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Electromagnetic Properties of Nuclei in the Meson Theory
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The mathematical treatment of the interaction of a meson field with an electromagnetic
field is simplified by using Pauli's method. A discussion of calculation of exchange multipole
moments of nuclei by the method of canonical transformation and the results for dipole mo-
ments in the pseudoscalar theory are given.

1. INTRODUCTION

HE theory of the interaction of a meson
6eld and an electromagnetic 6eld has been

developed by several authors. ' More details have
been worked out by Bhabha. The latter has
given complete expressions for the electro-
magnetic interaction of a meson 6eld in the
presence of nuclear particles and also equations
of continuity for the meson current and the
current of nuclear particles separately. Both the
mathematical treatment and the 6nal result can
be simplihed if we adopt a method used by
Pauli. ' Pauli's treatment is based on the general
properties of the Lagrangian function instead of
the explicit form of Proca's equations which are
derivable from the Lagrangian function as
variational equations. The method is therefore
quite general and is applicable not only to the
vector meson theory, but also to the scalar,
pseudovector, and pseudoscalar theories as well.
Pauli treated only the electromagnetic inter-
action of a free meson. We give below a general-
ization of his method to include nuclear particles.

Owing to the exchange nature of the meson
theory, it becomes now necessary, in treating
the interaction of a nucleus with an external
electromagnetic field, to take into account not
only the direct influence of the electromagnetic
field on the nuclear particles, but also the
interaction of the external 6eld with the exchange
meson 6eld. Investigations in this direction have
recently been made by several authors. ' lt has

' Yukawa, Sakata, Kobayasi, and Taketani, Proc. Phys.
Math. Soc. Japan 20, 319, 720 (1938); Frohlich, Heitler,
and Kemmer, Proc. Roy. Soc. A155, 154 (1938); Kemmer,
Proc. Roy. Soc. A155, 127 (1938); Bhabha, Proc. Roy.
Soc. A165, 501 (1938}.'%'. Pauli, Report of the Solvay Conference {1939).

'A. J. F. Siegert, Phys. Rev. 52, 787 (1937};%. E.
Lamb, Jr. and L. I. Schi8', Phys. Rev. 53, 651 {1938);
Frohlich, Heitler, and Hahn, Proc. Roy. Soc. A174, 85

been shown that the electromagnetic interaction
of a nuclear system can be expressed in terms of
interactions between the external 6eld and the
electric and magnetic multipole moments of the
nuclear system. The electric and magnetic dipole
moments and the electric quadripole moment
have been calculated on the vector theory by
means of the ordinary perturbation method in
quantum theory. It might appear objectionable
to use a perturbation method for this purpose,
because perturbations of as high as the third
order are involved in such calculations. It can
be shown, however, that all the previous results
can be obtained, in a simpler manner, as the
6rst approximation in the canonical transforma-
tion carried out by Manlier and Rosenfeld. ' We
give below a discussion of the calculation of the
exchange multipole moments by the method of
canonical transformation and also give results
in the pseudoscalar theory.

2. GENERAL THEORY OF THE INTERACTION OF
MESON FIELD WITH ELECTROMAGNETIC FIELD

We give below a mathematical treatment of
the interaction of a meson field with an electro-
magnetic field in the vector meson theory on
the basis of Pauli's method. Pauli's method may
be easily extended to other forms of meson
theory. We give at the end of this section the
results for the pseudoscalar theory, which can
be similarly derived.

The vector meson 6eld is described by a four
vector U„with U»= DUO, ~ being the square root
of —1 introduced by Proca. ' Let the complex
conjugates of the field variables U, be denoted

(1940};S. T. Ma, Proc. Camb. Phil. Soc. M, 351, 438
(1940).

4 Mdller and Rosenfeld, K. Danske Vidensk. Selskab.
17, 8 (1940).

~ Proca, J. de phys. et rad. 7, 347 (1936).
18
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U„=m, U„ U,v=m„~Up*,

by Up~. We introduce the operators

7r„=V, i—4„, w.*=V',+i4'„(1)
where V, =«l/«lx. , (4i, 4«, 4») = (e/hc)(Ai, A«A3)
and 4'« ——4'«/«=(c/Iic)A«, A and A«being the
electromagnetic potentihls from which the anti-
symmetric tensor f,„repr ese nti ng the field

strengths can be derived. We also adopt the
notations

L = —giF U, ——F "G
g2

2K

J Np
g Fpg U 4«Fpv+G

2K

It follows from the variational principle

b ~ I
~

Ldxidx«dx«dx4 0——
aJ 6 a) J

(13)

Up, ), = m), m, Up, Up, ), =xg x, Up .

G„=U„—Up, .

It follows from the relations

From these we define the new 6eld variables

(2) that
BL BL

&Up, &Up

BL
x„*

~+Pv

BL 8L

QUAL QU

BL

8%' 8%'
Pv

ie M
ir„iri, —s.i,ir, = f,i„ i—r.*—s x —irz*s.*= f.i, (—4)

hc fsc

aL aL
V'v

~+Nv ~+N

8L BL
V„

8%'N

ie
U„i,—U,i,= + f,)U—„.

kc

U,.) —U,~.= f,).U, "——
kc

Furthermore, for two complex scalar quantities
A and 8, we have

(xp*A*)B+A "(vpB) = V'p(A "B).

Let the wave functions of the nuclear particles
be denoted by 4' which consists of the relativistic
wave functions of the proton and the neutron.
On introducing the notations

et=«4*F4, q~= ipse~, —n'=«,

where a', a', n', P are Dirac's matrices, we obtain
the following four vectors and six vectors:

0'P~IIyp@'N = Fp, O'NtII*yp%'p = Fp*,
(8)

II~p~v@,N Fpv %,N)II+~ p~v%, Fpv

The complete Lagrangian function for the
system of nuclear particles, the meson field,
their mutual interaction, and their interaction
with the external electromagnetic field may be
written as follows:

From these equations we obtain

~ aL q aL aL
U.+

( BL & BL «, BL
+Ui. -

BU*P BUi,* 8U~
)v

( BL ) BL
v,

) U„~ = U~, +
K«l U),„) «I Uz «l Ui„

( + U~„

The Lagrangian function dehned above, be-

sides being relativistically invariant, is invariant
under a gauge transformation. A gauge transfor-
mation for the wave functions of the protons,
neutrons, and mesons is

+p~'&pe'~, 4'p ~'kp e

+N~ +N y +N

g,~U'pe', U' o~ U' 4e—iu

where a is an arbitrary function of x&, x» x3,
and x4. The corresponding gauge transformation
for the electromagnetic fields is

JP+JN+LM+LPN+QNP

L~ = i%'i t (chy's, +—AIBA c') 4'p,

L~ = i4'~t (chal'7, +—3IIi«c') 4'~,

C„~Cv+ V',n.

From (18) and (19) it follows that

m,~x,—i V',u, vr, *~m,*+iV',n,

(19)
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and therefore

U„—+ Up„e',

Up. )~Up.),e',

+~v~+I ve'a)

+Xv~+Nv)

U,„~Up„e ',
Up.),~Up. ),e ',
+I'v~+I've

and also that

I'v~1"ve

Z'pv~l pve 'a

'fv)ic~fv4cesa

Ppv+~ppv4eia
(22)

(21) Since L is invariant under a gauge transforma-
tion, we have

BL/Bn = 0

Putting 0.=0 in this equation we obtain

BL BL BL 8L ~ BL BL ~ BL
U, + U„p+ +p+ 4'p. = U,*,+ U.. .+4'p*,+4'p,

8U„BU, p 8+p 8+~, 8 U„* 8 U* 8%'p*
Vp I'v

Kith the help of this equation we obtain

BI. BI. BI. BI. t' BI. BL BL BL
V,L= U,*, ,+ U„+U„, , + U~„+i +,*,+ +,++„,+BU* BU BU* BU, I, 8%'* 8% 8%'„* 8%'„ )

(23)

(24)

The energy and momentum tensor may be dehned as

~ BL BL lt' 8J. 8L
T',„=U,*, + — U„+i e,*'BU' BU~,

'
&

' Be,* Be. ')
p, ~

By (17)

(25)

BI. BL ~ BL BI. f „BI. BI BL BI
,+ U., +U.;,+ U~, +i +.. .+ +„++,' „+ +, i

-~,L. (2~)' ~U* ~U),„' '~Us* ~U), i ' ~+,* ~+„' ' ~+* 8+ ') p, N
Xv

Substituting (24) into this expression we obtain the result

where
+V+VV fVVSVV

ie ( BL BI. BI. BI.»+~p*
llc & 8 U* 8 Ug, 8%* 8%'p, )

(27)

(28)

may be interpreted as the four vector expressing the current and charge densities of the nuclear
system including the nuclear particles and the meson field. From (28) we have

)e ( BL BI. ~ BL BL BI. BL ~ BI. BI
V„s„=——

i
Ug* — U),+ Ug, — Uz, +Op* — +p++p, — @pv i. (29)

i)c & 8 U),~ 8 Uy 8 O' 8U)„8+p* 8% p 84* 8+pv )

The equation of continuity for the total current

V',s, =0 (30)

)',e (, BL, BLs„=——
i

4p &+P„)
Pv

(31)

follows from (29) and (23).
The current s„can be separated into two parts: the proton and the meson current defined, re-

spectively, by

ie ( BL BL

hc E BU* BU),„) (32)
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The two parts do not satisfy (30) separately because of the exchange of charge. We have

ic t' BI, ~ BL, Bl. 8I.
V„s„'=——

~
e~*,+~~&

hc & 84'y* 84* 8% 84'p«j
On account of the relations

BL BL BL BL
4'p' I.~+——L,~", = 0, +P«+ +P =&P+&"',

a@* ae»
we obtain the result

M
sP — g s M (LPx LNP)

Ac
(33)

This equation expresses the rate of flow of the exchange current into or out of the nuclear particles.
It has been given by Bhabha' but it is here given in a much simpler form.

The explicit expressions for the variational equations and the current densities are

where

s„~= e%'z ~y"0'p,
M )s„=——( Ug*G„„—G„U ),
kc

(35)

g2 )g g g2G„=G„——I'"*, G,„=G„—r ".
K K

(36)

Let us now write the four and six vectors in terms of ordinary vectors and scalars as follows:

U, = (U, V), Gp„——(6, F), (G)2 ——G3, Goy ——Fb etc.),

g,r =(M, Z) =(g,e,*II&+~, g, +~*II+~),

R~ (g2——I""= (8, T) =
~

—4z*IIP~+~, —0 &*IIPa4~ l.
K E«K

Equations (34) and (36) become then

('I 8
~

——+~4'0 ~F= (w —i+) XG+«'U —M*,
&c at j

«'V= (v ie—) F—+N*,
6= (V —ie) XU+8*,

together with the complex conjugates of these equations. The meson current and charge densities
are„ in the present notations,

M
j=c(si, s2, ss) = ——(U*XG—UXG*+ V*F—VF'), (39)

ie
p=s4/e= ——(U* F—F" U).

ch
(40)

In order to link up the present notations with that of reference 3, we divide U and F into longi-
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tudinal and transverse parts and put
1 K

Ug —— p, F.=—
(4s)& (4s)&

The longitudinal part of U and the transverse part of F may then be expressed in terms of P and g
with the help of (38) with Co, O', M, X, S, and T omitted. We have

1 ( 1.1 ~ ( 1.&

I e+
(4s)& ( cz j (4s)& & c~ &

The Hamiltonian is equal to the 44 component of the energy-momentum tensor

(41)

T,.= L8„+—Ui,G,),+G.), Ui,, ick—%ty"('V, iC—,rp)4'
multiplied by —1. Since

g2 g g p

U&,G,&=G, G„&——G,&r"" + V,&G„&,
K

(42)

V„(Up)Gg) = VV'(Up*Gal)+V„LUp*(x'U„—gif "*)j
= V' [U *(~'U„—giI'"*)1,

we may write

T,.= LS,„—iche—tq" (V, ie, r—p) ++G„G„,+~'U, *U, g,r"—U, ——1'""G„+the complex
K conjugate.

Hence

H= —T4, L+ich%——'ty'(V4 iC4rp) +—2(G4)G4), +—K U4 U4)

(43)

g2
+g,r U4+ —r ~G4&+the complex conjugate

3

i@t[ck—y (v i+rp)+(Mpr—p+M~r~)c'j4'+a'U" U+-', Q G;;G,;
3

t, j=1

+—~~ F N~'+ ~F ——T ~' —M U+-,' g S"G;;+the complex conjugate. (44)
2

K i, j 1

This result can be separated into a term independent of the electromagnetic held and a term de-
scribing the electromagnetic interaction, namely,

~0———i%'t[ck(y. V)+(Mprp+M~rp)c']4'+~'U .U+F* F
1

+—~v F~'+)vXU~' —M U N(v F)+—S—(VXU) —F T
K K

+the complex conjugate+terms containing gi'-', g2', (4l)

1.III= ——j.A.
C

(46)

In the second equation terms proportional to the square of the A's have been omitted. In order
to obtain the interaction with an external electrostatic 6eld Ap we have further to introduce into
the Hamiltonian the zero term

1
Aoi p ——vE),

4s
(47)

where p is the charge density given by (40) and E is the electric field strength. '
o Heisenberg and W. Pauli, Zeits. f. Physik 59, 168 (1930).
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Equation (44) can also be reduced to the form

II= i—4t['chy (W i@—rp)+(Mprp+3fgrg)c'j@+«'U~ U+G~ 6+«'V*V
+F* F—F T—F*.T*—M U —M* U*, (48)

if we add the relativistically invariant term

g
2

ppvgpp„
2 K

to the Lagrangian function (9).
The treatment of other forms of meson theory is similar to the above. We state briefly the results

in the pseudoscalar theory. Let P be a pseudoscalar describing the meson field and P, = ir,f be the
pseudovector derived from P. For the nuclear particles we have the following pseudovector and
pseudoscalar:

I'& "= i&%'I ~ IIy~y "y"4'~, I'I'""*= ie4g t ?I*pi'y "y"0'p

(/234 /844 I'i24 P&24) —(Pl P2 I'4 I'4 )
(/244@ P&444 Pi%4' I'&&4+) —(I'iI+ I'2~4' P&~4' I'4~4')

f1234 j~+ t +~1~2~3~4+ F"34*=—Ze%' ~II~y'y2y'y4%' =1"*.

While the Lagrangian function for the nuclear particles is still given by (10), for the meson field

and its interactions we have

f44= «2P*P+P +P, IP&= f I"P —I" f—,
—j,&P= fiI"+f+———I" +f +.

K

(50)

The variational equations for the pseudoscalar meson field are

or
m, *BI/8$, =81./8$, ~,81./8$, *=81./BP*,

ir, ipse =
—«'P+ fiI"*, xp*ipp*= —«'P" +fiI',

(51)

(52)

2

A = 4'p+
K

2
4'~+ I'—*—

K

The present scheme is also gauge invariant and therefore (23) still holds. From the energy-momentum
tensor

(54)

it follows that the four vector of the current and charge density is given by

s —sp+sM

ie
s. =—(|f*sp.—vp. *4).

Ac
(55)

The proof of the equations of continuity (30) and (33) is the same as in the vector theory.
Let us rewrite the above four-dimensional pseudovectors and pseudoscalars in terms of three-

dimensional pseudovectors and pseudoscalars as follows:

Vp, =(&, 4),

fiI"=R, —(I'", I'", I'")= P, —I'"=Q.
K

(57)
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Then (52) and (53) become

t'I 8 't t'I 8
{

——+ic'o }4'=oo
—Q*, —

{
——+i4'o

}
p= «'f+ (V —i+) 1 —&*, I'= —(V i+—)f+Po, (58)

(cBt j (c8t )

together with the complex conjugates of these equations, and (55) takes the form

The Hamiltonian is given by

H= i+—t{ ky (V i+ )+—(~ +~ )c'}++ 9*4+~ 41'+v*v f I"4—

(59)

(60)

3 2

——(I"q+Q I'o'orof)+the complex conjugate+ —I'oI", (61)
K Ic=1 K

in which the term describing the electromagnetic interaction is of the form (46), jM being now given
by (59). Equation (61) may be rewritten in the form

II= i%t—{cIty'(~ i+rp) +—(Mprp+M~rN)c' }4+aQ*f+ y*y+ I'* I' Rf—

which is the expression given in reference 4.

3. CALCULATION OF EXCHANGE MULTIPOLE MOMENTS

As in the case of the nuclear forces the multipole moments of a nuclear system due to exchange
processes may be calculated either by using the ordinary method of quantum theory or by adopting
the method of canonical transformation in reference 4. Calculations of the multipole moments by
the former method have been given in reference 3. %e discuss below the method of canonical trans-
formation and also calculate the multipole moments in the pseudoscalar theory.

Let us take as an example the exchange magnetic moment of the deuteron in the vector theory.
The static parts of the field variables are given by

f
Vo(r') = ¹(r)oo(r —r')dr,

U'(r') = —
~

v XS*(r)y(r —r')dr,

F'(r') = —
~

~¹(r)q&(r —r')dr,

(63)

6'(r') = a' I S (r) oo(r —r')dr — v (v S*(r)) oo(r —r') dr,

together with the complex conjugates of these equations, in which
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The exchange magnetic moment is given by

1 7 ze
rXj'dr= IrXF'*V' —rXF'V'~ —rX(6'~XU')+rX(6'XU'*) }dr.

2cJ 2cil J
(65)

Take any point 0 as the origin. Let the vectors OI' and ON from 0 to the proton and the neutron,
respectively, be denoted by Ri and R2. We write Rj —R2=R, Ri+R& ——p, r —Ri ——rI. , r —R2 ——r2.
Then the first term in the integrand of (65) gives a contribution

l X(v N)N*e( )q( )d dRdR.

Kith the help of the relation

we obtain

1
e'(rg) e (r,)«= e—"",

8ma
(66)

1 t r r e—4g

i
yX(v2N2)¹*e " dR|dR2 ——

, ¹ ¹(pXR) dRgdR2.
16gif; 0 16m J R

The first two terms in the integrand of (65) give therefore a contribution

ze LB 1ie e "(p
Ni*N2(t XR) d»dR2= ——

„ I
-XR INi*N2e(R)dRidR~.

16~eh c J R 2c 5 J 0 E2
(67)

It is known that (see reference 3) the total exchange current between the proton and the neutron
is equal to (ie/h) J, J be'ing the nuclear potential between the proton and the neutron due to exchange
processes. Equation (67) is therefore just one part of the magnetic moment due to the exchange
current with respect to the point O. If we choose the origin at the midpoint of the two particles
then y=0 and (67) vanishes. Henceforth we shall omit all terms containing y in the final result.

The contribution of the third and fourth terms in the integrand of (65) can be similarly calculated
with the help of the general f'ormula for partial integration

(

Jt uv (v Xw)dr= JI (vX w) vudr+ uw (v Xv)dr.

The 6nal result for the exchange magnetic moment with respect to the midpoint of P and N is

y= (Si*XS~)(V2+«')e "s=
16m@,

zeg2 (
IIg*112(egXe2)

}
«' ——}e '",

81IpK R) (69)

in agreement with the result obtained in reference 3.
In the pseudoscalar theory the exchange magnetic dipole monument is given by

ze
y= i

rX(p'"I' —I "p')dr
2kc 0

ze
"Jl j"rXL(«'P2+v2Xv2X Pm)(vi Pi*)—(«'-6*+viXviX R*)(v2 P2)]e(ri) e(r2)«dRldR2.

2kc 0

On evaluating the integral as above, we 6nd

ief2' (agXe,).RR ( 1 )
p = II~*II2 —

i
1+—}

—(e|Xea) e "s.
8sp R R ( «R)

(70)
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The result is antisymmetric in the spins of the two nuclear particles. A deuteron in any stationary
state has therefore no extra non-additive magnetic moment due to meson exchange in the pseudo-
scalar theory as mell as the vector theory.

In contrast to the result in the vector theory, in the pseudoscalar theory a proton-neutron pair
has no exchange electric dipole moment that reacts with an electrostatic 6eld. There is also no
electric quadripole moment that reacts with an electrostatic held.

In conclusion the writers would like to thank Professor W. Heitler for a comment at the early
stage of this work.
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Tensor Forces and Heavy Nuclei
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It has been suggested that the interaction between a pair of nuclear particles contains, in
addition to a central force term, a tensor term, and quantitative estimates of the relative
magnitudes of these two terms have been given. In this paper a rough quantitative estimate
of the relative contributions of these two terms to the binding energy of a nucleus is made on
the basis of a highly simplified nuclear model. It is found that a tensor interaction between two
nuclear particles of the fdrm suggested by the neutral meson 6eld theory of nuclear forces with
constants determined to fit the experimental data on the two-particle neutron-proton system
would lead to the existence of moderately light nuclei having binding energies, spins, and
deviations from spherical shape much greater than those observed.

1. INTRODUCTION

HE discovery of the electric quadrupole
moment of the deuteron' suggests the

existence of a term lacking spherical symmetry
in the interaction between a proton and a
neutron. The current assumption of equality of
forces between all pairs of nuclear particles then
implies the existence of a similar term in the
interaction between two like particles. General
considerations of invariance' indicate that such
a term should contain the operator

sg2 ——3(eg rcpt r/r') —eg e2. (1)

Field theories of nuclear forces have been
proposed' which lend support to this view. They

~ The greater part of this work was completed during
the spring term of 1940 while the author was in the
Department of Physics at Princeton University, Princeton,
New Jersey, on a Research Fellowship granted by the
Royal Society of Canada.

' J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and
J. R. Zacharias, Phys. Rev. 55, 318 (1939) and SV, 677
{1940).' E. %igner, Phys. Rev. 51, 106 (1937).

3 H. A. Bethe, Phys. Rev. 5"I, 260 (1940) (gives a list
of references); R. E. Marshak, Phys. Rev. SV, 1101 (1940).

predict the existence of terms containing Si2 as
a factor, but little reliance can be placed on the
detailed form of the interaction given by these
theories because of divergence diSculties from
which they suffer.

The influence of the Si2 tensor term on the
two-particle proton-neutron system has been
investigated by Rarita and Schwinger and by
Bethe. ' The former develop a purely phenomeno-
logical theory adopting simpli6ed rectangular
mell potentials with constants chosen to fit the
binding energy and quadrupole moment of the
deuteron, and the scattering of slow neutrons
in hydrogen. The range of the forces is taken
equal to that deduced from proton-proton
scattering. Bethe employs the form of the
interaction predicted by the single-meson theory
of nuclear forces cutting off at small distances to
avoid divergence. The value of the "cut-off"
distance and the strength of the interaction is
determined to fit the deuteron binding energy

4%. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941)
and Phys. Rev. 59, 556 (1941).' H. A. Bethe, Phys. Rev. SV', 390 {1940).


