that the difticulties
mentioned above will become pronounced well
within the range of existing nuclei. The same
holds for the values of the constants as de-
termined by Schwinger and Rarita4 if the
spherically symmetrical part of the interaction
is due to an ordinary potential. The case that
it is an exchange interaction is not considered
in the present paper and may well lead to a
diAerent conclusion. This makes it very probable
that in the Schwinger and Rarita theory, the
Jo(r) of (2) has to be replaced by an exchange
interaction.

U= Jo(r)+ J~(r)oq om+ J2(r)S~2 (2)

The symmetrical theory introduces an additional
factor g~ ~2, while the charged meson theory
gives no interaction between like particles, and

6E. Gerjuoy and J. Schminger, Phys. Rev. 51, 138
(1942).

7 E. Wigner and L. Eisenbud, Phys. Rev. 55, 214 {1939).

2. THE FORM OF THE NUCLEAR INTERACTION

The general form of the interaction between
two nuclear particles predicted by the neutral
meson theory is given by

~ 0-

~8-

~7

~ I.

I g 4P

FIG. 1. The factor giving the dependence of the nuclear
interaction on the distance (in units of 1/~=2. 18X10 '3

cm) between the particles. F(r) and G(r) are Bethe's
results on the neutral straight cut-off theory for the
spherically symmetric and the tensor parts of the inter-
action. S(r) is the step function used to replace both in
the present calculations.

introduces a factor (1+~~ ~2) in the interaction
between a proton and a neutron.

Bethe' arbitrarily assumed the spin inde-
pendent term Jo to be entirely absent, and took
the other two terms to be of the form predicted
by the meson theory of nuclear forces:

where 1/~=A/pc=2. 18)&10 " cm on the as-
sumption that p=177 m, and P is a constant.
To avoid divergence these interactions must be
cut oft at some value of r=a. Using straight
cut-off (J(r) =—J(a) for r(a) and the interaction
(2).of the neutral theory Bethe obtained

P =0.0770kc, ~a =0.405.

J~ and J~ may then be rewritten as

J~(r) =AF(r), Jm(r) =BG(r),

where F(r) and G(r) are unity for r~a, and for
r&a

F(r) = Jg(r)/ J|(a), G(r) = Jm(r)/J2(a). (6)
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TABLE I. Values of the function 5'1(k, 5).

0.1
0.2
0.4
0.6
0.8
1.0
1.5
2.0
3.0
4.0
8.0

20.0

1.OOO

1.000
1.000
1.000
1.000
1.0QQ
1.0QQ
1.000
1.000
1.000
1.000
1.000

0.5

1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.994
0.879
0.606

0.6

0.968
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.7

1.000
1.000
1.000
1.000
1.000
1.000
0.975
0.923
0.717
0.437

0.8

0.801
0.946
0 999
1.000
1.QOO

1.000

0.9

1.000-
1.000
0.997
0.975
0.893
0.810
0.588
0.346

1.0

0.624
0.805
0.946
0.988
0.999
1.000
0.985
0,943
0.843
0.755
0.537
0.311

1.5

0.342
0.483
0.641
0.723
0.759
0.768
0.741
0.692
0.598
0.524
0.361
0.208

2.0

0.207
0.300
0.404
0.448
0.465
0.469
0.457
0.436
0.394
0.357
0.259
0.152

3.0

G.172
0.183
0.187
0.188
0.185
0.180
0.170
0.161
0.134
0.091

TABLE II. Values of the function Wm(k, 8).

0.1
0.2
0.4
0.6
0.8
1.0
1.5
2.0
3.0
4.0
8.0

20.0

—0.939—0.833—0.595—0.370—0,172
0.000
Q.338
0.582
0.906
1.-111
1.496
1.778

0.5

—0.833—0.595—0.370—0.172
0.000
0.338
0.582
0.906
1.101
1.252
0.953

0.6

—0.908—Q.833—G.595—0.370—0.172
0.000
0.338
0.582

0.7

—0.595—0.370—0.172
0.000
0.338
0.582
0.858
0.962
0.937
0.662

0.8

—0.742—0.779—0.594—0.370—0.172
0.000

0.9

—0.172
0.000
0.333
0.535
0.708
0.754
0.693
0.484

1.0

—0.566—0.641—0.543—0.359—0.171
0.000
0.310
0.483
0.621
0.654
0.595
0.419

1.5

—0.290—0.336—0.283—0.1'?5
—0.076

0.000
0.124
0.194
0.263
0.290
0.290
0.223

2.0

—0.162—0.177—0.121—0.069—0.029
0.000
0.046
0.073
0.103
0.119
0.140
0.128

3.0

—0.029-0.016—0.006
0.000
0.010
0.016
0.023
0.028
0.036
0.043

A and 8 are constants given by

A = Ji(a) = 7.7 Mev, B= Jm(a) = —102 Mev. (7)

F(r) and G(r) are plotted in Fig. 1 together with
the step function S(r) of range ro defined by

S(r)=1 0 r ro

=0 r) ro.
(8)

Bethe also found that the factor ~1.~2 introduced
by the symetmric theory alters the values of e
and f and leads to several serious difficulties.

Rarita and Schwinger4 assumed rectangular
well potentials of equal range, but diferent
depths:

Jo(r) = —(1—-', g) VOS(r) = —13 39S(r), .
J,(r) = ~g VoS(r) = —0.50S(r), (9)
Jg(r) = —y VOS(r) = —10.75S(r).

S(r) is the step function defined by (8), and the
constants g, y, V0, and ro were evaluated to be:

g =0.0715, y =0.775, V0 ——13.89 Mev, (10)
&0=2 80X10 "cm.

The known properties of the ground state of

the deuteron and low energy collision phenomena
are insufhcient to discriminate on the basis of a
purely phenomenological theory between the
interaction (2) and those obtained from it
by the inclusion of the factors —Sz&.~2 or
—~i(1+vi ~2), which both have the value unity
for states antisymmetrical in the charge.

3. THE SIMPLIFIED NUCLEAR MODEL

The following model is used in the present
calculations:

(a) The interaction V between two particles
is assumed to be of the form (2) corresponding
to the neutral meson theory. The particles are
taken to have all their spins parallel. V then
becomes an ordinary potential depending on the
distance r between the two particles, and the
angle 8 which r makes with the direction of
their spins:

V= LJ0(r)+ Ji(r)$+(3 cos' 8 —1)Ji(r). (11)

(b) The functions J(r) are replaced by rec-
tangular potential wells of appropriate range ro.
The ranges need not all be the same, but will
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be taken the same for convenience. Then:

V=AS(r)+BS(r)(3 cos' 8—1). (12)

(c) The nucleus is taken to have the shape of
an ellipsoid of revolution with its axis of sym-
metry parallel to the spins of the particles.
The shape of the ellipsoid is specified by the
ratio k of its length along the axis of symmetry
to the diameter of its greatest circular cross
section (k) 1 corresponds to prola, te, and k(1
to oblate ellipsoids). The volume 0 of the
ellipsoid is specified by 8 which is defined by
0=(s/6)(hr0)'; i.e., h is the ratio of the diameter
of the sphere having the same volume as the
ellipsoid to the range ro of the step functions
used.

(d) The density p of the particles is assumed
to be uniform over the volume of the nucleus.

(e) The Coulomb energy, and the exchange
integrals of the purely nuclear interaction are
neglected, the total energy being calculated as
the sum of the direct nuclear interaction and
the kinetic energy of all the particles.

If the Coulomb and the exchange integrals
are not neglected, and if-the surface eRect' is

properly taken into account then calculations
based on the above crude model must necessarily
give an overestimate of the total energy and
hence an underestimate of the binding energy,
so that any conclusions as to lack of saturation
for such a model would a fortiori hold for a
better one. The additional approximation made
in neglecting the Coulomb, the exchange, and
the surface energy makes this argument some-
what less conclusive, but the results obtained
below are still suggestive enough to make such
a model of interest.

j.
W (k, b) =——" ~S(

~
x—x'

~ )dxdx',
0' ~

1 f

W2(k, h) —=—'

) S(ix—x'i)(3 cos'8 —1)dxdx',
0'

both integrations being extended twice over the
volume of the nucleus. The integrals in (14)
may be carried out analytically, and the results
are stated in the appendix. From these results,
Tables I and II, giving numerical values of
Wj(k, 8) and Wq(k, h) as functions of k and 8

for several selected values of these parameters,
were constructed.

5. KINETIC ENERGY

In the statistical model the wave function of
each individual particle is taken to be that of a
free particle in a box of a size and shape corre-
sponding to the particular nuclear model under
investigation. The number of particles in each
level is restricted by the Pauli exclusion principle.
Usually two particles are allowed in each level
corresponding to the two possible spin orienta-
tions. In our case, where the spins are all taken

4. EVALUATION OF THE POTENTIAL ENERGY

On the above model the potential energy is
given by

P.E.=-', ~l l t (x) V(x —x')t (x')dxdx'
(13)

M
4 4 2O SO yO $0 a'o

=-,'¹LAWg(k, h)+BW2(k, b) j=—W(k, 8)¹.
Here N is the number of particles in the nucleus

' H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82
I,'1936); E. Feenberg, Phys. Rev. M, 204 (1941).

FIG. 2. The total kinetic energy (in units of Xo=
~~A~/2M@) of N particles obeying the exclusion principle
confined to a box of volume Q. I—Approximate calcula-
tion. II—Cubical box, periodic boundary conditions.
III—Cubical box, zero boundary conditions. IV—Rec-
tangular box, ratio of sides 1:1:3, zero boundary condi-
tions. V—Spherical box, zero boundary conditions.
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TABLE III. Values of the function TABLE IV. Values of No&= —107/PIVg(k, 5).

in Mev.
W'g(k, 5) = $I 7.7$"I(k, 8)-202$'g(k, b)j

k 8 =0.50 O.ZO 0.90 1.0 1.5 2.0 3.0

k 8 ~0.50 0.70 0,90

20 38 38 38
1.5 —13.4 —23.4 —13~ 2

2.0 —25.8 —25.8 —23.5
3.0 -42.4 —40.0 —32.7
4.0 —52.3 -45.5 —35.3
8.0 —60.5 -45.0 -33.1

20.0 -46.3 —32.1 —23.3

1.0

3.8—12.0—21.0—28.4—30.4—28.2—20.2

1.5

3.0—35
7%2

1 1 ~ 1—12.8—13.4—10.6

1.8—0.6—2.1—3.8—4.7—6.2—5,9

0.7
0.2—0.1—0.5—0.8—23—1.8

2.0 3.0
1.0
1.5 32.0 16.3
2.0 16.6 8.4
3.0 10.1 5.5
4.0 8.2 4.8
8.0 7.1 4.8

20.0 9.3 6.8

10.1 8.9 13.7 44.7
S6 51 66 130 917
4.0 3.8 4.3 7.1 22.4
3.7 3.5 3 ~ 7 5.7 15.2
4.0 3.8 3.5 4.3 9.1
5.7 5.3 4.5 4.5 6.5

TABLE V. Average energy per particle in Mev (from
Bethe's interaction) for a nucleus containing 4S particles.

parallel, there are still two particles in each
level —a proton and a neutron.

The familiar formula for the kinetic energy of
a large number N of particles obeying the
exclusion principle and restricted to a volume 0,
obtained by assigning two particles to each cell
of size h~ in phase space, is

3.0
4.0
8.0

20.0

8 =0.9

202
82

183
621

1.0

76—16
82

445

1.5

101
25—2

125

2.0

169
126
61
72

TABLE VI. Average energy per particle in Mev {from
Bethe's interaction) for a nucleus containing 216 particles.

3 (3q 'I' s'k' ¹"=0.582XO¹", (1S)
5 (s) 2MQ"'

b =0.7 0.9 1.0

KD =—ir%'/2MQ"'. (16)

3.0
4.0
8.0

—778—1965—1864

—2298—2871—2388

—2283—2723—1349

This is seen to depend on the mass M of each
particle, and on the volume 0 of the box, but
not on its shape. However, a more detailed
calculation for a small number of particles shows
that the result does depend on the shape of the
volume 0, and also on the type of boundary
conditions used. Results are given below for a
few simple cases.

The simplest case is that of a rectangular box
of sides e, k~, k3e and volume Q=k2k3u'. Two
types of boundary conditions are possible:
periodic or zero boundary conditions. The wave
functions are complex exponentials in the former
case, and sines in the latter. The corresponding
expressions for the kinetic energy are:

(K.E.),„p——4(k 2k') &ED

Xpl iii +iiim/kg +/3'/ki ] (17)

(K.E.).;.= (krak, ) &Xo

X Q(n, i+e,i/k, '+ii3i/kgb) (18).
K0 is defined by (16). The summation in (17)
extends over zero, positive, and negative integral
values of ni, ni, e3, while in (18) it extends
only over the positive integral values.

Another simple case is that of a spherical box
with zero boundary conditions for which

K.E.= (4/3m') &ED Q Z'„, ;,

where E0 is given by (16), and Z„, , (i =1, 2, 3,
~ ~ .) are zeros of Bessel's functions of order
n = 1/2, 3/2, 5/2, , the sum being taken over
a sufhcient number of the lower lying zeros.

Figure 2 gives the ratio K.E./Xo as a function
of the total number of particles for 6ve di6erent
cases:

I Calculat. ed from (15).
II. Calculated from (17) with km

——k3 ——1.
III. Calculated from (18) with kq=k& ——1.
IV. Calculated from (18) with ki ——1, k3 ——3.
V. Calculated from (19).

It is of interest to note that although for a given
volume of the box the K.E. does not depend
strongly on its shape (cubical, oblong, and
spherical, respectively, in III, IV, V), it does
depend markedly on the type of boundary
conditions used (periodic in II, zero in III).
For a very large number of particles the ratio of
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K.E.=EX»3b-2, (20)

TABLL VII. Values of' the function

Wso(k, b) = -,'L —13.89Wg(k, b) —10.'15 Wo(k, b)j
in Mev.

the K.E. obtained from any of the formulae
above to that given by (15) must necessarily
approach unity. But for small N it is seen that
zero boundary conditions, which lead to a greater
concentration of particles towards the center of
the box, give a considerably higher energy than
the periodic boundary conditions, which for all
values of X give results very close to those
obtamed from (15).

Since in our simple model of the nucleus the
density of particles is assumed to be constant
over the nucleus, it is consistent to use the
periodic rather than the zero boundary conditions
on the wave functions in calculating the kinetic
energy, the former giving a more uniform particle
density. Since the dependence of the kinetic
energy on the shape of the nucleus is slight„ for
simplicity expression (15) is used for all values
of k and b. Rewritten in terms of b, (15) becomes:

~here
9or

t
3 q

b k' 38.4

5 &2or) 3&o' (~ro)'
(21)

with 1/a=2. 18X10 "cm.

6. CALCULATION OF TOTAL ENERGY FROM
BETHE'S CONSTANTS

Our approximation to the total energy of a
heavy nucleus is obtained by adding (13) and
(20):

2= W(k, b)N'+K%'lob '.

In order to apply this to Bethe's' neutral theory
interaction with straight cut-off the functions
F(r) and G(r) of Fig. 1 are replaced by the step
function S(r) whose range ro is so chosen that
the area under G(r) is the same as that under
S(r) F(r.) could be replaced by a step function
of a different range, but A is numerically so
much smaller than 8 in (7) as to make the
contribution of W~(k, b) to the total energy
relatively unimportant, so that for convenience
F(r) and G(r) are replaced by the same step
function S(r) of range determined by

faro =0.6.

1
1.5
2.0
3.0
4.0
8.0

20.Q

8 =0.5
-6.94-8.76—10.07—11.81—12.83—12.84—9.33

0.7
—6.94—8,76—10.07-11.39-11.58—10.02-6.60

0.9
—6.94—8.72—9.65

-10.01-9.71—7.81-5.01

1.0
—6.94—8.51—9.15—9.19—8.76-6.93-4.42

1,5

-5.33—5.81—5.85-5.57-5.20—3.94—2.64

2.0

-3.26-3.42-3.42—3.29
3e 12-2.55—1.74

3.0
—1.30—134—1.34—1.31

1 027—1,12—0.86

Its=107 Mev,

and Ws(k, b) calculated from

(24)

The value of Ks is then obtained from (21):

TABLE VIII. Values of E0& = —23.3jan@'gg(k, 5).

Ws(k, b) = —,'[7.7 Wg(k, b)
—102Wo(k, b) j Mev (25)

0.9

1 13.41
1.5 10.63
2.0 9.24
30 788
4.0 7.26
8.0 7.25

20.0 9.98

6.84 4.14
5.42 3.30
4.72 2.98
4.17 2.87
4.10 2.96
4.74 3.68
7.20 5.74

S =0.5 0.7 ].0 2.0

3.35 1.92 1.79
2.74 1.77 1.70
2.54 1.75 1.70
2.53 1.84 1.77
2.66 1.97 1.87
3.36 2.60 2.28
5.27 3.88 3.34

3.0

1.98
1.93
1.93
1.98
2.04
2.31
2.99

is given for selected values of k and 8 in Table
III. The value of N for which B=O is given by

Egg 107
(26)

b'Ws(k, b)O'W (ks, b)

For values of E greater than No, 8 rapidly
becomes more and more negative, very soon
numerically exceeding the observed value of

TABLE IX. Average energy per particle in Mev {from
Rarita and Schwinger's interaction) for a nucleus con-
taining 9 particles.

b =1.0

TABLE X. Average energy per particle in Mev {from
Rarita and Schwinger's interaction) for a nucleus con-
taining 216 particles.

1
1.5
2.0
3.0

38.2
24.1
18.4
18.0

—3.6—79-8.3—5.7

—4.1—56-5.6—4.4

2.0
3.0
4.0

8 =Q.9

—1048—1126—1062

1.0

—1137—1146—1053

-891—830—750
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roughly —8N Mev. Table IV gives the values
of ¹&from (26) for selected values of k and b.

In this table the lowest value of No= (3.5)'=43
is seen to occur for k =4, 5 = 1. Table V gives
the values of the average energy per particle
2/X in Mev when %=45, and Table VI gives
the average energy per particle when %=216.
If the range ro of the step function 5(r) replacing
F(r) and G(r) in the above calculations is

increased so as to satisfy harp
——0.7 instead of

Krp ——0.6, the lowest value of Np is further
reduced to ¹=17.

The dimensions of the ellipsoid specified by
k=4, b=1, xrp=0. 6 are: major axis=3.3)&10 "
cm, minor axis=0. 83&10 '3 cm. The ellipsoid
is of the order of magnitude of nuclear dimen-

sions, but is excessively elongated.

'T. CALCULATION OF TOTAL ENERGY FROM RARITA
AND SCHWINGER'S CONSTANTS

Rarita and Schwinger4 use the step function

S(r) of range ro 2 80——X1.0—"cm, i.e. ,

~r p = 1.285. (27)

Np&=— (30)
6'Wss(k, 8) 8'Wss(k, 8)

Table VIII gives the values of ¹&from (30) for
selected values of k and h. In this table the
lowest value of ¹=(1.7)'=5 is seen to occur
for 4=2, b=2. Table IX gives the values of
the average energy per particle F/N in Mev
when %=9, and Table X gives the average
energy per particle when %=216.

The dimensions of the ellipsoid specified by
4=2, 5=1.5, xrp=1.285 are: major axis=6. 7

&10—"cm, minor axis =3.4)&10 "cm.

8. DISCUSSION

Although the model used in the above calcu-
lations has little meaning when applied to nuclei

The corresponding value of Ess from (21) is

Kga ——23.3 Mev,

and Wss(k, 8) calculated from

Wzs03, &) = kL —13 89W~(k, &)
—10.75'(k, 8)] Mev (29)

is given for selected values of k and b in Table
VII. The value of N for which 8=0 is given by

containing as few particles as the values of Xp
obtained above, nevertheless the inference may
be drawn from these calculations that inter-
actions of the type suggested by the neutral
meson field theory of nuclear forces, although
useful for describing the lighter nuclei, will allow
stable nuclei having large spins, excessive binding
energies, and deviating appreciably from spheri-
cal shape to exist well within the range of the
atomic weights of the periodic table, contrary to
experimental evidence.

The small values of
¹ given by (26) are due

to the large negative values of Ws(k, h) obtained
by using Bethe's interaction. The feature of the
interaction responsible for this is the excessive
depth of the attractive tensor term as compared
with the magnitude of the repulsive spherically
symmetric term. This disparity in the relative
strengths of the two parts of the interaction
between a proton and a neutron is, however,
required to give the observed binding energy of
the deuteron, if the wave function for the ground
state of the deuteron is not to deviate appreciably
from spherical symmetry.

The values of Wzz(k, h) obtained by using
Rarita and Schwinger's interaction are numeri-
cally much smaller than those of Ws(k, b)

because in their interaction the tensor and the
spherically symmetric terms are both attractive,
and consequently the observed binding energy
of the deuteron can be obtained with relatively
shallow potential wells. In spite of this the
values of

¹
given by (30) are even smaller

than those given by (26) because Ezz in (30) is
much smaller than Es in (26). This is because
the width of the potential well used by Rarita
and Schwinger is twice the width of the square
wel1 introduced above to replace Bethe's po-
tential. The greater is the width of the square
well used, the more important is the potential
energy relative to the kinetic energy, since the
particles can occupy a larger volume, and hence
have less kinetic energy, for the same value of
the potential energy.
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and
8'2{k, a) =E(k),

= 7{k)S-4—G(k) a~+H(k, S)
= F{k)S-4—G{k}a~

where

for 8~k "',
for k 2/s~b~k'/3,

or

P(k) = (k« —1)—I{2k«+1)—3k«{k«—1)—3/2 COs
—1 (k-1)

{k)=@8k "I (k'-4) (k« —1)-»2 cos- (k- )
+(1+2k ')(k' —1} '),

G(k}=—ps[3k'(k' —2}(k'—1) s" cos ' {k ')
+(3k' —4+4k ')(k' —1) 'j,

II{k~ b) =—Y8k«(k' —1) "'L(k« —2)b 6—3(k' —4)k 238

Xcos—1(Q-I/3) +1/54 (k« 1)—I/2(k«/sg —2 1}1/2

Q (k«+44) (k« 1)—3/2(k«/3g-2 1)3/2

+ /8 (k« 2) (k«1)-3/2(k«/sg —2 1)s/2

%~1 (Oblate ENpsoids)'

for b~kl/3,

=1+(1—k') '/«D'(Q '/3) for k'»~b~k»s,
= 8S-3—3'{k)S-4+ C'(k) S-6 for k 2/s~b,

APPENDIX

The analytical expressions for the functions S'1(k, 8)
and 8'2(k, b) defined by (14) are given below.

0~1 {Prolate Ellipsoids)

W {k, s)=& for 8~k «/',

=8a-3 —8{k)8-4+ C(k) S~
—(k' —1) '/'D{bk '/') for k «/s~b~kl",

= so-3 —B(k)S-4+ C{k)S~ for kl/s~b

where

{k)=%k I (k« 1) /2 cos (k )+k
C{k)=+4[3+2k '+3k'(k' —1) '" cos ' (k ')g,
D{x)=—/84{x-2-1)&/2+1+1(x-2 —1)»2

+ +(,— 1}/ %{„- y, )

W (k, a) = —Z'(k)
= —E'(k)+II'(k, s)

P {k)g-4+G (k)b-6

where

for g~kl/3

fOr kl/s~g~k-2/3

for k 2/s~b

g {k)= (1—k«)
—1(2k«+ ]) —3k«(1 —k2}-3/2 cosh —1 (k-1)

P'{k)=%k4/3I {k«—4) (1—k«)»2 cosh 1 (k 1)

+(1+2k ')(1—k') 'j
G'{k)—= g&8 L3k«(k« —2) (1—k') '/«cosh 1 (k ')

+(3k' —4+4k «)(1—k'
H'(k, a) =—~s;k&{1—k&)-»s[(k& —2)k-&

—3{k«—4)k—2/sg-4 —8) cosh 1 {$k 1/3}

1 /5 (1 k«) -1/2(1 k«/sg-2} I/«

+/&8 {k'+44)(1—k') 3/'(1 —k«/3& ')»2

+/88(k« —2}(1—k«) 3/2(1 —k«/3$ 2)5/2.

The three separate ranges of validity of all the above
results correspond, respectively, to the range ro of the step
function S{r)being greater than the maximum dimension
of the ellipsoid, intermediate between the maximum and
minimum dimensions, and less than the minimum dimen-
sion.

As b~~ the values of IVI(k, 8}, W'2{k, 8), and
IV«(k, 8)/8'1(k, b) all approach zero for all values of k.

As k~~ for any finite value of 5 the values of S'I(k, 8)
and 'W«(k, 8) both approach zero, while their ratio
8'2(k, b) jW, (k, 8) apprOaChes 2.

As k~o for any finite value of 5 the values of 8'1(k, 8)
and S'2(k, 8) both approach zero, while their ratio
5'«(k, b) /WI(k, b) approaches —1.

8'I(k, b} is always positive, while 8'«(k, b} is positive for
prolate ellipsoids (k&1), negative for oblate ellipsoids

(k &1), and zero for a sphere (k=1).
The values of O'I{k, b) and W«(k, b) calculated from the

above formulae for selected values of k anc! 8 are given in
Tables I and II.

8'(k}—%k4/3I {1—k«)»«Cosh ' (k ')+k 'j,
t. '(k) =—Ps[3+2k~+3ks(1 —k') 'I' cosh ~ (k ') j,
D'(~) =—Y4(1 —&~)"2—'Y2(1 —& ')»'

+&/54(1 —g 2)1/2 —%(g 4 —+6@~}cosh 1 g&

and

The formulae for the oblate case were also obtained independently by W. Rarita and J. Schwinger. I am indebted
to them for communicating to me their results and the following numerical values of 8'1(k, b) and 8'«(k, 8) some of which
supplement those already listed in Tables I and II:

f2{k, 8)

W1(k, 5)
W(k, 8)

1.000
0,000

1.000
0.000

0.9

1.000—0.082

1.MO—0.082

0.8

0.999—0.172

1.000—0.172

0.996—0.266

1.000—0.268

0.6

0.988—0.360

1.000-0.370

0,5

0.973—0.454

1.000—0.480

0.4

0.945—0.542

1.000—0.594

0.3

0.896—0.612

1.000—0.714

0.2

0.805—0.642

1.000—0.832

0.1

0.624—0.566

1.000—0.940


